archives-ouvertes

3D underwater reconstruction of archeology object with
a mono camera camcorder: The case study at
Gourneyras lake
Yadpiroon Onmek, Jean Triboulet, Sébastien Druon, Arnaud Meline, Silvain

Louis, Bruno Jouvencel

» To cite this version:

Yadpiroon Onmek, Jean Triboulet, Sébastien Druon, Arnaud Meline, Silvain Louis, et al.. 3D underwa-
ter reconstruction of archeology object with a mono camera camcorder: The case study at Gourneyras
lake. OCEANS, Jun 2017, Aberdeen, United Kingdom. pp.1-6, 10.1109/OCEANSE.2017.8084978 .
lirmm-02018544

HAL Id: lirmm-02018544
https://hal-lirmm.ccsd.cnrs.fr /lirmm-02018544

Submitted on 22 May 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-02018544
https://hal.archives-ouvertes.fr

3D Underwater Reconstruction of Archeology object with a
monocamera camcorder: Case study at Gourneyras lake

Y. Onmek*, J. Triboulet’, S. Druon*, A. Meline¥, B. Jouvencell
LIRMM Laboratory, University of Montpellier - CNRS UMR 5506,
161 rue Ada, 34090 Montpellier Cedex 5, France
Email: *Omnec@lirmm.fT, TTriboulet@lirmm.fr, iDmon@lirmm.fr, §Meline@lirmm.fr, TJouvencel @lirmm.fr

Abstract—This work presents the 3D reconstruction of the
archeology objects in underwater environment. The videos and
images are obtained from a calibrated camera system. The
features of interest between image pairs are selected by the FAST
detector and FLANN descriptor. Subsequently, the RANSAC
method is applied to reject outlier points. The putative inliers
are matched by triangulation to produce sparse point clouds in
3D space, using a pinhole camera model and Euclidean distance
estimation. The 3D model textrue is achieved through a commond
3D Delaunay triangulation procedure. Moreover, evaluation of
the quality of the underwater 3D reconstruction model to find
its accuracy is done by measurement, comparing it with a 3D
industrial scan model as well as a real object.

Keywords: 3D reconstruction, Underwater Archeology,
Monocamera, Scanner

I. INTRODUCTION

In recent years, 3D imaging sensors and 3D reconstruction
from single camera-vision systems have increased in popularity
in the computer vision community, computer graphics, and
photogrammetry. The essential 3D modeling applications are
robot navigation, visual inspection, virtual reality, and so on.
In the context of archeology, several researchers have been
developing novel approaches to produce 3D models of objects
as well as scenes.

Numerous methods exist, but they are not applicable to all
objects and environments. Indeed, they depend on knowledge
of the system as well as the environments. Especially in under-
water environments, there are several limitations when working
with underwater images. It is not easy to access and recover
3D information because of the possibility of encountering
poor experimental conditions. More importantly, in underwater
environment we must deal with various conditions for instant
light conditions, loss of color and contrast in significant depth,
the effects of several noises,unclear water, as well as poor
data acquisition control. The main purpose of this paper is
the evaluation of 3D reconstruction methods for archeological
objects (a female bust) in underwater environments.

The underwater video and images sequence for this work
were acquired by divers at the Gourneyras lake Fig 1 located
in the Herault department in southern France.First using a
small single digital camera to take a video of a calibration
chessboard to calibrate the parameters of the camera. The
initial image pairs are captured and extracted from a calibrated
single camera camcorder system. The features of interest are
selected and matched across image pairs. An additional outlier
removal step is performed based on the RANSAC method.

Triangulation of the inlier features from the 2D images
space into a sparse 3D points cloud is done by using a pinhole
camera model and Euclidean distance estimation. Then, the
texture and rendering of the 3D stereo model is procedure.
Furthermore, evaluation of the 3D reconstruction model quality
is done by a measurement comparison with a 3D industrial
scan model as well as the real object. The 3D reconstruction
pipeline is presented in Fig 2.

This paper is organized as follows: In section II a brief
overview of 3D reconstruction problems is presented. Section
IIT describes the method applied for 3D reconstruction in
the case of an underwater environment: the initial instrinsic
camera parameters are provided by a calibration procedure, the
detector and discription methods for correspondence problems
as well as the reconstruction techniques are described. The
evaluations of the system and results are described with noise-
simulating underwater conditions in section IV. In the last
section, discussion, conclusions as well as future works are
presented.

