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Présentée et soutenue publiquement par

Carla Silva Rocha AGUIAR

Le 24 Septembre 2009

SEGMENTATION AND REGION-BASED REGISTRATION APPLIED

TO 3D RAW POINT CLOUDS.

APPLICATION TO CULTURAL HERITAGE

Jury (Provisoire)

Rapporteurs El Mustapha MOUADDIB Professeur, Université de Picardie Jules Verne
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Abstract

As 3D geometry has gained increasing popularity as the new form of digital media content, it

has seen an increasing number of projects to acquire detailed 3D representations of cultural

heritage objects at museums and archaeological excavations. The goals of acquiring 3D digi-

tal models of cultural heritage objects are to improve preservation, archiving, understanding,

restoration, and dissemination these artworks. To accomplish these goals, new scanning devices

have been developed to capture fine details, irrespective of the size and number of objects, and

supplementary information, such as color and texture. The output of these acquisition systems

in most of the time is a raw point cloud, a noisy approximation to the continuous object surface,

consisting of a set of points coordinates.

High-precision scanning devices produce raw point cloud composed of large datasets, up

to millions of points [LPC+00] and they acquire many raw point clouds, each from a single

viewpoint. This data does not become usable until the relative viewpoints of each point cloud is

brought to the same reference frame and then merged into a final 3D digital model. The process

of identifying and matching corresponding regions across multiple point clouds, given arbitrary

initial positions, and estimating the corresponding rigid transformation that best align the point

clouds to each other, is called registration.

This thesis aims at understading and evaluating how large raw point clouds can be efficiently

represented and processed in the context of registration. Much of the work presented in this

thesis is part of the EROS-3D project, which aims at dealing with the management of large

3D artwork object collections. We will examine the data representation problems for the reg-

istration of scans representing cultural heritage objects at museums. As the volume of data

increases, the current registration techniques are not well adapted to treat this problem, and the

overload of pre-processing becomes enormous. A compact representation of this data becomes

an unavoidable and challenging task. This strategy is appealing because, by focusing attention

away from the entire input data to small regions, we place ourselves in a better position to han-

dle practical challenges arising from raw point clouds such as missing data, or occlusion, noise,

outliers, and other objects in the scene. We are particularly interested in the development of a
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registration technique that works directly with the unstructured raw data and with its compact

representation, without any other pre-processing.

While developing a complete 3D registration system with raw point cloud as the modelling

primitive is beyond the scope of this document, this dissertation presents progress towards some

fundamental building blocks that are crucial for achieving this goal.

∙ To provide a proper context for our work, we give a brief introduction to the process of

modelling from reality in Chapter 1. We also describe the main cultural heritage projects

to introduce the particular datasets with which this thesis is concerned, and to expose

some of the particular challenges in developing tools to process these datasets. Finally, we

explicit the problems we will address in this thesis.

∙ In Chapter 2 we present efficient methods for characterising the point clouds. We present

the fundamental properties of the underlying continuous surfaces, and how these properties

lead to assumptions about the raw point cloud in terms of noise level, points distribution,

and about the shape around a small neighborhood. To our knowledge, there are no local

shape descriptors estimation algorithm designed to work directly on raw point clouds. We

extend two curvature estimation methods [FJ89, Tau95], originally designed to work on

triangle mesh surface representation. Both methods estimate the curvature at a point

through the analysis of the curves deviation in very close neighborhood of this point. We

derive the equivalent between these two approaches and we evaluate the accuracy of such

descriptors on both synthetic and real noisy datasets.

∙ In Chapter 3, we investigate the possibility of using region as the data representation.

Region reduces the amount of data considerably, while keeping the complete input infor-

mation. A raw point cloud can be partition into regions through a process called seg-

mentation. We propose a graph-based segmentation algorithm [ADC07a, ADC07b] that

partitions large, dense, and noisy point clouds into connected regions respecting some ho-

mogeneity predicate. We also propose a mathematical formulation of the regions obtained

from this technique. To validate our algorithm, extensive experiments are done to evaluate

the segmentation and it motivated the use of region, as data representation, to perform

global registration.

∙ In Chapter 4 we investigate the problem of pairwise global registration. We introduce a

global registration algorithm [ADC09] based on region correspondence, an efficient scheme

for raw point clouds, which is resilient to noise and outliers. This approach aims at solving

the problem of comparing inconsistent, noisy features, or comparing only features that are

not in the overlapping area. The algorithm is evaluated using real raw point clouds.

∙ Finally, in Chapter 5 we conclude with a discussion of some key points developed in

this thesis and some extensions, improvements to the algorithms proposed to serve as a

potential starting point for future work in this area.
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Chapter 1

Modeling From Reality

1.1 Introduction

The advance of 3D scanners in the last decades has consolidated the 3D geometry as a digital

medium. In the present, it is possible to accurately capture three-dimensional (3D) geometry

of real objects, modify, and analyze the shape of their 3D digital models efficiently. As a result,

growing repositories of 3D data are available, encouraging the development of new tools to

process the geometry, the texture and the complexity of such data. In Figure 1.1 we illustrate

some 3D digital models, where the richness of levels of details, supplementary information, and

nature of the objects vary from one model to another.

Many application domains benefit from these 3D digital models. In archaeology, 3D digital

models of artworks and historical monuments are used to permanent archive, perform diagnostic

test and verify the state of conservation, create digital libraries and produce faithful physical

replicas of such models. Other domains that can profit from modelling from reality are special

effects [ZSCS04], virtual reality [GSC+07, HBK+09, GCG06, GDH+00], reverse engineering and

rapid prototyping [HM01], civil engineering [PMW+08] and robot navigation [LMA07].

Applications exploit different aspects of 3D digital models. One example in archaeology

is showed in Figure 1.2, where the geometric entities are 3D digital models of one statue and

one mould set. The problem consists in finding the mould in which the statue was made

from. The use of 3D digital models in this application is particularly relevant, since these

artworks can be fragile, of difficult manipulation, and they can be located physically in different

museums. To find a matching measure between one mould and the statue, the comparison of

the geometry of the surfaces on both models are needed. Comparing the global aspects (global

shape matching) of one mould and one statue does not give a good similarity measure, since

most of the moulds and statues have the same topology. High similarity between particular

15
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Figure 1.1: Examples of 3D digital models. Different applications and domains have distinct require-
ments about the aspects of the 3D models. These examples illustrate different levels of details, sampling
accuracy, supplementary information such as color and texture.

features in both models, on the other hand, enhances the match, since wrong matches are less

frequent. This feature approach agrees with an intuitive notion that a strong matching between

particular areas on both mould and statues is much more significative than a uniquely global

matching. Thus, the matching between a statue and a mould should take into account only

feature matching of particular features in both mould and statue. The best matches obtained

using the 3D digitalized models can be then check by an archaeologist, in order to find the correct

correspondence. Another application showed in Figure 1.3, concerns a 3D search engine for

indexing and retrieving 3D digital models from artwork database [GCJ+07]. In this application,

it is performed the indexing between the same statue set, but it takes into account global and

local aspects of the 3D model.

Figure 1.2: The use of 3D digital models to find statue and mold correspondence [ED].

The context of this thesis is the modelling from reality, which consists in generating a 3D

digital model from 3D measurements performed on a physical scene using a 3D scanning device.

In the next section, we will present some of the efforts done to make the modelling from reality
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Figure 1.3: 3D-content-based retrieval in an artwork database [GCJ+07].

more accessible to a larger range of applications.

1.2 Review of some projects relating to modelling from reality

There has been a large effort to develop new tools, techniques and systems to allow an efficient

acquisition and manipulation of 3D media. Advances in 3D scanning technologies permit the

acquisition of large variety of scenes, with both big and small objects present in it, with a

modest amount of manual labor. High-precision scanners permit to acquire small features on

the scene, with a very little noise. The availability of new tools allow an efficient visualization

[RL00], editing [ZPKG02, lib, 3DR], retrieving [FKMS05] and indexing [APFJ+08a] of 3D digital

models. An large number of 3D media repositories are available [Repa, Sch, Repb, pr, Dat], and

most of these repositories are accessed just by browsing through images captured from the stored

3D geometry.

The bottlenecks in both scanning and manipulating 3D media techniques depend mainly on

the application, and the improvements are usually focused in a specific application or domain.

Much of the work presented in this thesis is part of the EROS-3D project, which aims at

dealing with the management of large 3D artwork object collections. We will examine the data
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representation problems for the registration of scans representing cultural heritage objects at

museums.

An increasing number of projects have been seen to acquire detailed 3D representations

of cultural heritage objects at museums and archaeological excavations, with a goal of im-

proving preservation, understanding, restoration, archiving, and dissemination. Cultural her-

itage projects present a variety of practical constraints: statues cannot be moved, and must be

scanned in situ, so the scanner had to be transportable. For safety reasons, the scanner must

stay a certain distance from the statues at all times. Since the error in triangulation scanners

is proportional to the viewing volume, the combination of high resolution and large object size

imposes very tight calibration constraints. As the resolution increases, the number of scans per

objects increases, and registration algorithms adaptive to this large data volume is required. Vi-

sualization and editing tools that handle this amount of data are also necessary. In this context,

we will list some of the main projects, the problems that propose to solve, the strategy used and

the results achieved.

1.2.1 Artwork acquisition projects

(a)

(b)

Figure 1.4: Artwork acquisition projets. (a) The Digital Michelangelo [LPC+00] and Pietà [BRM+02]
projects.

The Digital Michelangelo project [LPC+00] is one of the earliest large-scale 3D scanning

projects in the cultural heritage domain. It has as technical goal to make a 3D archive of

Michelangelo’s statues. It also had the particular challenge of capturing Michelangelo’s chisel

marks and the surface color. In order to capture detailed chisel marks, both for analysis and
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to accurately render self shading effects, it was necessary to acquire geometry at roughly 0.25

mm resolution. To accomplish this goal, they developed a hardware and a software system

to digitalize and visualize the shape and the color of these statues. They designed a laser

triangulation scanner, based on Cyberware’s commercial systems, to capture the chisel marks,

and acquired color in a separate pass across the object. They also developed a software to align

the scans to the same reference frame. Their acquisition pipeline provided digital models with

high resolution, and they were able to capture the chisel marks, and the alignment software

was showed to be relatively robust. However, this pipeline is time consuming, and requires

some operator intervention. In this project, advances were made in scanning large objects under

non-laboratory conditions, in local [RL01] and multi-view [Pul99] registration of large datasets,

in the capture of color, and in the visualization of large datasets [RL00]. Problems that were

not solved include the global registration, that was performed by an operator, and some issues

concerning the acquisition system calibration [Bro08]. A similar acquisition project was later

proposed to digitalize the Pietà and some other Michelangelo statures [BRM+02].

(a)

(b) (c)

Figure 1.5: Assembling fragments projects. (a) Forma Urbis Romae project [Pro], (b) 3D puzzles project
[HFG+06], and (c) Theran Fresco project [Bro08].

In conjunction with the Digital Michelangelo project, the same team undertook to scan all

extant fragments of the Forma Urbis Romae [Pro, KL05], a marble map of Rome from the early

3rd century A.D. The map is a blueprint of Rome, including not only building, but rooms, door-

ways, and even staircases, all of them marked by incisions less than 1 mm deep. Approximately

10% of the map’s surface is presently known, and is broken into 1273 fragments of varying size
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and thickness. Efforts have been underway to assemble these fragments, and thereby learn as

much as possible about ancient Rome. For example, it was developed a technique in which is

possible to extend the incisions associated with roads and buildings to find matches between

non-adjoining fragments [KL05]. This supplementary goal was later formulated as a matching

problem [HFG+06]. Similar to the Forma Urbis Romae, there is the Theran Fresco [Bro08], and

the 3D puzzles [pr, HFG+06] projects. The Theran Fresco project is a collaboration between

the Akotiri Excavation, Thera and Princeton University, and it concerns the technical aspects

of the acquisition, alignment and matching systems that are designed to aid in reconstruction

of frescoes at the site. In this projects, they concentrated their efforts to solve the problem of

the alignment [BR07] and assembly [BTFN+08] problems in cultural heritage. They also devel-

oped an inexpensive and rapid 3D model acquisition system [BTFN+08] that produces complete

models of at least 10 fragments per hour with a single non-expert operator. In Figure 1.4 we

show examples of the digital 3D models obtained in each project.

1.2.2 Automatic Reconstruction Conduit project

Figure 1.6: The Automatic Reconstruction Conduit (ARC) project [VG06]. From an images set of the
same environment, it is obtained the corresponding 3D digital model.

The Automatic Reconstruction Conduit (ARC) project [VG06, Con] has a very different

philosophy, compared to other projects concerning the acquisition of 3D digital models of cultural

heritage objects. Instead of using scanning acquisition devices, the ARC project ambitions to

obtain a 3D model from a sequence of photos of an object, taken from different viewpoints,

different cameras and different lightning conditions. Two partners of the European Network of

Excellence (EPOCH), the ESAT-PSI lab of K.U.Leuven (Belgium) and the Visual Computing

Lab of CNR-ISTI (Italy) decided to set up a low-cost 3D reconstruction pipeline to be used in

the cultural heritage field. The idea is to provide an online tool that upload users photos from a

given object and output the corresponding 3D model, obtained from this images set, as showed

in Figure 1.6.