[I. RELATED WORKS

This section briefly discusses some earlier works related to
the detection of features of interest, matching point-sets as well
as the reconstruction of 3D models. Comparative performances
of methods have been published, assessing the detection per-
formance features and image matching algorithms. The system
of [13] compared several well-known feature detectors and
descriptors. To compare each combination performance ob-
jectively, the effects of JPEG compression, zoom and rotation,
blur, viewpoint as well as illumination variations have been
investigated in terms of precision and recall values. Similarly,
works from [16], proposed to investigate the performance of
the SIFT and HARRIS methods. They simulated a noise filter
in surface images to compare the percentage of inliers. More
recent systems built on this same approach [1] considered
methods to improve color quality and contrast of underwater
images that do not need a prior knowledge of the scene.
Finally, SIFT and SURF descriptors were used to compare
the computation time.

The procedure of some researchers was to create a digital
model and physical replicas [2] using undetermined images to
estimate 3D urban models. They give no information about
the devices that took the pictures, but their methods engage a
prior knowledge of the scene. In the same way,[22] proposed
a method for 3D object reconstruction to elaborate the 3D



Fig. 1: The Gourneyras lake, Herault department in south of France.
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Fig. 2: The 3D underwater reconstruction system overview.

model from pictures in an automated way. Concerning robust
photometric implementation, a bundle adjustment is used to
create a standard package. Another essential point in [8]
presented a multi-view stereo algorithm capable of computing
high quality reconstruction of a range of scenes from large,
shared, multiuser picture collections available on the Internet.
This capability opens the possibility of computing accurate
geometric models of several sites such as cities and landscapes.

Focusing on underwater reconstruction, [15] stated that to
carry out the 3D reconstruction of natural underwater scenes
from images obtained from calibrated single cameras, under-
water constraints in the camera distortion model must be taken
into account. Consequently, [12] combined a 3 DOF inertial
sensor and a calibrated stereo rig to estimate the trajectory
and produced a 3D dense map. [4] used a stereo camera to
capture images and reconstruct indoor environments for robot
navigation.

III. METHODS

This section presents all of the methods and materials used
in this paper.

A. Camera calibration

In 3D computer vision fields, camera calibration is a
mandatory step, and it is an important task for Euclidean
reconstruction [25]. The process of camera calibration is to
impose the characteristics of the transformation between an
object in 3D space and the 2D image observed by a camera.
The transformation includes the characteristics of the camera,
such as intrinsic parameters including focal length, the princi-
pal points of the camera as well as distortion, and extrinsic
parameters to present the orientation and camera locations,
such as a rotation matrix and translation vector.

1) Intrinsic parameter: The camera model used is the clas-
sical pinhole camera model.The intrinsic matrix transforms 3D
camera cooordinates to 2D homogeneous image coordinates.
This perspective projection is modeled by the ideal pinhole
camera. The intrinsic matrix is parameterized by [11].

fx s Cx
K=10 fy Cy (D
0 0 1

where fx and fy are focal lengths, s is the the skew, which
is 0 in our work, and the principal point (cx, ¢y). The extrinsic
calibration parameters consist of the 3x3 rotation matrix R and
the 3x1 translation vector ¢ which describe the pose of the
camera movement are presented in section 3.5.

B. Image Processing

In case of underwater images somethimes need to improve
or filter images before 3D reconstruction processing. Because,
it have noise in the images that effect from light, deep or sand,
dirty water.

1) Gaussian filter: Tn image processing, a Gaussian blur
[19] (also known as Gaussian smoothing) is the result of
blurring an image by a Gaussian function. It is a widely used
effect in graphics software, typically to reduce image noise
and reduce detail. The visual effect of this blurring technique
is a smooth blur resembling that of viewing the image through
a translucent screen, distinctly different from the bokeh effect
produced by an out-of-focus lens or the shadow of an object
under usual illumination. Gaussian smoothing is also used as
a pre-processing stage in computer vision algorithms in order
to enhance image structures at different scalessee scale space
representation and scale space implementation.



2) Median filter: The median filter is a nonlinear digital
filtering technique [19], it is used to remove “salt and pepper”
noise. The template size slider defines how much filtering takes
place. Median filtering is a nonlinear method used to remove
noise from images.It is widely used as it is very effective at
removing noise while preserving edges.