The technical challenges in these projects are mainly in the domain of 2D image processing.

Global image comparison and matching, pairwise and projective triplet matching and the self-

calibration, Euclidean reconstruction and dense matching, are among the problems that were

treated in order to robustly obtain a correct 3D model. The advantage of this system is that users

can exploit home made photos to obtain 3D digital models, which helps with the popularization

of 3D media. However, the accuracy and the resolution of the 3D digital object is enough only
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for visualization, and their use to research purpose is not appropriated.

1.2.3 EROS-3D project

Figure 1.7: EROS-3D project. Some 3D digital models from the EROS-3D database, from statues
fragments, to vases and complete statues.

The EROS-3D project [GCJ+07] aims at dealing with the management of large 3D art-

work object collections. The C2RMF (Center for Research and Restoration of the Museums of

France)[fRotMoF] organizes for several years campaigns of digitalization in museums from all

France. The EROS-3D is a collaboration between the C2RMF and the following french laborato-

ries: Laboratoire d’Informatique, de Robotique et de Microlectronique de Montpellier (LIRMM),

Laboratoire d’Informatique en Image et Systèmes d’information (LIRIS), Laboratoire Electron-

ique, Informatique et Image (LE2I), and Equipe de Traitement des Images et du Signal (ETIS).

The objective of the project is to develop a software architecture to obtain the digital model

from scans, store, display, retrieve, and compare these data with various levels of use.

This project aims to acquiring artworks of medium size at many different museums, each of

which can be completely scanned on commodity hardware in minutes. The supervision consists

of placing the artwork on a turntable, clicking a button, turning the object over when it has

been completely scanned so that both the front and back surfaces are acquired, clicking another

button, and removing the object from the turntable. To this end, it was used the commercial

Minolta acquisition system and the first technical challenge addressed in this project consists

in the registration of the scans obtained from the acquisition. We contribute with the project

in this stage of the modelling from reality process, were a set of scans must be brought to a

common reference frame.

At this time, the EROS-3D database contains 650 objects digitalized as very high definition

3D models. Each model contains from 100.000 to 3.000.000 points. These objects mainly are

figurines of the Gallo-Roman civilization (−100, −300 after JC): Mother Divinity, Venus, moulds,

vases and many fragments. The C2RMF pays a particular attention to two categories of objects

of the base, figurines representing Mother Divinities and those representing Venus. An example

of the 3D digital models used in this project is showed in Figure 1.7. The technical challenges
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that was considered in this project concerned the registration of the scans [DAa06, ADC09], the

reconstruction [MCAG07], the streaming [ACA07], the indexing [APFJ+08b] and the retrieving

[GCJ+07] of these digital models. At a first moment, the tools were firstly dedicated to historians

and archaeologists, to help them with the task of manipulating, comparing and visualizing the

artworks from the database. Though, this database is not intended to be reserved only for

professionals. In the future, museum visitors provided with their PDA for instance will have

the opportunity to ask the EROS-3D database in front of a statue and thus obtain additional

information.

1.3 Modelling from reality pipeline

The process of modelling from reality is illustrated in Figure 1.8. The term scene refers to both

objects and environments. In the most general setting, 3D scanning devices measure the 3D

structure of a scene from a single viewpoint. They capture detailed 3D geometry of visible area

of the scene and they provide much more accurate depth information than conventional vision

cues, such as motion, shading, and binocular stereo [HTZ04]. The output of this acquisition

procedure is a raw point cloud, a noisy approximation to the continuous scene surface, consisting

of a set of points coordinates.

Generally, one scan is not enough to model the entire scene. Occlusions, limitations in

the sensor’s field of view and material reflective properties cause missing data and holes in the

sampling, since these areas are unobserved by the sensor. Data are missing for objects at infinite

distance like the sky, and metal, glass and ceramic surfaces where the laser rays never return

to the scanner [HTZ04]. Though, when seen the same scene from different points of view, the

unobserved areas may become apparent. Therefore, to form a complete 3D digital model of a

scene, one must sample the scene from multiple viewpoints and then combine these scans. The

process of identifying and matching corresponding regions across multiple scans, given arbitrary

initial positions, and estimating the corresponding rigid transforms that best align the point

clouds to each other, is called registration.

Once all scans are combined and brought to the same reference frame, there is the integra-

tion phase, where the registered scans are combined into a unified representation. Additional

processes, such as denoising, filtering, hole fitting, surface reconstruction and meshing, modify

the point cloud in order to remove noise, outliers and redundant samples in the overlapping

areas.

The goal of this thesis is to understand and evaluate how the dataset can be efficiently

represented in the context of scans registration. As the volume of data increases, the current

registration techniques are not adapted to treat this problem, and the overload of pre-processing

becomes enormous. We focus on the development of features to represent the dataset and reduce

the data volume. This way, the current registration techniques can be used to the alignment of

large datasetsets.

A fundamental question in the design of such algorithms is the choice of the underlying

modelling primitive. Most of modelling from reality systems use triangular meshes as their
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Figure 1.8: Modelling from reality process. From a continuous real object to its digitalized model.

modelling primitive. Meshes are undirected graphs composed of a collection of vertices and

edges, whose faces represent discrete piecewise approximations of surfaces. They are preferred

because they explicit points connectivity and normals. However, meshes are normally not the

output of a 3D sensor. The construction of a mesh from noisy data is not straightforward and

requires denoising and additional pre-processing that can undesirably remove high frequency

features. Some alternative 3D model representations exist, like range images, point clouds, and

parametric surfaces (e.g., NURBS), but they are not usually used by registration algorithms.

We are particularly interested in the investigation of registration techniques that work directly

on the unstructured raw data, without any pre-processing step. We consider that data pre-

processing, like reconstruction, denoising, and filtering, must be performed after all point clouds

are aligned in the same reference frame and the complete 3D model is obtained, and not before

registration.

Before we specify more about data representation of large, raw point clouds, we will examine

the registration stage of the modelling from reality pipeline.

1.4 Pairwise scans registration

Registration is the process of identifying the overlapping area across different scans, in arbitrary

initial positions, and estimating the corresponding rigid transformations that best align the

scans to each other. It is assumed that exists, for each scan, at least another scan where the
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surface from one scan is a subset of the other. If such assumption is not verified, erroneous

alignments occur.

The registration can be seen as the problem of searching for correspondences, followed by a

transformation estimation and alignment evaluation. Given two scans of the same object, the

goal is to find correspondences between the scans and compute the transformation that brings

the two scans into alignment.

A registration algorithm is generally classified broadly into three classes: global, local and

multi-view registration. What differentiates one problem from another are the strategy adopted

to find correspondences and estimate the alignment, the amount of data considered in these

computations, and the error metric adopted to verify and validate the results.

Global, or coarse, registration problem consists in finding a rough initial scans alignment

without any prior knowledge of the relative spatial positions of the scans, or the overlapping

area. This initial scans positioning was for a long time performed manually. As the number of

scans per object grows, it becomes an arduous task, and the availability of global registration

algorithms that automatically estimate the initial scans alignment aided to the popularization

of 3D geometry.

The global registration problem is particularly difficult because there is no information

about the initial position of the scans. Besides, the input scans contain noise and outliers,

and the shapes overlap only over parts of their extent. Most of the proposed methods [HFG+06,

GMGP05, HCH00, MGGP06, Mit06, JH99] benefit from the low dimension of rigid transfor-

mations, and use local descriptors to extract a small set of points correspondences, sufficient to

estimate the transformation.

Once the scan pair is approximately aligned, the transformation refinement is applied in

order to minimize the distance between overlapping surfaces. Local, or fine, registration

algorithms [Zha94, BM92, Bro92, AMCO08, CM92, RL01, PHYH06] perform such refinement.

The best-known methods for local registration are variation of the Iterative Closest Point (ICP)

algorithm [Zha94, BM92]. ICP is an iterative procedure minimizing the mean square error

between corresponding points across the point clouds. It consists in matching points in both

point clouds and then estimates the rigid transformation that minimizes the distance between

corresponding points. This procedure is repeated iteratively until its convergence or until it

reaches a certain number of iterations. However, as the volume of data increases, this task

becomes both time and memory consuming, and, thus, unfeasible to large datasets.

When more than two scans are involved and the initial pose estimates are given, the process

is called multi-view registration. Multi-view registration algorithms [Pul99, HH01, HP05] are

often used to distribute pair-wise registration errors evenly over an entire model. The multi-view

registration problem will not be dealt with in the present thesis.

An automatic registration algorithm commonly performs in sequence global, local and multi-

view registration in order to generate the complete 3D digital model. Despite the numerous

proposed methods to solve the problem of pairwise registration in Computer Graphics and

Computer Vision, there are still several problems that prevent a surface registration from scans

in a robust, accurate and efficient way, given a scan pair in arbitrary position. The main
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limitations of most pairwise registration methods are the following:

∙ Global registration robustness. When currently available global registration algorithms are

applied to partially overlapping surfaces in the presence of noise and missing data, they

usually tend to be unstable and inefficient [HP05].

∙ Local registration convergence. Local registration algorithms suffer from slow convergence

and shallow local minima in the presence of “difficult” geometry, like flat, spherical and

symmetric surfaces. These surfaces contain relatively few features constraining the align-

ment [GIRL03] and they can cause local minimum convergence or divergence of ICP al-

gorithm and its variants, even for good initial alignment. This is caused by the use of too

many points coming from featureless regions in the alignment transformation estimation.

An effort has been done by ICP variants to treat some/all of these error sources, but they

are application specific [GLB01], or make some assumptions about the surface and the

data structure [JH99, GIRL03].

∙ Mesh approaches. We stress out that most of currently available local and global regis-

tration algorithms work on triangle mesh surfaces. To obtain the mesh representation,

the raw data are heavily pre-processed to filter and structure the dataset. The capability

of such methods to work directly on raw point clouds is not straightforward [AMCO08].

Meshing and filtering processes increase the complexity of the registration pipeline, and

smooth high frequency features. They should be done once the registration process is

finished.

∙ Feature-based approaches. Both local and global pairwise registration problems rely strongly

on finding correct correspondence between two scans. In most cases, scans overlap only in

parts, and the correspondence can be seen as a partial matching problem. In such scenario,

matching scans using of global descriptors fails, because global properties might change

considerably between them. The solution is to rely on the geometry of the common part

[Mit06], and it becomes challenging as the common parts are unknown. The majority of

registration methods use local shape descriptors at a point to represent the input scans,

and to find point correspondences. However, local shape descriptors are sensitive to noise,

and, therefore, they are not a robust scan representation.

∙ Not applicable to large datasets. Heavy pre-processing steps and the use of a large por-

tion of the input dataset make most of the registration algorithms unfeasible to large

datasets. To solve this dimensionality problem, some authors propose to re-sampled the

input dataset to reduce the data volume [Pul99, GIRL03], or use discriminant features to

represent efficiently the dataset [HFG+06, GMGP05, JH99]. All these pre-processing do

not guarantee that the reduced data will have features in the overlapping area.

The most important and most critical stage of registration algorithms is find correct corre-

spondence between scans without knowing the topology or the geometry of the surface repre-

sented by the point cloud. To find the set of corresponding points in two scans, the existing
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scans registration algorithms focus their efforts in analyzing the input shapes separately and,

after some processing. To achieve robustness, most algorithms perform an excessive data pre-

processing. However, not only this pre-processing does not guarantee the robustness, since it

is performed indepently to both scans, but it also limits the applicability of such algorithm to

large data volume. The motivation of this thesis is to provide data representation that allows the

registration process to work directly on the raw point cloud furnished by the acquisition system.

We propose a region representation to solve these problems. The input data, instead of being

represented by a feature set, is represented by a region set. It provides a compact, complete

and geometrically relevant information about the scene surface. It naturally reduces the volume

of data without loosing information about the dataset. It also minimizes the noise effect, once

it does not rely on individual point information. Therefore, region descriptive power is higher

relative to other features. Finally, since region space is much smaller than feature space, we

can exploit efficiently the entire search space to solve the global registration problem. Before

we present our region-based registration scheme, we will discuss the advantages and drawbacks

of using the raw point cloud as modelling primitive over triangle mesh in the modelling from

reality pipeline.

1.5 Raw point clouds as modelling primitive

There has been a resurgence in the use of point clouds [KB04] as the modelling primitive for 3D

processing. Levoy and Whitted [LW85] initially proposed point clouds as geometric rendering

primitives, and since then it has been used in many domains and applications [KV03, UH07,

HDD+92, AK04, MAVdF05, KB04, UH08, ZPKG02, DMH08, DMH08]. However, very few

registration approaches use raw point cloud as their modelling primitive.

One popular philosophy adopted by registration methods is to pre-smooth, re-sample the

point clouds and obtain a mesh representation twice, first before registration is performed and

later when after all scans are aligned. The smoothing and meshing as a pre-processing to reg-

istration results in more stable feature estimation. Consequently, the performance registration

algorithms based on feature correspondence is improved. Finally, once all point clouds are in

the same reference frame, data integration is neccessary to obtain the complete 3D digital model

and remove redundant information in the overlapping area between scans, and thus, the same

smoothing, re-sampling and meshing are applied.

The influence of pre-processing on the raw point cloud before and after registration is illus-

trated in Figure 1.9. In Figure 1.9 is showed two complete 3D digital models after registration

and intergration is performed. The differences between models representing the same object

is due to the fact that registration was performed using two different strategies. In Figures

1.9 (a),(c), the scans were previously smoothed, and after that, the registration algorithm in

[GMGP05] computed the alignment transformation. The registered scans are again smoothed

in the integration phase and the final 3D model is showed in Figure 1.9 (a),(c). In Figure 1.9

(b),(d), the alignment transformation was computed directly on the raw point cloud, using the

algorithm presented in [AMCO08], and then smoothing applied to the registered models in the
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(a) (b)

(c) (d)

Figure 1.9: Registration of raw point clouds [AMCO08]. Complete 3D digital models, after performing
registration of the scans and integration of the complete model. (a) and (c): complete models when
smoothing the point clouds before and after registration. (b) and (d): Models when smoothing the point
clouds only after registration.

integration phase. In both cases, the same operator is used for surface smoothing. Comparing

the models obtained from these two approaches, we observe that, when the smoothing is a pre-

processing to registration, high frequency features are degenerated and the final model does not

recover the original object geometry 1.9 (a),(c).

This step of denoising the raw point cloud results in a removal of noisy samples, but it

also results in a significant loss of high frequency features [AMCO08]. It compromises the

performance of most registration algorithms, which use local shape descriptors. Besides, because

of the increasing complexity of 3D models, there is an associated overhead of processing and

managing connectivity information in meshes. In such scenario, it is considerably more efficient

to work directly on raw point clouds rather than polygons [Pau03]. Through this thesis, all

the presented techniques are implemented with points as a unified acquisition, processing and

rendering primitive.

In order to incorporate the point cloud as our modelling primitive, we make a few assumptions

about the point cloud and the underlying surface from which it was sampled. To be practically

useful, these assumptions must be sufficiently general to be widely applicable, but sufficiently

concrete to allow the algorithm to use them effectively. Through this thesis, we will make the

following assumptions concerning the point points:
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∙ The point cloud, a geometric model of a scene, is a noisy approximation of a piecewise

smooth surface. This surface is a ”connected, possibly with boundary, embedded in ℝ3.

By piecewise smooth we mean that such surface is 2-manifold (homeomorphic to ℝ2),

except on sharp features, such as creases, corners and darts. These assumptions hold true

for most of real scenes, from man-made objects to natural environments.

∙ Usually, for 3D scanner devices, the acquisition is performed in a regular sampling lattice

attached to the sensor reference frame, not on the surface reference frame. Consequently,

point clouds lack of any regular lattice-like structure, and, globally, the point cloud is irreg-

ularly sampled, in the sense that points do not follow a known regular sampling distribu-

tion. Even though such assumption holds true, we assume that, in a small neighborhood,

the point clouds are regularly distributed.

∙ The size of the smallest feature, or level of detail, captured by the point cloud is determined

by sample density, as defined by Dey in [Dey06].

∙ Noise model is unknown. Point clouds acquired using scanning sensors are corrupted with

a non-anisotropic noise. The noise is highly directional and depends on the distance of

the point to the sensor [UH07]. In addition, noise model depends on the sensor used to

acquire the point and the acquisition procedure. Otherwise confidence associated with the

measures can be given, we do not consider any noise model or make any hypothesis about

points distribution (usually non-Gaussian [BMG94]).

The raw point cloud is then a discrete, noisy approximation of a continuous surface, where

neither the topology nor the geometry of the surface represented by the point cloud are known

in advance. A compact representation of this dataset becomes an unavoidable and challenging

task. In the next section, we place the above challenges in the context of registration using

region as data representation. We then list our contributions towards meeting these challenges

along with an outline of the document.

1.6 Motivating problem

The driving motivation behind our work is to provide data representation that allows perform-

ing registration directly on large raw point clouds. As discussed before, feature estimation in

presence of significant noise and outliers still remains a challenging task. In such scenario, we

propose a region-based scheme, where the input point cloud is represented by a region set and

the registration is performed in region space, instead of a feature space. A simple illustration

of this concept is showed in Figure 1.10. In Figure 1.10 (a), we have two raw point clouds

that overlap partially. In Figure 1.10 (b) both point clouds are represented by a set of compact

surfaces. These regions are subsets of the raw point clouds. Each region denotes a portion of

the scene, with size and shape depending on the scale and on the surface model. By visual

inspection, the correspondence between regions in the overlapping area is well established, even

for partially overlapping regions (Figure 1.10 (c)). Observe that the data considered in this stage
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is considerably reduced, compared to the input dataset. Finally, the regions in correspondence

can then be used to compute the initial alignment transformation that brings both scans to the

same reference frame (Figure 1.10 (d)).

Figure 1.10: Region-based registration pipeline.

This strategy is appealing because, by focusing attention away from the entire input data to

small regions, we place ourselves in a better position to handle practical challenges arising from

raw point clouds such as missing data (occlusion) and other objects in the scene (clutter).

The use of region as data representation introduces different challenges to the registration

pipeline. First, the construction of reliable regions from the raw point cloud is of great practical

value. The regions must verify some known homogeneity predicate, so the region extraction pro-

cess produces predictable results. Since geometric aspect is what makes 3D models an appealing

environment representation, region homogeneity predicate should rely on geometric properties.

To this matter, local shape descriptors must be estimated from the raw point cloud to charac-

terize the local shape around each point. Shape descriptors can be used to form and describe

regions. Even if such estimation is not robust to noise, re-sampling and missing data, the region

extraction process must adequately capture this variation in local shape descriptors, and points

connectivity.

Once regions are extracted, registration can be seen as the problem of finding region corre-

spondences between scans that overlap. To compare efficiently regions in different scans, regions

descriptors should be as invariant as possible to changes in sensing conditions and invariant un-

der rigid transformation. Even if the area that overlaps and information about the shape of

the scans are unknown a priori, a registration algorithm must identify and remove wrong cor-
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respondences. This is a particular challenge of global registration problem, when the scans are

in arbitrary initial positions.

In what follows, we will formulate the problems we want to solve, the strategy we propose

to solve them and how we incorporate region representation into a region-based registration

algorithm.

1.6.1 Raw point cloud segmentation

The core of this thesis is to represent a point cloud as a set of regions. The problem of parti-

tioning the data into meaningful regions is called segmentation. It is usually an intermediate

phase, in which objective is mostly a substantial reduction in data volume and to use segmented

regions in higher-level processing. Several applications using 3D digital models and 3D raw point

clouds, like reverse engineering [HM01], indexing [APFJ+08a], retrieving [GCO06], recognition

[BAAC08], simplification [Pau03], region-based editing [CGR+04], and registration [HP05], can

benefit from regions obtained from segmentation.

Most scenes, like man-made objects (buildings, desks), animate objects (human and animals),

and free-form objects (trees and terrain), cannot be modelled only by elementary parametric

surfaces. The main difficulty in developing and evaluating segmentation algorithms is then to

establish a definition for meaningful region. Different definitions yield to distinct but at the

same time correct results [UPH07, HJBJ+96].

In this thesis, we are interested in a data driven segmentation algorithm, since we want to

partition free-form surfaces. Specifically, we want to partition an unstructured point cloud into

significative regions, in multiple scales and different sizes. It aims at reducing the data volume,

structuring the dataset and extracting higher-level surface information from the point cloud. At

the core of our approach is the belief that data-driven point grouping can be used to extract

equivalent regions in the overlapping area of different scans.

We define our segmentation algorithm as a recursive bi-partition of the weighted neighborhood

graph [ADC07a, ADC07b]. Region homogeneity is inferred from the local feature analysis on a

weighted graph constructed from the triplet: Euclidean neighborhood relationship, feature space

defined by local shape descriptors and similarity function. We extended the 2D segmentation

algorithm using the graph’s Minimum Spanning Tree (MST ), introduced in [Zah71b] and later

improved in [FH04], to work directly on raw point clouds.

We formalized the segmentation as a graph bipartition where the region homogeneity is

defined in some feature space. However, the raw data is an unstructured point clouds with no

local shape information attached to the points. To our knowledge, there are no local shape

descriptors estimation algorithm designed to work directly on raw point clouds. We extend

two curvature estimation methods [FJ89, Tau95], originally designed to work on triangle mesh

surface representation. Both methods estimate the curvature at a point through the analysis of

the curves deviation in very close neighborhood of this point and we evaluate the accuracy of

such descriptors on both synthetic and real noisy datasets.

At the end of segmentation, we obtain a set of regions. Region properties can be then

exploited in a higher level application. We will use region descriptors and adjacency relationships
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to develop a region-based global registration algorithm.

1.6.2 Global registration based on region correspondence

Given a pair of scans in arbitrary and unknown positions, global registration can be divided in

two sub-problems. The portions of the two scan that overlap are established through point or

region correspondence. Next, using a set of point correspondences in the overlapping area, the

estimation of an initial transformation is performed. The result has to be sufficiently close to the

correct registration pose in order to be used as the starting pose for automatic fine registration.

Earlier work has identified several promising strategies that could be employed for pairwise

scans alignment under these conditions. Nearly all global registration algorithms use a feature-

based strategy to find points correspondence. To deal with the growing data volume, salient

features on both scans are identified and only a smaller sub-sample are used to match features

under some rigidity (distance) constraint. The main drawback of feature-based approach is that

its performance is directly related to the robustness of feature estimation and salient feature

extraction.

From a different perspective, we formulate the global registration algorithm as the problem

of finding a set of region correspondences and use these correspondences to compute the initial

alignment transformation. In the case of rigid motion, three corresponding points are sufficient

to uniquely determine the alignment transform, composing of six parameters. Working in the

region space, the alignment transform is determined by three corresponding regions. Assum-

ing that, in the overlapping area, there are at least three corresponding region pairs, a naive

alignment scheme has a time complexity of O(m3n3): for each region triplet from one scan,

take a set of three regions from the second scan, solve the unique rigid transformation using

this correspondence, and evaluate the quality of the current transform. This solution requires

computing the transformation for the entire set [GMGP05] and it becomes overly expensive as

the number of regions grows.

We propose a novel algorithm to explore efficiently the search space of possible sets of corre-

sponding region triplets. Our region-based global registration algorithm compares the intrinsic

properties of regions to establish an initial potential correspondence set, according to regions

similarity. We build a decision tree, where each node represents a possible pair of corresponding

region triplets. The decision tree represents the solution space of potential correspondences, and

it is assigned to each node a matching measure, composed by the region probability distribu-

tion function dissimilarity and internal pairwise distance error. A combinatorial search method

then explores efficiently the solution space, and find the set of three corresponding regions that

minimizes the registration error between two scans.
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Chapter 2

The point cloud

Figure 2.1: From continuous to discrete surface representation.

2.1 Introduction

In this chapter, it is covered the background material for raw point cloud processing in the

context of 3D registration and 3D segmentation. We present the fundamental properties of the

underlying continuous surfaces, and how these properties lead to assumptions about the raw

point cloud in terms of noise level, points distribution, and about the shape around a small

neighborhood. We present algorithms to compute two intrinsic properties of the surface. These

algorithms process directly the raw point cloud and they estimate the tangent plane and the

curvature at a point in a small neighborhood.

Given some physical object, a general 3D acquisition pipeline is illustrated in Figure 2.1.

First, a 3D scanning device captures detailed 3D geometry of visible areas of the object [CL96,

LPC+00, BTFN+08]. Additional information, such as texture, intensity and other comple-

mentary measurements can be also measured. Then, the data coming from different sensors,

embedding different types of information, are merged and integrated into a single dataset. This

33
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final dataset is delivered in form of a raw point cloud and it can describe complex geometric

object. In general, information regarding the surface is not provided, such as its topology, its

geometry, or local shape information, such as normal vectors and curvature at each point. Oc-

clusion, shadow or limitations in the sensor’s field of view are translated in the point cloud

representation by missing data, or holes. Noise introduced by measurement errors scatters the

sample points away from the surface [Dey06] and, alone, point coordinates do not provide neither

shape or object topology information, nor surface orientation.

In this Chapter, we present efficient methods for characterising the point cloud. We will

represent the point cloud as a neighborhood graph. We estimate local surface properties, such

as normal vector and curvature, directly from raw point cloud. From the 2-manifold surface in

3-space hypothesis, tangent plane is computed using a plane fitting approach [HDD+92] on a

small neighborhood (section 2.5). The normals are then oriented consistently and we propose an

algorithm to orient globally the normals of point clouds that are non connected. The curvature

at point is estimated using two different methods [FJ89, Tau95], originally designed to work

on triangle mesh surface representation (section 2.6). We finally evaluate these algorithms on

synthetic and raw point clouds.

2.2 From continuous to discrete surface representation

In this section it is presented some of the properties of the continuous surfaces and how these

properties are ”translated” in their discrete representation. We also describe the necessary

assumptions about sampling, noise, feature size to correctly represent the surface.

In a noise-free case, the point cloud is a set of points from a continuous surface Σ. The

surface Σ denotes a scene composed by a set of sub surfaces that are connected, possibly with

boundary, embedded in ℝ3. A surface Σ is said to be connected if any two of its points can be

joined by a continuous curve in Σ. The surface Σ is piecewise smooth, which means that it is

2-manifold except on sharp features.