C. Detection and Extraction

The next step is to find the correspondence between the first
and second images. In other words, when a scene or an object
must be reconstructed in 3D, detection and matching points in
the images are the most crucial factors for model accuracy.
The 3D model will be of low quality or even completely
wrong if the feature extraction and matching steps introduce
errors. We investigated several feature detectors and many
of them are very good, such as the basic HARRIS corner
detector proposed by by Harris and Stephens [10], which is
an operator to detect corners in images. And the SIFT method
(Scale Invariant Feature Transform) proposed by [14] which
is a local detector and descriptor. Also, the SURF method
(Speed up Robust Features) proposed by [9], is a detector and
descriptor that is invariant to change of scale or rotation. It
uses integral images, which results in a significant performance
boost. However, as we are planning to work with a video file
and multiple images in our next work, in this experiment we
chose the FAST method to detect the point of interest and used
the FLANN method [17] that is available in the OpenCV open
source for matching the points of interest that we identified
from the detection step. For more detail are shown in below.

1) FAST detector method: A feature from the accelerated
segment test (FAST) was originally proposed by [S] [6]. This
is a well-known corner detection method. The main idea is to
combine edge- and point-based tracking systems to emphasize
the problem of a real-time 3D model based on tracking
systems. The edge- and point-based systems complement each
other and can establish a rather robust system. To carry out
a corner detector, a circle of 16 pixels around the corner
candidate is considered. The test is performed on a Bresenham
circle. The classification of the positive and negative corner is
based on the pixels which produce the extreme information and
is measured using the ID3 algorithm [21] to determine whether
it is a corner. Non-maxima suppression is subsequently appli-
cable on the sum of the absolute difference between the pixels
in the circle as well as the center pixel [23].

D. Suppression of false matching

The RANSAC algorithm proposed by [7] is intended to
verify the matches between key points. The concept of this
algorithm is to interpret a method and find its parameters
with N subsets of n random data. From these N estimates
of the model, classifying matching points as excellent or weak
matches is possible. The pairing validation of points is based
on the measurement of error between the projected point
from the first image onto the second image as well as the
points matched in the second image. The algorithm is used as
follows: selecting a set of eight random points and estimating

the fundamental matrix, then calculating for each point the
distance between the projected point in the second image and
the epipolar line. If the distance exceeds a certain threshold,
the points are rejected. The remaining items are grouped in K
set. The process is iterated N times and the set with the greatest
number of elements is selected. Finally, the fundamental matrix
with these points is estimated.

E. Delaunay Triangulation

The Delaunay triangulation is a geometric structure and well
know in mesh generation [20]. Given a point set P in the plane,
the Delaunay triangulation is a particular triangulation of the
points in P, which satisfy the empty circum-circle property:
the circum-circle of each triangle does not contain any other
point p € P. This structure for a set of 3D points is the
tetrahedralization of the points in which the circum-sphere of
each tetrahedron does not contain any other point of the point
set.

Voronoi Diagram (VD) Related to Delaunay triangulation,
the Voronoi Diagram (VD) of a set of points is defined as
follows: Let P be a set of points in an n-dimensional Euclidean
space R" . The Voronoi cell of a point p € P, called V,(P), is
the set of points x € R" that are closer to p than to any other
point in P:

Vp(P)=x€eR"| |lx—pl[<lx—qlllgePg#p ()
The union of the Voronoi cells of all points p € P form the
Voronoi diagram of P, noted as VD(P) :

VD(P)=UV,(P),peP (3)

Delaunay triangulation and Voronoi diagrams are dual
structures: the center of circum-circles (-spheres) of Delaunay
triangulation are the Voronoi vertices; and joining the adjacent
generator points in a VD yield their DT. Therefore, having
constructed one structure, the other one can be extracted au-
tomatically. This duality is very helpful, because construction,
manipulation and storage of the VD is more complicated than
DT, so all the operations can be operated on DT, and the VD
extracted on demand.

F. 3D Reconstruction

To carry out the 3D reconstruction, we used all the pa-
rameters we have applied previously, including the essential
matrix that obtains the pose of the camera from the first image
to the second image, the projection matrix P for the first
images and P2 for the second ones. Subsequently, the rotation
matrix R and the translation vector ¢ are estimated. Finally, a
triangulation from the inliers found earlier and the projection
matrices is used to create the 3D reconstruction. The 3D model
is then retained to remove some irregular points that are locally
isolated. The 3D Delaunay triangulation was used to create a
mesh texture as well as rendering on the 3D model.