The assumption that the topological space of Σ is a 2-manifold is crucial for the algorithms

presented in this chapter to compute geometric features. The definition of a 2-manifold (or

regular) surface, taken from [dC76], is:

Definition 2.1 A subset Σ ⊂ ℝ3 is a 2-manifold, or regular, surface if, for each x ∈ Σ, there

exists a neighborhood N in ℝ3 and a map � : U → N ∩ Σ of an open set U ⊂ ℝ2 such that:

1. � is differentiable. This means that if we write �(u, v) = (x(u, v), y(u, v), z(u, v)), for

(u, v) ∈ U , the functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives of all

possible orders in U .

2. � is a homeomorphism. This means that � has an inverse �−1 : N ∩ Σ → U which is

continuous.

3. For each u ∈ U , the differential d�u : ℝ2 → ℝ3 is one-to-one.
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where the mapping � is called a parametrization or a system of coordinates in a neighborhood

of x.

In definition 2.1, condition 1 is necessary to do differential geometry on Σ. The map � is

Ci-continuous if the ith order (i > 0) partial derivatives of � are continuous. If the partial

derivatives of � of all orders are continuous, we say Σ is C∞-smooth. In this work, we assume

that Σ is a piecewise smooth surface. It means that the surface is C2-smooth everywhere, except

on sharp features and on the boundary.

Condition 2 has the purpose of preventing self intersection in 2-manifold surfaces. Condition

3 guarantees the existence of a tangent plane at all points of Σ and, together with the first,

actually enforce smoothness [Dey06]. The surface definition is based on a local neighborhood

N , for N → 0, and all these three conditions imply that the functions like � defined in the

neighborhood of each point of Σ overlap smoothly. The intrinsic properties considered in this

chapter and the chapters to follow, such as tangent plane, directional curvature, are defined with

respect to this neighborhood.

2.2.1 Point cloud definition

The point cloud X is defined as the finite set of samples xi ∈ ℝ3 that approximates to some

underlying piecewise smooth surface Σ:

X = {x0,x1, ⋅ ⋅ ⋅ ,xn} ⊂ ℝ
3 (2.2)

As any sample from measurements, the points are assumed to be noisy observations of an

unknown underlying surface. For scanned point clouds, Unnikrishnan in [UH07] outlined that

noise is almost always highly directional and the noise level of the observation varies as a function

of distance of the observed point to the sensor. The noise introduced by the measurement errors

scatters the sample points away from the true surface:

xi = x0
i + ei where ∣ei∣ < � ∀i (2.3)

with x0
i ∈ Σ being the unknown true point lying on the unknown surface Σ and ei ∈ ℝ3 being

point-dependent error vector, caused by measurement errors.

Other than measurement error, there are also the outliers, caused by measurements at reflec-

tive surfaces, or at surfaces near parallel to the sensor z direction. Outliers are spurious points

far from the true surface or can be point from a different surface. Usually, they are isolated

from the rest of samples and the error magnitude is not bounded as in (2.3).

To capture the error in most sampling processes, we assume that the noise magnitude is

bounded and isotropic. It is said that the sampling is �-noisy, where the value of � is the

noise level provided by the acquisition system. We make no assumption about the noise model

distribution, and we apply no denoising or filtering algorithm to minimize noise effect.
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2.2.2 Sample density

An important measure for analyzing sampled surfaces is the sample density, which is the surface

area associated with each sampled point. Intrinsically, the sample density specifies the minimum

feature size, or level of details, of the shape captured around a point. The density estimation

on a continuous surface can be computed as [DHS00]:

Pd =

∫

ℛ
�(x)dx, (2.4)

where Pd is the probability that a point x will fall in the region ℛ and �(x) is the continuous

density function, averaged by Pd. If we assume that the region ℛ is so small that � does not

vary appreciably within and the density function �(x) at a point xi can be approximated by

�̂(xi):

�̂(xi) =
k/n

Vℛ
(2.5)

where Vℛ ∈ ℝ3 is the infinitesimal volume enclosed by ℛ, xi is a point within ℛ, k is the number

of samples inside ℛ and n is the total number of samples.

From 2-manifold surface assumption, we have that on some neighborhood N (xi) around xi,

N (xi) lies on a disk. Let ri be the disk radius and ∣N (xi)∣ be the number of samples inside the

neighborhood N (xi). The local density (2.5) around a point xi is then given by:

�̂(xi) =
∣N (xi)∣
�r2i

(2.6)

The local sampling density, given by (2.6), gives the number of sample per unit area. The

main drawback of using (2.6) to estimate the local sampling density is that the neighborhood

at a each point must be provided. Instead of using this measure, we will use the local sampling

spacing. The local spacing, �(xi), measures the average distance between points within the disk

defined by the neighborhood N (xi). From the local density estimation, we can derive the local

sampling spacing as:

�(xi) =
1

√

�̂(xi)
. (2.7)

An alternative estimation of the sampling density is the minimum sampling spacing, �min(xi),

which is the distance from the point xi to its closest neighbor:

�min(xi) = d(xi, X) (2.8)

where

d(xi, X) = inf
xj∈X

{∥xj − xi∥} (2.9)

We say a point cloud X is "-dense if the minimum local sampling spacing �min(xi) < " holds

true for any xi ∈ X. This definition of "-dense imposes the sample to be dense anywhere on Σ

and it gives a lower bound to the density. The minimum local sampling spacing is the measure

most commonly used to estimate the density of a sample. This is due to the simplicity it is
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computed, since it does not require the extraction of the neighborhood around a point.

2.2.3 Holes, outliers and feature size

The point cloud X is assumed to be near an unknown surface Σ. Because of the sampling

process, it is observed in X the presence of artifacts, such as holes, outliers, and noise. Noise

samples and outliers do not lie exactly on the surface Σ, and they modify locally the shape of

the discrete surface representation. Noise is hard to be identified, because its high frequency

profile is ambiguous with sharp features. Holes, or missing data can be interpreted as holes in Σ.

Therefore, the sampling model needs to specify the dependence of the approximation on these

artifacts.

Intuitively, for noiseless, dense, uniform samplings, samples do not leave holes of radius larger

than ". Regions without samples that are bigger than " are interpreted as holes in Σ. If the

sample is �-noisy, holes cannot have a radius larger than �+". In the case where these conditions

are not respected, which is commonly found in point clouds obtained from range sensors, holes

cannot be recovered and these regions are viewed as surface holes.

Another intrinsic propertiy of the surface Σ is its features, which encompass local geometry

and topology. The minimum feature size captured by the samples can also be inferred from "

and �. For noiseless and uniform sampling, features on Σ smaller to both either " and �, are not

recoverable.

Assuming a "-dense, �-noisy point cloud, outliers can be detected by looking at �min(xi) for

each xi. For � = 0, we can deduce that points xi with �min(xi) > " cannot be a point of Σ, since

that would violate the condition "-dense for X. In such scenario, xi is taken as an outlier. For

a "-dense, �-noisy, a point xi is an outlier if d(xi, X) > "+ �.

2.3 Structuring the point clouds

In section 2.2, we presented the definition of 2-manifold surface, where surface properties are

defined on local neighborhood N , for N → 0. In this section we present how we compute the

neighborhood N for the point cloud. We consider two neighborhood systems: the k-nearest

and the ball neighborhoods. Using points connectivity established through neighborhood in-

formation, we construct a geometric graph called neighborhood graph, which gives a discrete

representation of the sampled surface.

2.3.1 Neighborhood systems

A neighborhood system determines points connectivity through spatial relationship between the

points. The neighborhood of a point xi is a subset N (xi) ⊂ X that contains xi, in which all

points from this set satisfy a certain neighborhood condition and adequately represent a small

surface patch around xi.

The neighborhood of a point xi only depends on the geometric locations of the points in

space, not on some additional combinatorial structure associated with the point cloud [Pau03].

The various differential properties of surfaces presented in this thesis will be defined on one of
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(a) (b)

Figure 2.2: Local neighborhood systems: (a) k-nearest neighborhood, (b) ball neighborhood.

these neighborhoods. We will describe the k-nearest and the ball neighborhood system, and

their principle is illustrated in Figure 2.2.

k-nearest neighborhood

The k-nearest neighborhood of a point xi ∈ X consists of the k closest points to xi inX. Let Ω be

a permutation, or an ordered list, where ∥xΩ(i,1) −xi∥ > 0 and ∥xΩ(i,j) −xi∥ ≤ ∥xΩ(i,j+1) −xi∥,
for j ∈ [1, n − 1]. This permutation gives the ordering of all points in X according to their

Euclidean distance to the point xi. The k-nearest neighborhood of the point xi is given by

Nk(xi) = {xΩ(i,1), ⋅ ⋅ ⋅ ,xΩ(i,k)}. (2.10)

As the number of points k is fixed, the method adapts the neighborhood size according to

the point density. The set Nk(xi) defines the neighborhood size as a sphere centered in xi with

radius ri = ∥xΩ(i,k) − xi∥.
The k-nearest neighborhood system is preferred over most reconstruction algorithms [HDD+94,

DLS05, ZPKG02]. This system has the advantage to adapt the neighborhood size to local

changes in sampling density. However, when working directly on raw points, this neighborhood

system does not guarantee that points of Nk(xi) represent a small, local surface patch around

the point. Spurious and sparse data are incorrectly connected to surface points, as showed in

Figure fig. 2.3.

Ball neighborhood

The ball neighborhood of a point xi consists of all points in X that are inside a sphere centered

in xi with a radius ri, denoted Nri(xi):

Nri(xi) = {xj ∈ X ∣ ∥xj − xi∥ < ri}. (2.11)

The sphere radius ri can be data driven, and it can adapt to sampling variation and local

shape. The neighborhood system based on an unique sphere radius is preferable when one wants

to have control of the area of interest, with a neighborhood size dependent on local or global
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Figure 2.3: Effect of neighborhood system choice. Observe that the k-nearest neighborhood system
connects points with outliers and regions separated by acquisition holes. Such a behaviour is not observed
for the ball neighborhood.

sampling density. Additionally, this last choice allows the identification of spurious and sparse

data.

2.3.2 Structuring point cloud through the neighborhood graph

We use a neighborhood graph, which is a generalization of the two most used geometric graphs

to process point clouds: ball graphs, and k-nearest neighbors graphs. In this section we present

the definition of the neighborhood graph and its main properties.

Neighborhood graph definition

A neighborhood graph GN is represented by an undirected weighted graph

GN = (V,E,W ) (2.12)

where the points xi ∈ X (2.2) form the node set V . The edge set E is given by

E = {(xi,xj)} ⊂ X ×X (2.13)

A mapping defined on E uniquely assigns to every element of E a non-ordered pair of distinct

elements of V . The pair (xi,xj) is in E only if the neighborhood predicate xj ∈ N (xi) is verified.

Associated with each edge (xi,xj) ∈ E we have the weight wij , which assigns a non-negative

similarity measure w : E → ℝ+. Examples of weighting function are the Euclidean distance in

some feature space, the angle between vectors, or a Gaussian distribution. The weight set is
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given by

W = {wij} ⊂ ℝ
+ (2.14)

The neighborhood graph (2.12) is defined by

GN = ({xi}, {(xi,xj) ∣ xj ∈ N (xi)}, {wi,j}) (2.15)

As a geometric graph, the neighborhood graph can be efficiently constructed, thanks to the

many data structures (KD-trees, voxel grids, ball trees) available for range internal queries search

methods that gives nearest neighbor results in near-linear time.

Given a neighborhood graph GN structuring a point cloud, missing data, boarder points, noise

presented in X can generate disjoint sub-graphs, with variable node connectivity and isolated

points. Even when the neighborhood size is data-driven and adaptative, graph connectivity is

not regular and it tends to form too many edges between points located in high dense regions,

and less connections are observed in regions where points are sparse. Figure 2.3 illustrates such

situation.

Neighborhood graph properties

We briefly describe some concepts from basic graph theory used here to characterize a neigh-

borhood graph. An edge sequence, � = (x1, . . . ,xn), is called a path if x1,x2, . . . ,xn are pairwise

distinct vertices. The length of a path � is defined as s(�), and it is the sum the weights of of

all edges (xi,xj) ∈ � :

s(�) =
∑

(xi,xj)∈�

wi,j (2.16)

If a path between two points x1 and xn does not exist, we have s(�) = ∞. An example of

weighting function is wij = {(xi−xj)
T (xi−xj)}

1

2 and we have an Euclidean graph, in which the

path distance between two points with the smallest length is taken to approximate the geodesic

distance. A cut in a graph is the edge set that, when removed, promote the partition of the

nodes into two disjoint sets. A crossing edge is any edge from the cut.

A spanning tree SG of a connected graph G is a sub-graph containing all nodes of G in

which there is an unique path between any two points xi,xj ∈ SG. The minimum spanning tree

(MST ), ΓG, of a connected graph G is, from all possible spanning trees, the one connecting all

nodes of G, where the sum of all edges is minimum. Since the neighborhood graph GN is not

necessarily connected, each connected sub-graph, G′
N ⊂ GN , has one corresponding minimum

spanning tree, ΓG′
N
, which isn’t necessarily unique [Sed02, DHS00]. Therefore, the neighborhood

graph GN is represented by a set of disjoint minimum spanning trees, or a minimum spanning

forest, {ΓG′
N
}.

2.3.3 Implementation

The central computational primitive required by the neighborhood graph construction is the clos-

est points query: given a point xi ∈ X find its neighbors N (xi) ⊂ X. There are many proposed

efficient data structures and search methods (kdtree [Ben75], octree, etc) to find efficiently the
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neighborhoods of a point. We use a hash data structure, where the coordinates of arbitrary

points are mapped to a cell [TW04]. The cell size is fixed and proportional to the neighborhood

size. To find the neighborhood of a point, we search on the cell where the point is inserted,

and, if necessary, on the adjacent cells. The insertion of a point can be done in O(1), and the

querying takes O(q), where q is the maximum number of points in a cell. In practice, with a

sufficient number of cells q will be small. We store the neighborhood information on a graph

list, where we can access directly the neighbors of any point. The edges can be weighted in any

desired space.

A second important procedure is the extraction the MST . The MST is a sub-graph of the

neighborhood graph, and we use the Prim’s algorithm [Pri57]. The Prim’s algorithm, as other

MST construction algorithms, is based on the following two properties [Sed02]:

1. Identifying edges that must be in a MST : given any cut in a graph G (fig. 2.4, top left),

the minimal crossing edge (fig. 2.4, top right) of such cut belongs to some MST of the

graph.

2. Identifying edges that must not be in a MST: given a graph G (fig. 2.4 top left), if we add

a new edge (xi,xj), the new MST is the one constructed by adding (xi,xj) to the original

MST and deleting the edge with biggest weight on the resulting cycle (fig. 2.4 bottom

left).

Figure 2.4: Minimum spanning tree properties.

Prim’s algorithm traverses the nodes of the neighborhood graph and, for each node, it adds

to the MST the edge (xi,xj) ∈ E with minimal crossing edge. The edge (xi,xj) must not
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generate a cycle on the resulting MST . When representing a graph G by a adjacency list, the

Prim’s algorithm runs in time O(∣E∣log∣V ∣), which consists in a traversing the graph G.

2.4 Extracting geometric features from point clouds

If the point set X sampled over an inferred surface Σ is all we know about Σ, it is impossible to

recover the shape, or extract higher level information, of Σ from X. Some additional knowledge

of the underlying shape represented by the point cloud is required. There are several local

surfaces properties that can be estimated from the point cloud X that provide information

about the local shape around the point [PWHY09, JH97, FHK+04]. In this section we will

examine two methods to compute local shape descriptors, which provide curvature information.

They can be efficiently estimated on large raw point clouds. These methods, however, assume

that an oriented normal vector at each point is provided. This we will also examine a method to

estimate efficiently and robustly the normal vector operating directly on the noisy point cloud.

The main challenge of operating directly on raw point clouds, to compute the normals and the

curvature at each point, is to provide estimations that are robust to noise and to re-sampling.

Shape is all the geometrical information that remains when location, scale and rotational

effects are filtered out from an object [DM98]. A descriptor vector f(xi) can be both estimated

from the input data or provides by the acquisition system. It must be invariant to coordinate

transformation and robust to noise, so it can be used in the registration pipeline. Examples of

local descriptors are curvature, normal cone, color, material properties and textures coordinates.

These descriptors can be extracted separately and they can be combined to describe the sampled

surface X. Several local descriptors can be used to describe the point xi ∈ X. The descriptor

vector f is defined as a set of features which characterizes the point, and is given by:

f : x ∈ X → ℝ
m (2.17)

xi → f(xi) (2.18)

Finally, we have the descriptors set I, defined as

I = {f(xi)} ⊂ ℝ
m (2.19)

which together with the point cloud X, form a representation of the surface Σ. The point cloud

is then characterized by points location, in Euclidean space, ℝ3, and in descriptors space, ℝm. In

this thesis, we will restrict our attention to curvature-based, low-dimensional, descriptors, since

they are cheaper to compute, store, and compare. In the following section, we will show how we

estimate two local shape descriptors directy from point cloud: the normal vector (Section 2.5)

and the principal curvatures (Section 2.6).
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Figure 2.5: Normal vector estimation pipeline using Hoppe-Johnson’s schemes.

2.5 Normal estimation

Most algorithms used to estimate local shape descriptors assume the knowledge of surface ori-

entation at each point. In this section, we formulate the normal estimation problem as a plane

fitting problem, using [HDD+94], and we propose an algorithm to orient these normals consis-

tently directly from the raw point cloud.

2.5.1 Related works on normal estimation

There are several approaches in the literature that proposed to compute the normals directly

from an unorganized point cloud and they are classified into non-parametric [AB98, TM98,

TTMM04] or parametric [LJLC05, ABCO+03, ZPKG02] approaches.

Amenta et al. [AB98] presented the CRUST algorithm, a non-parametric normal estimation

approach. Given a Voronoi diagram structuring a point cloud X, they have showed that the

normals can be estimated by the poles of the Voronoi diagram, which are the furthest Voronoi

vertices from the respective sites on the two sides of the sampled surface. In the noise-free case,

the normals estimated using the CRUST algorithm agree with the actual normals, but the same

property does not hold true for noisy point cloud. Dey et al. in [DG04, TKD05] extended the

work of Amenta, and they presented the COCONE algorithm, also a Voronoi/Delaunay based

method for estimating normals from noisy point cloud data. The main drawback of Voronoi-

based methods is that they make the restrictive assumption of a closed bounded shape, necessary

to access the medial axis, in order to estimate the normals. Unfortunately, the medial axis is

not known for most sampled surfaces, e.g., scanned models.

Most practical normals estimation algorithms are parametric approaches, where the normals

estimation is seeing as a local geometric fitting problem. The parametric methods for local

surface analysis are based on the assumption that the k-nearest neighbors of a sample point

adequately represent a small patch of the underlying surface [Pau03].

In [LJLC05], an arc-length parameterized third-order approximation is fit to a small neigh-

borhood at a point. The coefficients of this model are computed by solving a weighted-least
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squares problem at each point using only the points in its local neighborhood. This procedure

estimates the curvature and torsion, as well as the tangent as a by-product. Cazals et al.[CP03]

fit the local representation of a manifold using coefficients of a truncated Taylor expansion,

termed a jet, to a small neighborhood around a point.

Hoppe et al. in [HDD+92, HDD+94] estimate the normal at each point by fitting a least

square plane to its k-nearest neighbors. The neighborhood size in [HDD+92] is fixed through

visual inspection. The main advantage of this approach is its robustness to noise due to its

filtering effect and its main drawback is that the accuracy of the estimate is highly dependent

on neighborhood size. The plane model used by Hoppe is simple in form and has been used

by other researchers for denoising [MN03], reconstruction [ABCO+03, HDD+92, ZPKG02], and

registration tasks.

The neighborhood size used to estimate the normal determines the scale of analysis and,

consequently, the accuracy of the estimation and the robustness to noise. Many works have been

proposed to find the neighborhood size that best fit the data to the model. Mitra in [MN03],

Unnikrishnan in [ULVH06b, Unn08] and Pauly in [PKKG03], for example, studied the effect

of neighborhood size, curvature, sampling density, and noise on the Hoppe’s normal estimation

technique. Mitra in [MN03] analyses the scatter matrix, formed from the neighborhood of a point

x, to see how curvature, noise, neighborhood size, and sampling density affects this matrix and

consequently, the normal estimation. Instead of using the k-neighborhood system, they take

a ball neighborhood of radius ri, estimated for each point xi. Under the assumption that the

point cloud noise has zero mean and standard deviation �n, the curvature �i is constant, and

the samples are evenly distributed (satisfy the (�, �) sampling conditions proposed by Dey in

[Dey06]), the neighborhood size that minimizes the angle between the estimated normal and the

true normal is given as [MN03]:

ri =

(

1

�i

(

d1
�n√
��

+ d2�
2
n

))1/3

(2.20)

for some constants d1, d2. Mitra suggests an iterative scheme in which it is estimated the local

density, the local curvature and the neighborhood size (2.20). The main drawback of the closed

form expression (2.20) is that it involves two parameters that rely on the knowledge of the

observed data distribution and they have to be fixed a priori. A similar approach was proposed

by Unnikrishnan in [ULVH06b, Unn08].

The performance of different methods to estimate normals directly from noisy point clouds

has been examined in [DG04]. In [DG04], Dey compared the performance of Voronoi-based

methods with least square plane fitting methods in [MN03, PKKG03]. The first important

observation is that all methods performed equally well for noisy datasets and non uniform

sampling. As the size of the input point cloud increases, they have showed that the plane fitting

algorithms [MN03, PKKG03] should be preferred over [DG04], once Voronoi-based methods are

time and memory consuming. These considerations have motivated us to use a least square

plane fitting method to approximate normals from raw point cloud, and we will detail such an

algorithm in the next section.
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2.5.2 Normal estimation using Hoppe’s method

We consider the problem of approximating the normal for a point cloud in ℝ3 and we use the

algorithm proposed by Hoppe et al. [HDD+92] in surface reconstruction context. In [HDD+92],

the normal vector is estimated through principal component analysis (PCA). The normal vector

estimation is formulated as a local geometric fitting problem. In the process of doing so, it is

assumed that a subset of observed points in a small neighborhood Nri(xi) is homeomorphic to a

disk. If the surface is smooth, it is reasonable to expect that the scatter matrix will be elongated

and that its major axis, or principal eigenvector, will approximate the direction of the plane for

some appropriate neighborhood size. Such situation is illustrated in Figure 2.6.

(a) (b)

Figure 2.6: Normal estimation. (a) Estimating the tangent plane using covariance matrix. (b) Normal
orientation, where the red normals should be flipped, since they are not pointing outward.

Let Nri(xi) be the neighborhood associated with the point xi. The covariance matrix in this

neighborhood is given by:

M =
∑

xj∈Nri
(xi)

(xj − xi)(xj − xi)
T (2.21)

where xi is the centroid of Nri(xi), given by

xi =
1

∣Nri(xi)∣
∑

xj∈Nri
(xi)

xj (2.22)

Note that M is a symmetric 3 × 3 positive matrix. It describes the statistical properties

of the distribution of the samples in the neighborhood Nri(xi). The diagonal elements of M

are the variances and the off-diagonal elements are the covariances. The eigenvector problem is

stated as:

Mvl = �lvl, l ∈ {1, 2, 3} (2.23)

From PCA (2.23), we have that the eigenvectors of a real and symmetric scatter matrix are

orthogonal and form the principal axes that best fit a plane to the samples, in least-sum-of-

squared-error sense [DHS00]. The eigenvalue �l
i measures the variation of the points along the
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direction of vl
i. If �1

i ≤ �2
i ≤ �3

i correspond to the eigenvalues of M associated with the unit

eigenvectors v1
i , v

2
i , v

3
i , respectively, the normal vector n̂i is the eigenvector associated with the

smallest eigenvalue.

A way to evaluate the tangent plane estimation is by looking at the points dispersion along

the tangent plane. Let �1
i be the smallest eigenvalue, an estimate of the normal deviation, �n̂i

,

in Nri(xi), is given by [ZPKG02]

�n̂i
=

�1
i

�1
i + �2

i + �3
i

(2.24)

For a noiseless flat surface, �n̂i
= 0. The maximum surface variation �n̂i

= 1/3 happens

when a completely isotropically distribution of points is observed [PGK02].

In this formulation, it is assumed that the curvature � of the underlying manifold is bounded

and near constant, i.e., �̇ = 0, and the estimate is only accurate when this hypothesis is hold

true. Artifacts usually observed in raw point clouds, such as local sampling density variation,

boundary, holes, and outliers can bias the centroid of the estimated plane out of xi. Such

behaviour results in the estimation of a tangent plane that does not lie at xi. All these artifacts

affect the accuracy of the normal vector estimation, but their removal is still an ill-conditioning

problem [UH07].

The only input parameter of the algorithm is the neighborhood size. It determines the scale

selection at point and, consequently, the magnitude of which samples noise, distribution, and

curvature affect the normal estimation. Figure 2.7 illustrates the neighborhood influence on the

estimate. Small neighborhood size (Figure 2.7 (a)) can compromise the quality of the estimate

due to the use of small number of noisy data points, while large neighborhood (Figure 2.7 (c))

the surface patch considered is distorted and it is no longer homeomorphic to a disk.

(a) (b) (c)

Figure 2.7: Effect of neighborhood size on normal estimation. The expected normal vector is showed in
black. The tangent plane, the centroid, and the normal estimated are illustrated in red.

In the present work, we use a unique neighborhood size, where the size of the neighborhood

radius is estimated proportional to the average local sampling spacing over the samples. Al-

ternatively, Mitra in [MN03] and Unnikrishnan in [ULVH06b] have addressed the problem of

improving the normal estimation accuracy through an adaptive neighborhood size. In Figure

2.8 we illustrate the influence of the neighborhood on the estimation accuracy. We compare

the normal estimation error for a fixed neighborhood size (fig. 2.8 (a),(b)) and an adaptive
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(a) 1 x noise level (b) 2 x noise level

(c) 1 x noise level (d) 2 x noise level

Figure 2.8: Effect of using an adaptive or a fixed neighborhood size to estimate the normals. (a) and
(b): normals estimated using a fixed 10-nearest neighborhood. (c) and (d): normals estimated using
an adaptive neighborhood size [MN03]. It was added a Gaussian noise, where the magnitude of the
added noise was measured in a scale where the average spacing between neighboring points in the mesh
representation of the original data was taken as one unit. It is highlighted the points with estimation
error more than 5 degrees under two different amounts of noise.

neighborhood size (fig. 2.8 (c),(d)), using Mitra’s algorithm.