IV. EXPERIMENT AND RESULTS

In this part some results generated with te proposed system
are presented. For the image pair of archeological objects, in
this experiment we used a female bust. Firstly, we used the
mono camera to take a video of the object in an underwater
environment. Secondly, we extracted the file video into an im-
age sequence. Thirdly, as underwater images are normally not
very clear, and therefore there is a problem with light, color,
and dirty water, we need to improve the quality of the images
by using an image processing technique. Fourthly, we choose
the image pair for the experiment based on there being enough
movement between the image pairs and also enough overlap
between them. Finally, the features of interest are detected in
each of the images and the points of interest between the image
pair are matched. These features are triangulated from the 2D
image into 3D point clouds. The OpenCV open source was
used to develop an application to carry out 3D reconstruction,
while OpenGL was used for visualization of the 3D model.
A 3D industrial scan model was created for the measurement
compared with the underwater 3D reconstruction model.

A. Camera calibration

In this experiment, the camera used is a Sony Cyber-
Shot HD Camera 16.1 megapixel DSC-H70. The resolution
used for picture acquisition is 1280x720 pixels. The camera
model in this experiment is a pinhole. Our single camcorder
was calibrated by placing a calibration chessboard with know
dimensions in the lake floor, and recording a video of it from
various angles. Then the camera calibration platform based on
[25] and [3] was used. The intrinsic parameters are estimated
for each camera, such as the focal length (f), the principal
point on (Cx, Cy), as well as the distortion.

The intrinsic parameters are now known from the calibra-
tion, it is used to determine the extrinsic parameters in the
Camera Pose Estimation step.

B. Image processing

The goal of this paper is to work with underwater
images. We already know that images taken in an underwater
environment always have various noise. As in our original
underwater images in this experiment, from the video taken in
the lake, there is some effect from white points. So we need
to improve our original images to achieve sufficiently good
quality to be able to extract and find the points of interest in
the images. Initially, we modified the images by gathering the
Median filter kernel size 9, in order to reduce the white and
black points (salt and pepper points). In addition, we applied
a 5x5 Gaussian kernel to modify blurred images. The Original
underwater image and the filtered images are shown in Fig 3.

C. 3D model reconstruction

The archeological object used in this part to create the 3D
model is a female bust. The image pairs used in this experiment
were the original images and filtered images. Then the FAST
method was used to detect features of interest in the stereo

(b) Filtered Underwater image

Fig. 3: (a)The original underwater image and (b) filter under-
water image.

images. Subsequently, the FLANN method [18] was used in
the matching step to obtain matched points between the first
and second images. OpenGL was used for rendering and the
textures of the 3D stereo model. As another essential point,
the quality of the underwater 3D reconstruction model was
validated by measurements of the reference 3D scan model
and the real object.

1) Detection and Extraction: Robust feature detection and
feature matching are crucial to building a robust 3D model. The
matching step is the essential point of the 3D reconstruction.
To begin the detection, the FAST method is used to identify the
detected features of interest in the stereo images.The FLANN
method is used to match those features in image pairs.Finally,
the RANSAC method is used to reject inconsistent matches.
Inlier features are points that have a correct match with the
initial image pairs. Table I summarizes the results obtained
from our experiment.

The results in Table I show that the features of interest
detected on the original underwater images are more numerous
than in the filtered images. However, not all of the features
of interest can be matched between image pairs. And several
false matches are represented.Finally, the RANSAC method
was used to remove false matched points.

Focused on the percentage of inliers, the results presented
in Table I show that in the case of the original underwater
images, the percentage of inlier points is 32.93%, which is less
than in the case of the filtered underwater images, for which
the percentage of inliers is 39.29%. And in the case of the
ground image it is 44.47%. From this part of the experiment,
we will have 2D points set to carry out the underwater 3D
reconstruction model in the next step.

From this experiment part, we will have 2D points set to
carry out the Underwater 3D reconstruction model in the next
step.

2) Camera Pose Estimation: In the next step, when we
have a set of matching points between first and second images.
Then we can used them to find the camera movement or we
call camera pose. To begining with the fundamental matrix



TABLE I: Comparison the percent of inlier point.