For both noise levels, the adaptive neighborhood size method works better than fixed neigh-

borhood size method. However, for low noise levels, which are close to the noise found in raw

point clouds, the error of normal estimation are similar. We point out that the plane fitting

approach leads to smooth sharp features even when an adaptive neighborhood is used. This is

because the sampling requirement to feature representation [Dey06] on high frequency features

is not respected and, consequently, there is no possible neighborhood homeomorphic to a plane.

The main drawback of using the same neighborhood size over the entire point cloud is to find

the scale with best tradeoff between being robust to noise and accurate at sharp features. When

estimating the normals of large raw point clouds, the latest approach is preferred because of its

efficiency.
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2.5.3 Normal orientation

A consistent normal orientation can be computed using a method based on the Euclidean min-

imum spanning tree of the point cloud, as described in [HDD+92]. For raw point clouds, where

the object topology is unknown, a global consistent normal orientation is still a ill-conditioning

problem. A global coherent orientation is expected, even when missing data produce not con-

nected regions. We try to solve this problem by using both Hoppe’s orientation propagation

approach [HDD+92] and Jonhson’s global orientation heuristic [Joh97].

Hoppe’s orientation propagation algorithm is based on the assumption that the directions

of the normals at nearby points on Σ cannot vary abruptly. In other words, it is based on the

assumption that the surface looks flat locally. Let two points xi and xj be geometrically close,

the point cloud be globally dense and the local curvature be bounded. In this configuration, the

tangent planes formed by Nri(xi) and Nrj (xj) are parallel [HDD+92]. Therefore, n̂i ⋅ n̂j ≈ ±1,

and n̂i ⋅ n̂j ≈ +1 if they are oriented in the same direction. When this condition is verified on

every point pair connected by an edge of the neighborhood graph, the normals orientation are

globally coherent.

Points connectivity on neighborhood graph are highly redundant and the order in which the

orientation is propagated becomes an important issue. Hoppe solved the problem of finding the

order in which the normal vector is propagated as a graph optimization problem. Let GN be an

Euclidean neighborhood graph. It is constructed a sub-graph by traversing the minimal spanning

tree (MST ) of the resulting graph. This choice was made because in the MST , the shortest

path is always preferred [Sed02]. The final sub-graph transverses the object passing by regions

of low curvatures and skirting sharp edges.

This method produces a correct normal orientation for smooth, connected point clouds.

However, none of neighborhood systems guarantee that only one connected Euclidean graph

represents the raw point cloud. Thus, the neighborhood graph can be composed by a set of

non-connected sub-graphs. In this situation, often observed on scanned surfaces, the global

normal orientation frame presented in [HDD+92] does not give geometric constraints that allow

the propagation of the normal vector orientation from one disjoint part to another. During the

construction of the MST sub-graphs, disjoint parts were recognized and marked, so they could

be treated separately in the orientation propagation phase.

Rooting the MST at the initial node, we traverse the tree in depth-first order, spreading

the normal in this order. The goal of this action is to coherently orient the normal vectors

of connected sub-graph. Discontinuity is respected. The first point of each disjoint part is

considered as a reference point. Let (xi,xj) be an edge, with xi being their parent node. It is

assumed the parent node has the correct normal direction. The cost assigned to the connection

is n̂i ⋅ n̂j . The orientation of n̂j is inverted if the vectors have opposite directions, or, in other

words, if n̂i ⋅ n̂j < 0.

Once all normal vectors are properly oriented, it is necessary to verify the correctness of the

normal sense, which is desired to be oriented to outside of the object. The algorithm used is

the heuristic one proposed by Johnson in [Joh97]. In [Joh97], the correctness of global normal

orientation is determined by calculating the dot product of the normal vector at each node and
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the vector from the centroid to the point:

Oi =
∑

xi∈X

Opi −
∑

xi∈X

Oni (2.25)

where,

Opi =

{

1 if n̂i ⋅ (xi − oi) > 0

0 otherwise
(2.26)

and

Oni =

{

1 if n̂i ⋅ (xi − oi) < 0

0 otherwise
(2.27)

where oi is the centroid of the tangent plane perpendicular to n̂i. Equation (2.25) analyzes

the frequency that the samples and the normals are on the same side of the tangent plane.

It is assumed that, if Oi > 0, the normals have been oriented to the outside. Otherwise, the

orientation of the set points should be inverted. This procedure is repeated for each sub-graph

separately.

The orientation algorithm presented here was used in different examples with different res-

olutions, complexity and level of discontinuity, and it has produced correct orientation in most

of the cases we have run. However, for more complex surfaces and disconnected sub-graphs,

the algorithm do not always produce correct global normal orientation. Such behavior deterio-

rates the point cloud visualization and the principal curvatures estimation. While visualization

uses normals orientation to visibility and lighting computation, principal curvatures estimation

algorithm uses normals orientation to determine local shape concavity.

2.5.4 Evaluation of the performance of the normal estimation algorithm

In this section, we evaluate the normal estimation algorithm performance, presented in section

2.5, on raw unstructured point cloud. Particularly, we analyze the accuracy of the normal

estimation when the following aspects are verified:

∙ The input data presents a moderate noise level.

∙ The 2-manifold hypothesis is not verified.

∙ The stability of estimation when local sample density slightly changes.

The angle between the reference vector and the estimated vector is the error metric adopted,

and it is expressed in degrees or radians. Obviously the smaller the error is, the better the

estimation is. The reference normal for a point xi is computed as the average of the normals of

the triangles incident to a vertex xi in the mesh representation of the surface. To compute the

reference normals, we need the data to have a triangle mesh representation. We obtain a surface

representation for a given a unstructured point cloud by using surface reconstruction software,

such as COCONE [COC] and 3DReshaper [3DR]. When the ball neighborhood system is chosen,

the neighborhood size parameter is taken proportional to the average sampling spacing.
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(a) (b)

(c)

Figure 2.9: Armadillo normal evaluation. We used the k-nearest neighborhood system with k = 7. (a)
Principal curvatures colormap [Rus04]. The principal directions colormap is quite smooth, which indicates
low noise level on the dataset. (b) Normal error colormap, (c) Normal error histogram, where the error
is the angle between the reference and estimated normal vectors, expressed in degrees.

Smoothing effect

The first experiments aim at evaluating the performance of the normal estimation algorithm

when the model is represented by a large dataset, with non-uniform points distribution, noisy,

high points density, and composed by piece-wise smooth surfaces.

Figure 2.9 shows the result when applying the normal estimation algorithm to a modified

version of the non-manifold Stanford Armadillo [Repb]. For the complete Armadillo model,

composed of 165.954 points and low noise level, the mean normal error is 2, 47 degrees, the

standard deviation is 3.71 degrees, and we have 9, 65% of these points that have their normal

error estimation larger than 5 degrees. The first observation is that, for flat, low curvature,

and low noise level regions, the estimated and the reference normals perform comparably, which

verifies the assumption made about the neighborhood being homeomorphic to a disk. However,

when such hypothesis are not verified, the estimate is less accurate, which correspond to regions

of larger curvature.

In Figure 2.10 we evaluate the performance of the normal estimation algorithm when the

dataset is corrupted with noise. We take the complete model of the INRIA Chinese lion [Repa],

where, besides the large noise level, it is also observed a high surface roughness (fig. 2.11(a)).
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(a)

(b)

Figure 2.10: Chinese dragon normal vector evaluation. (a) Normal error colormap, and (b) normal
error histogram, where the error is the angle between the reference and estimated normal vectors, expressed
in degrees.

For such type of dataset, it is clear the normals smoothing effect when they are estimated using

Hoppe’s method. Again, we used the k-nearest neighborhood system, with k = 7, and it results

in 9.47% of the dataset having normal error above 10 degrees. The mean and the standard

deviation error of the estimated normals are 5.01 and 4.48 degrees, respectively.

At this point, we want to point out the difficulty of estimating accurately the normals and

being robust to noise. The model in Figure 2.10 illustrates well such challenge. Note that surface

roughness, noise, and sharp features mingle, and their differentiation on model fitting algorithms

is nearly impossible. The observed normal error is not only due to inaccuracy of the estimation

on sharp features, but also to the low-pass filtering effect on rough and noisy surfaces.

The smoothing of normals on sharp features, noise and roughness regions is propagated to

local shape descriptors estimation. Figure 2.11 compares the principal directions colormap when

the principal directions are computed using the normals taken from the triangle mesh and esti-

mated by Hoppe’s approach. It can be seen that Hoppe’s method smoothes both rough, noisy

and high curvature regions (Figure2.11(b)). On rough and noisy regions (top detail in Figure

2.11(b)) normal estimate smoothing can be seen as data filtering and denoising. On high cur-

vature regions (colored regions in Figure 2.11(b)), normal smoothing is propagated to principal
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(a) (b)

Figure 2.11: Effect of the normal estimation smoothing on shape descriptor estimation. (a) Principal
curvatures colormap when the normals are computed from the triangle mesh representation. (b) Principal
curvatures colormap when normals are computed from the point cloud using Hoppe’s approach.

directions estimation. However, the smoothing effect did not impair data representation, once

regions of high curvature preserved their high frequency features.

The effect of the neighborhood size in the estimate

The normal accuracy is pronouncedly dependent on the neighborhood system and size. Other

than the noisy point clouds, in this section, the normal estimation is performed on a set of

various types of point clouds. The point clouds are illustrated in Figure 2.12. The main goal of

this experiment is to verify the existence of a parameter interval in which the normal estimation

error is small for a great variety of sampled surfaces. We will analyze the normal estimation

algorithm performance in terms of the mean and the standard deviation errors. The point

cloud can be categorized into synthetic, raw, and complete model datasets. Table 2.1 shows the

specification of each dataset.

In Figures 2.13 we plot the mean and the standard deviation errors for different neighborhood

sizes. The first and the second rows plot the results when the k-nearest and the ball neighborhood

system are adopted, respectively. For small neighborhood size, we observe a large standard

deviation and the mean error changes considerably for a small neighborhood size change. For

such small neighborhoods the normal estimation tends to be unstable, independently of the

neighborhood system used. For too big neighborhood, over smoothing degenerate the normal

estimation of high frequency features. As expected, there is a neighborhood size interval where

the average and the standard deviation estimation error stabilize and it provides normals that

fairly fit the local surface. This result also verifies the stability of input parameter to the image

choice. It means that if it is chosen a neighborhood size inside this interval, the estimation

approximates the actual normal for a variety of point clouds, with different sampling densities

and noise levels.
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(a) Plane sphere (b) Double Torus (c) Bunny (d) Armadillo

(e) Maneki-neko (f) Chinese Lion (g) H. Buddha (h) Gargoyle

Figure 2.12: Models used to evaluate the neighborhood influence on normal estimation. Principal
curvatures colormap [lib].

Robustness to noise evaluation

In the final experiment, we test the robustness of normal estimation algorithm when the data is

corrupted with noise. We add a Gaussian noise to the original sampled surface, with zero mean

and where the standard deviation is taken to be a factor of the largest side of an axis parallel

bounding box of the point cloud. This global scale for perturbations is perhaps more close to

reality [DLS05].

In Figures 2.14 and 2.15 we plot the average errors and the standard deviation over two

point clouds with different noise levels, for different neighborhood sizes. We show the results

for the Happy Huddha and the Gorgoyle datasets. We observe that in presence of low noise

level the algorithm performs well and the average error is close to noiseless performance. The

neighborhood size in this scenario plays an important role in filtering noise and the proper choice

of this parameter improves the performance of the algorithm. However, independently of the

neighborhood size, fixed neighborhood is not robust when the dataset is heavily corrupted by a

severe noise level.

A last observation concernes the robustness of the estimate when the dataset is represented

by a non-uniform sampling. As the density of the sampling gets higher, the 2-manifold hypothesis

hold true almost everywhere, even in regions where the data is sparser. Consequently, the normal

estimation is accurate everywhere. Such behaviour is particularly observed in the Happy Boudha

dataset (Figure 2.14), where the normals where accuratly estimated everywhere, even on the

scans boundary.
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Image name Type of data Number
of points

Dense Uniform
sam-
pling

Manifold Noisy

Plane Sphere Parametric sur-
face

2515 No No No No

Double Torus Parametric sur-
face

2686 No No No No

Bunny Complete model 35947 Yes Yes Yes No
Armadillo Complete model 165954 Yes Yes No No
Maneki-neko Complete model 9345 No Yes Yes No
Chinese Lion point cloud 67178 Yes No No Yes
Happy Buddha point cloud 63535 Yes No Yes Yes
Gargoyle poinr clous 86286 Yes No No Yes

Table 2.1: Specifications of the datasets used to evaluate the normal estimation algorithm.

2.5.5 Summary of normal estimation algorithm performance

Comparing the results for different neighborhood systems and noise levels, we note that k-nearest

neighborhood is preferable, once it produces more stable estimates for small neighborhoods.

This is because k-nearest adapts the neighborhood size to the local point density, while the ball

neighborhood implicitly assumes uniform sampling.

The use of a fixed neighborhood size provides an accurate estimation when the point cloud

is dense, corrupted with measurement noise, or low noise level, non-uniform sampling and com-

posed by low curvature surfaces. When such conditions are not satisfied, the estimation degen-

erates, once the neighborhood does not adapt to feature size. Of course, this problem can be

attributed to the poor sampling density at the high curvature regions. The same is observed

when an adaptive neighborhood approach is used, and both normal estimation methods may

remove or smooth sharp features as well. In such scenario, and when the size of the point cloud

is large and with high-resolution, the adaptive neighborhood approach may be expensive and

may provide little improvement over the fixed neighborhood.

2.6 Curvature estimation

Curvature is the most used geometric intrinsic property to characterize a sampled surface. As-

suming the point set X is sampled from some surface Σ, the curvature of a surface at the point

xi in some direction t is a number which describes the deviation of the curve on a normal slice

of the surface in t in the very close neighborhood of this point. The curvature can be seen as

the reciprocal of the radius of the circle that best approximates a normal slice of the surface in

that direction.

There is a large number of local shape descriptors that embed curvature information ([FJ89,

Tau95, SH02, GMGP05, UH08]). Similar to normal estimation evaluation, a curvature estima-
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Figure 2.13: Normal estimation errors (in radians) under different neighborhood sizes, using (a),(b)
k-nearest, and (c),(d) ball neighborhood systems.

tion algorithm should be robust to noise and density variation in order to be applicable directly

to raw point clouds. To this end, in this section we will extend two curvature estimation methods

to work on raw point cloud: the polyhedral approximation of Taubin in [Tau95] and numerical

approximation of Flynn et al. in [FJ89]. They were originally designed to work on triangle

meshes [Tau95] and range images [FJ89], and they provide a complete and compact shape rep-

resentation. Before we present these algorithms, we will present the basic concepts about the

curvature estimation, and some of the related works.

2.6.1 Basic concepts

Let � : [a, b] → ℝ3 be a curve parametrized by arc lenght s. The differentiable map � associates

each s ∈ (a, b) into a point �(s) = x(s) ∈ ℝ3. Since the tangent vector, �′(s), has unit length, the

norm ∥�′′(s)∥ of the second derivative measures the rate of change of the angle which neighboring

tangents make with the tangent at s. The normal norm ∥�′′(s)∥ gives, therefore, a measure of

how rapidly the curve pulls away from the tangent line at s. The curvature is defined as follows

[dC76]:

Definition 2.28 Let � : [a, b] → ℝ3 be a curve parametrized by arc length s ∈ [a, b]. The

number ∥�′′(s)∥ = � is called the curvature of � at s.
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Figure 2.14: Normal estimation errors and standard deviation (in radians) under noise for the Happy
Buddha model, using (a),(b) k-nearest, and (c),(d) ball neighborhood systems.

At a point �(s) ∕= 0, the normal vector n(s) in the direction of �′′(s) is well defined by the

equation �′′(s) = �(s)n(s).

Given a surface Σ, the curvature � is defined for any parametric curve � defined on the Σ.

Let t be a unit length tangent vector of the surface Σ at a point x. The directional curvature

�x(t) is the curvature of the curve projected onto the plane containing the vector t and the

surface normal n. The directional curvature �x(t) of a surface Σ at a point x in the direction

of a unit length tangent vector t is defined by �′′(0) = �x(t)n, where �(s) is the normal section

to Σ at x parametrized by arc length, and such that �(0) = x and �′(0) = t.

The tensor curvature of the surface Σ is the map that assigns each sample point x to the

function that measures the directional curvature �x(t). The directional curvature function is a

quadratic form, i.e, it satisfies the identity [Tau95]:

�x(t) =

(

t1

t2

)t(

�11x �12x

�21x �22x

)(

t1

t2

)

= (t1 t2) Π

(

t1

t2

)

(2.29)

where t = t1t1 + t2t2 is a tangent vector to Σ at x, {t1, t2} is an orthonormal basis of the

tangent space to Σ at x, �11x = �x(t1), �
22
x = �x(t2), and �12x = �21x . The symmetric matrix Π

appearing here, is known as the Weingarten matrix or the second fundamental tensor. Figure

2.16 illustrate the principal curvatures on a surface Σ.
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Figure 2.15: Normal estimation errors and standard deviation (in radians) under noise for the Gorgoyle
model, using (a),(b) k-nearest, and (c),(d) ball neighborhood systems.

From all possible tangent vectors, there are two vectors in the tangent plane in which the

directional curvatures are the largest and the smallest. This configuration occurs when �12x =

�21x = 0 . Hence, �11x and �22x are the principal curvatures, which we will name �1x and �2x for

simplicity. The corresponding {t1, t2} are called the principal directions of Σ at x.

Two other curvature quantities, the mean curvature and the Gaussian curvature, can be

derived from the principal curvatures. Together, the mean and Gaussian curvatures provide a

complete and compact local shape representation. The mean curvature is defined by

H = (�1x + �2x)/2 (2.30)

and its value is closely related to the first variation of the surface area, which depends on the

embedding. The Gaussian curvature is defined as

K = �1x ⋅ �2x (2.31)

and its value informs whether a surface is locally convex (when it is positive) or locally saddle

(when is negative).
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Figure 2.16: Surface with tangent vector to Σ at x, t1, t2, in direction of the principal directions.

2.6.2 Related works on principal curvatures estimation

To our knowledge, there are no principal curvatures estimation algorithms proposed in the liter-

ature designed to operate directly on the raw point clouds. However, the problem of extracting

curvature information from an oriented point cloud has been extensively studied in computer

vision and graphics [AM98, CP03, CGR+04, GI04, HT03, MYHS04, AR05, TT05, YLHP06,

YL89, CW00]. The existing methods for estimating principal curvatures and directions can be

classified into four general categories:

The Normal Curvature Approximation Methods: Given a triangle mesh surface

approximation, algorithms falling in this category computes the directional curvature for each

edge leaving a point and use this estimate to find the second fundamental tensor. Given an

approximation of the second fundamental tensor, the principal curvatures can be computed from

the diagonalization of this matrix [Tau95, GI04], or fitting it using least squares [CS92, SH02],

or a variation of these algorithms [KSPA01].

Model fitting Methods: Algorithms falling in this category, fit a small neighborhood

around a point into some analytic surface model, and then compute the principal curvatures

from the surface model [CP03, FJ89]. When the local shape at a point is from the same class of

the surface being fit, these methods produce the exact result. However, on high curvature regions

and near degenerate configurations, most notably if the points lie near a pair of intersecting lines,

these algorithms in this category becomes unstable. Flynn in [FJ89] presents some techniques

to estimate the principal curvatures, from surface fitting to numerical approaches. Goldfeather

and Interrante [GI04] have shown that the instability of model fitting methods can be avoided

by adding normals in the fit. Goldfeather and Interrante [GI04] have also showed that the

quadratic surface method is identical to the normal curvature method, except that curvature
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approximations are done using parabolas rather than circles.

Tensor averaging methods: The algorithms in this category compute the average of the

curvature tensor over a small area of the polygonal mesh [Rus04], to find the second fundamental

tensor at a point. The contribution of the adjacent faces at a point is averaged and the principal

curvatures are taken as the eigenvalues of the approximate second fundamental tensor. The

algorithms in this category cannot be applied to point clouds, because they rely on properties

of the triangle faces.

Integral invariants: The main drawback of computing curvature based on numerical

differentiation is its sensitivity to noise. Pottmann in [PWY+07, PWHY09] proposed an integral

invariant shape descriptor, which is equivalent to curvature, to solve this problem. It computes

the volume of the intersection of a small ball with the interior of the object defined by the

input point set, which is proportional to the mean and Gaussian curvatures. The estimation of

integral invariant shapes is supposed to be more robust due to its integral, instead of differential

approach. However, most of application still have a denoising and smoothing prior to numeric

computation, to guarantee repeatability of the estimate [AMCO08].

Any other curvature estimation method that does not rely on the properties of triangle

mesh representation, such as face area, can be extended to work on unstructured point clouds.

This is done by replacing the triangle mesh surface representation to a neighborhood graph

representation. From the methods listed above, we have chosen two standard methods for

estimating the curvature at a point: Taubin’s normal curvature approximation method [Tau95]

and Flynn’s numerical approximation method [FJ89]. They were chosen because of their well

established theoretical basis, and their efficiency to be computed and compared. In the next

section we will detail each approach, and explicit how we adapt them to work on unstructured

point clouds.

2.6.3 Curvature estimation using a normal curvature approximation approach

Taubin in [Tau95] proposed an algorithm to estimate the principal curvatures and principal

directions of triangle mesh surface representation. The algorithm expresses the second fun-

damental tensor (2.29) at each point as an integral, constructed in time proportional to the

neighborhood size. The integral Mx is a matrix equivalent to the three dimension directional

curvature tensor (2.29) to non-tangent directions. It has the same eigenvectors of Π, and their

eigenvalues are related by a fixed homogeneous linear transformation. The complete Taubin’s

method is presented in Appendix A.

Given a point xi and its neighbors Nri(xi), the matrix Mx can be approximated by a

weighted sum over the neighborhood Nri(xi) as:

M̂xi
=

∑

xj∈Nri
(xi)

wij�ijtijt
t
ij (2.32)

where �ij is the directional curvature when the tangent vector tij is the unit length projection of
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the vector xj−xi onto the tangent plane. The tangent plane is defined as the plane perpendicular

to the normal vector nxi
. The matrix M̂xi

is averaged by the weight wij , which, originally in

[Tau95], is proportional to the surface area of all triangles incident to both xj and xi. To

compute the principal curvatures from (2.32) we need to first restrict the 3 × 3 matrix to the

tangent plane to Σ at xi. Finally, the eigenvalues and the eigenvectors of the resulting 2 × 2

matrix give the principal curvatures and principal directions of (2.29).

Note that, to compute the matrix M̂xi
(2.32), we need to estimate, additionally, the tangent

vector tij and the directional curvature �i,j for each pair (xi,xj). First, the tangent vector tij

can be computed simply as the projection of the vector (xj − xi) on the tangent plane ⟨nxi
⟩⊥:

t̂ij = (xi − xj) + � ⋅ n̂xi
(2.33)

where the constant � is given as � = −n̂t
xi
(xi−xj) and the normal vector n̂xi

is estimated using

Hoppe’s technique [HDD+92]. The tangent vector tij can then be estimated as:

t̂ij =
(I− n̂xi

n̂t
xi
)(xi − xj)

∥(I− n̂xi
n̂t
xi
)(xi − xj)∥

(2.34)

The second variable that must be computed is the directional curvature, �ij . The directional

curvature is estimated from a parametric arc-length curve approximation. Given a normal

section defined by the tangent vector txi
and the normal nx, the curve � parametrized by arc

length s (definition 2.28), such that:

�(0) = xi (2.35)

�′(0) = txi
(2.36)

�′′(0) = �xi
(txi

)nxi
(2.37)

It follows that the directional curvature can be computed by the discrete approximation for the

arc-length in Laurent series up to the second order, we obtain:

�xi
(txi

) = lim
s→0

2nt
xi
(�(s)− xi)

∥�(s)− xi∥2
(2.38)

If xj is close from xi, however different from it, we can approximate the directional curvature

as

�̂ij =
2n̂t

xi
(xj − xi)

∥xj − xi∥2
(2.39)

We try to minimize noise effect by assigning a confidence measure to each directional curva-

ture estimation. The only constraint is that the sum of the weight over the all neighbors must

be equal to one.

The question of weighting on mesh representation is viewed as how much of the face curvature

should be accumulated at each vertex, and prior works have been addressed to this problem

[Rus04]. The weighting problem on point clouds has been addressed in contexts other than



2.6. Curvature estimation 61

Algorithm: Estimation of principal curvatures using Taubin’s approach

Input: Unorganized point cloud X = {xi} ∈ ℝ3 with i = 1, ⋅ ⋅ ⋅ , n.

1. Construct the neighborhood graph GN , for a given sphere radius r (de-
fined through the sphere or k-nearest neighborhood system). This graph
embeds points spatial connectivity.

2. Estimate the oriented normal vector for each point xi ∈ X using Hoppe’s
technique [HDD+92] and Johnson orientation propagation algorithm
[Joh97]. Note that it is used a different neighborhood size, radius r,
to estimate such normals.

3. for xi ∈ X do

4. Initialize the matrix M̂xi
= 03×3.

5. for xj ∈ N (xi) do

6. Given xi, xj and n̂i, estimate the curvature �̂ij (2.39).

7. Estimate the tangent vector t̂ij (2.34)

8. Compute wij using (2.40)

9. M̂xi
= M̂xi

+ wij �̂ij t̂ij t̂
t
ij (2.32).

10. end for

11. Let e1 = (1, 0, 0)t. Qxi
= I−wxi

wt
xi
, where wxi

=
e1 ± n̂xi

∥e1 ± n̂xi
∥ , with

a minus sign if ∥e1 − n̂xi
∥ > ∥e1 + n̂xi

∥ , and plus sign otherwise.