. Number of Number of Number of .
Object t femal I i . ¥ % of Inl
ject (Bust female) TMABE PAT | £ atures detection | feature matchinng Inliers % glalices
2
Filter underwater image L?ﬂ Image 2072 784 308 39.29
N Right Image 2,390
5% 3 Left Image 1,575
O 1 underwats : 2317 763 2.93
riginal underwater image Right Image 8897 3 3
2.82
Ground image Leftimage 2,826 1,039 462 44.47
Right Image 3,504

F is a 3x3 matrix which relates corresponding points in

stereo images. In epipolar geometry, with homogeneous image

coordinates, x and x’ , of corresponding points in a stereo

image pair, Fx describes a line (an epipolar line) on which

the corresponding point x on the other image must lie.
YTFx=0

“

Then the essential matrix method proposed by [11] is used.
The aim of this method is to obtain the pose of the second
camera with respect to the first camera. The essential matrix
E is calculated from fundamental ' and calibration K matrices
obtained previously.

E = K'xFxK (®)]

Calculating the single value decomposition SVD [24] of the
essential matrix grants the camera pose (R and t). In the first
place is defined the projection matrix P = K[I|0] for the first
camera and P2 = K[R|t] for the second one.

Subsequently, the rotation matrix R and the translation
vector ¢ are estimated.

3) Euclidean Reconstruction: To perform the reconstruc-
tion, we use results obtained by the calibration step and the
matching points. We used each pair of points and project them
in the 3D space by performing a spacial triangulation.

4) Triangulation and texture: To improve the rendering of
the 3D model, texture was added. First, a triangulation of the
point cloud is required. We defined here as triangulation, the
creation of triangular surface between all the points of the
cloud. The Delaunay triangulation is performed from the 2D
points. This permit to obtain only visible triangle. Then, they
are projected in the 3D space with the 2D texture information.

We present the result of the underwater 3D model from the
original images and filtered images, turning it in other views
to show the model, as seen in Fig 6 and Fig 5. We can see
that the 3D model from the filtered images looks smoother
than original the image when we turn it around in several
views.

D. Validation with 3D industrial scan model

The aim of this experiment is to verify the underwater
3D reconstruction model by comparison with a 3D industrial
scan model that is used as the reference. We used the tool in
Meshlab for measurement of our 3D reconstruction model for
comparison with the 3D industrial scan model Fig 7 and the
real object. The measurement comparison results are shown in

(a) 3D points (b) Delaunay from 3D points

(d) Final 3D model
Fig. 4: The 3D model of filter underwater image.
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Fig. 5: The final 3D reconstruction model in many views of
filtered image.
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Fig. 6: The final 3D reconstruction model in many views of
original image.

(c) Delaunay with Texture




Table II. To summarize, the measurement of the 3D model in
the case of filtered underwater images is a robust model, as
the measurement result is similar to the real object as well as
the 3D scan model. In part of the nose there is a difference
of about 0.23 cm compared with the 3D scan and about 0.73
cm compared with the real object. In addition, the top-down
(head-bottom) part is different by about 1.8 cm compared with
the 3D scan and about 1.2 cm compared with the real object.

Fig. 7: The 3D scan model.

TABLE II: Table to test captions and labels

Detail Measurement comparing (unit = cm)
etai
Real Object 3D Scan Original Image | Filtered Image
Top - Down
(head - 30 294 38.4 31.2
bottom)
Left - Right 20 186 24.26 219
shoulders
Nose 4 as 4.5 327

V. CONCLUSION

The goal of this work was to achieve a robust 3D reconstruc-
tion of archeological objects with a single camera camcorder
system in an underwater environment. To begin with, image
processing was used to improve the quality of the underwater
image. Then, to achieve this purpose, we have to make sure that
the feature points and the matching method are robust enough
to the noise condition. Finally, the Euclidian reconstruction
method is used to create a 3D model of the archeological
object. Finally, the 3D stereo model quality is evaluated by
a measurement comparison with a 3D industrial scan model.

In future work, we plan to work with a video of the
archeological object obtained with a stereo system instead of a
single camera system and to take numerous views of the object
to carry out 3D point clouds. Then tracking and 3D mapping
techniques will be used to produce a more precise underwater
3D reconstruction model. Moreover, we will apply the fusion
of this 3D information with a sonar map of an underwater
archeological site.
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