12. Compute Qxi
M̂xi

Qt
xi

to restrict M̂xi
to the tangent plane.

13. The principal curvatures �1x and �2x are computed from the relations
in Appendix A.

14. end for

Table 2.2: Estimation of principal curvatures using Taubin’s approach.
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curvature estimation, such as discrete fairing [Pau03], reconstruction [AK04], among others. In

[YKS00], they use the principal curvatures algorithm proposed by Taubin on point clouds and

they set the weight equally wij =
1

∣Nri(xi)∣
. A more adaptive weight should take the angle

between normals into account because, in the directional curvature approximation, it is made

an assumption that locally, the curvature is smooth. Hence, the normals cannot vary abruptly.

We use the following weighting Gaussian function

wij = e−ℎi⋅(∠(nxi
,nxj

))2 (2.40)

where ℎi is a scale factor and (∠(nxi
,nxj

))2 is the square of angle between the normals. This

weighting is applied in (2.32) to compute the integral matrix. The scale factor ℎi is taken

proportional to the cone angle, defined as

ℎi = ℎ ⋅ max
xj∈Nri

(

∠(nxi
,nxj

)
)

(2.41)

where ℎ is a user-defined constant. The complete principal curvatures estimation algorithm

proposed by Taubin in [Tau95] and adapted here to work on point clouds is summarized in table

2.2.

2.6.4 Curvature estimation using a numerical approximation approach

Flynn et al. [FJ89] estimates the principal curvatures at a point xi by considering the normal

variation between xi and its neighbors. The strategy adopted is to estimate an approximate

of the directional curvature for each pair points xi and xj ∈ Nri(xi) and take the principal

curvatures as the maximum and minimum directional curvatures. It is assumed that the normal

vectors are oriented, consistent, and the origin of the reference frame is located at the point of

interest and the tangent plane is the one perpendicular to the normal vector.

From curvature definition 2.28 the directional curvature at a point x in direction of �′(0) = t

can be approximated by:

�x(t) = lim
s→0

∥�′(s)− �′(0)∥
∥�(s)− �(0)∥ (2.42)

where �(0) = x.

Given two close points xi and xj ∈ Nri(xi), the directional curvature (2.42) can be computed

as:

�̂ij =
∥tj − ti∥
∥xj − xi∥

(2.43)

where tj and ti are the tangent vectors at xi and xj , respectively, and they lie on the curve

�(s). Since both tangent vectors and normals have unit length, and tj is perpendicular to nj ,

such as ti to ni, we have that:

∥tj − ti∥ = ∥nj − ni∥ (2.44)
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The directional curvature of xi in direction of a neighbor xj ∈ Nri(xi) is then given as a

discrete approximation to one-dimensional curvature along the hypothesized curve from xi to

xj [FJ89]:

�̂ij =

⎧









⎨









⎩

∥ni − nj∥
∥xi − xj∥

if ∥xi − xj∥ ≤ ∥(ni + xi)− (nj + xj)∥

−∥ni − nj∥
∥xi − xj∥

otherwise

(2.45)

where the directional curvature is positive for locally convex and negative for locally saddle

curves.

The algorithm proposed by Flynn does not estimate the actual principal curvatures. Instead,

the principal curvatures are taken as the maximum and the minimum of (2.45) computed for

all xj ∈ Nri(xi). This is a numerical approximation which is accurate for noiseless, dense and

uniformly distributed point clouds. The resulting algorithm is linear, both in time and in space,

as a function of the number of vertices and neighborhood size. Since the method estimates

the curvature from differential invariant properties of the surfaces, it amplifies the noise effect.

Flynn’s curvature estimation algorithm is summarized in table 2.3.

2.6.5 Similarities and differences between Taubin and Flynn’s approaches

So far, we have presented two principal curvatures estimation algorithms, originally designed to

mesh surface representation. Now, we show some properties of both principal curvatures esti-

mation algorithms and how these algorithms can be modified in order to estimate the principal

curvatures directly on point clouds.

Directional curvature equivalence

Both of the above algorithms incorporate different approximations for the directional curvature

to estimate the principal curvatures. In order to compare them we need first to explicit the

equivalence relationship between these two directional curvatures approximations (2.39) and

(2.45). The directional curvature used by Taubin is defined as (2.39):

�̂ij =
2n̂t

xi
(xj − xi)

∥(xj − xi)∥2

The directional curvature (2.39) is not a symmetric function, since �̂ij ∕= �̂ji. Let xi and

xj ∈ Nri(xi) be two points in the very close neighborhood. We define the average directional

curvature as:

�(xi,xj) =
�̂ij + �̂ji

2
(2.46)

By expanding the average directional curvature using Taubin approximation for the direc-
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Algorithm: Estimation of principal curvatures using Flynn’s curvature ap-
proximation

Input: Unorganized point cloud X = {xi} ∈ ℝ3 with i = 1, ⋅ ⋅ ⋅ , n.

1. Construct the neighborhood graph GN , for a given sphere radius r (de-
fined through the sphere or k-nearest neighborhood system). This graph
embeds spatial connectivity of points.

2. Estimate the oriented normal vector for each point xi ∈ X using Hoppe’s
technique [HDD+92] and Johnson orientation propagation algorithm
[Joh97]. Note that it is used a different neighborhood size, radius r,
to estimate such normals.

3. Initialize the principal curvatures, �1xi
= −∞ and �2xi

= ∞.

4. for xi ∈ X do

5. for xj ∈ Nri(xi) do

6. If ∠(nxi
,nxj

) < ℎ (2.41)

7. Given (xi,xj) and (n̂i, n̂j), compute �ij (2.45).

8. If (�ij > �1xi
)

9. then

10. �1xi
= �ij

11. If (�ij < �2xi
)

12. then

13. �2xi
= �ij

14. end if

15. end for

16. Assign to the point xi the principal curvatures, �1xi
and �2xi

.

17. end for

Table 2.3: Estimation of principal curvatures using Flynn’s curvature approximation.

tional curvature (2.39), we have

�(xi,xj) =
1

2

(

2n̂t
xi
(xj − xi)

∥(xj − xi)∥2
+

2n̂t
xj
(xi − xj)

∥(xi − xj)∥2

)

(2.47)

=
n̂t
xi
(xj − xi)− n̂t

xj
(xj − xi)

∥(xj − xi)∥2
(2.48)

=
(n̂t

xi
− n̂t

xj
)(xj − xi)

∥(xj − xi)∥2
(2.49)

= −(n̂xj
− n̂xi

)t(xj − xi)

∥(xj − xi)∥2
(2.50)
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In a very close neighborhood, where a small change on surface normal is observed, we have

that

(nxj
− nxi

) ≈ (xj − xi) (2.51)

and, consequently,

(nxj
− nxi

)t(xj − xi) ≈ ∥nxj
− nxi

∥2 (2.52)

This approximation is accurate for highly dense point clouds, where we can assume the

curvature is bounded, near constant, and close to zero (plane). In such scenario, the average

directional curvature can be approximated by

�̂ij + �̂ji
2

= −∥nxj
− nxi

∥2
∥(xj − xi)∥2

(2.53)

which is similar to Flynn’s directional curvature approximation (2.45).

Lets call, for now, �̂Fij and �̂Tij the directional curvatures approximation defined by Flynn

(2.45) and Taubin (2.39), respectively. From (2.53), we have that the relationship between the

magnitude of these two approximations is given by

�̂Tij + �̂Tji
2

= (�̂Fij)
2 (2.54)

For highly dense point clouds, where (2.51) holds true, �̂Tij = �̂Tji, and, consequently, �̂
T
ij = �̂Fij .

Otherwise, Flynn’s approximation in an average of Taubin’s.

Both approaches amplify noise effect, since they are computed from differential quantities,

such as normal and points distance. However, at high curvature and noisy regions, Flynn’s

directional curvature approximation is more sensitive than Taubin’s. Given a point xi and xj

for example, Taubin’s approximation takes into account only the normal at xi, while Flynn’s

approach uses both normals.

There is another very important difference between these two approaches, which is the strat-

egy adopted to estimate the principal curvatures from directional curvature estimation. While

Flynn’s approach compute the principal curvatures as the maximum and the minimum of the

estimated directional curvatures, Taubin estimates the second fundamental tensor (2.29) to com-

pute the principal curvatures. It means that in Taubin’s approach, contrary to Flynn’s approach,

the principal directions do not necessarily have the same direction of the vector from xi to any

neighbor. Besides, there is no filtering embedded on Flynn’s approach and noise can degenerate

the estimate. Taubin, on the other hand, average the contribution of each estimated directional

curvature on the integral matrix computation (2.39), which can be used to filter noisy estimates.

Next, we resume the main properties of each principal curvature algorithm.

Principal curvatures estimation properties

∙ Complexity: They are linear, both in time and in space, as a number of points and neigh-

bors. This property makes them both suitable to estimate the local shape of large datasets.

∙ Robustness to noise: They amplify noise effect, since they are computed from differen-
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tial quantities, such as normal and points distance. Flynn’s approach, is, however, more

sensitive to noise.

∙ Principal directions: They use different strategies to estimate the principal directions and

principal curvatures from the directional curvature estimation. In Flynn’s approach both

principal directions and principal curvatures are actually taken as some of the directional

curvature. However, in Taubin’s approach, the principal directions and curvatures are the

eigenvectors and eigenvalues of the integral matrix (2.32).

∙ Input parameters: Similar to normals estimation, the neighborhood size determines the

scale on which the curvature invariant is computed. However, instead of trying to find

the optimum neighborhood size to estimate the curvature invariants many algorithms

[GMGP05, HP05, UH08] propose to compute a scale-space representation of such invari-

ant, where the geometric descriptor is considered, for each point, at several scales simul-

taneously. The estimates are then analyzed in order to filter outliers and obtain the scale

that gives a more consistent representation of the local shape. Such strategy has crucial

relevance for accurate performance of feature-based tasks [UH08]. Taubin’s approach has

another parameter, which is the weight wij that average the contribution of each directional

curvature on the integral matrix computation (2.32).

2.6.6 Curvature estimation evaluation

In this section we will evaluate Flynn’s and Taubin’s curvature estimation methods on unstruc-

tured point cloud. We differentiate between two categories of data: synthetic and real raw point

clouds. While the interest for the synthetic data is generated from the fact that it is accurate

and allows for ground truth to be produced at any point, the interest in raw point cloud is

motivated by the fact that in most cases it is noisy, with direct influence on the accuracy and

stability of the algorithms.

Algorithms 2.3 and 2.2 detail the procedure to estimate the principal curvatures from the

point cloud in order to compute the Gaussian and mean curvature invariants. When evaluating

the performance of principal curvatures algorithms, the normals are taken as an input data, in

order to dissociate the problem of normal estimation to the problem of curvature estimation.

Rusinkiewicz in [Rus04] presents a tensor averaging method to estimate the principal cur-

vatures and principal directions on irregular triangle meshes. This method relies on the well

established properties of continuous surfaces represented by triangle meshes and it provides ac-

curate estimates in the presence of irregular tessellation and moderate amounts of noise. Besides,

it has no input parameter.

In Figure 2.17 we show the results that verify the equivalence of the estimates. It is com-

pared the principal curvatures estimation approaches of Rusinkiewicz [Rus04], Flynn [FJ89] and

Taubin [Tau95] in a synthetic dataset. The error histograms show the principal curvatures error

when Rusinkiewicz’s estimate is our reference. The cup model is an uniform sampling, noiseless,

synthetic dataset. The cup principal curvatures colormap is showed in Figure 2.17(a). We take

the curvature estimated using Rusinkiewicz’s approach on the cup triangle mesh representation
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(a)

Figure 2.17: Principal curvatures comparison: �1
x
, �2

x
similarity, when they are estimated using Flynn’s

(right) and Taubin’s (left) methods and compared with the estimation computed using Rusinkiewiewics’s
technique.

as our reference. The normals computed from the mesh representation are used in all algo-

rithms. The dissimilarity between the estimated �1xs and �2xs is plotted in Figure 2.17(b). The

dissimilarity curvature histograms has zero error for most of the sample points, except for point

on non-manifold regions.

In Figure 2.19 we show the comparison of the three methods over the Happy Buddha dataset.

We want to evaluate the robustness to noise of the methods presented. The Happy Buddha is a

raw point cloud with a nearly uniform sampling, and the �2x dissimilarity colormap is illustrated

in Figure 2.18. Note that all three methods produce good results for perfect data, but Taubin’s

and Flynn’s approach degrade rapidly with the addition of noise. We have found that the quality

of the curvature estimated using both Taubin and Flynn methods degenerates even when low

noise level corrupts the dataset. This behavior is due to the amplification of noise, because

of the use of differential quantities to estimate the curvature. This lack of robustness to noise

compromises the quality of data characterization, and, consequently, the performance of the

entire registration pipeline.

2.7 Conclusions

In this chapter, we presented the fundamental properties of raw point clouds, the assumptions

made about noise, points distribution, and about the local surface properties. We presented

Hoppe’s normal estimation method, which gives a good approximation to the tangent plane

around the point. We verified that the estimate is quite accurate for flat and low curvature

surfaces, and robust to moderate noise level. We used a fixed neighborhood size to compute

the normal and we evaluate the influence of the neighborhood system and size on the accuracy

of the estimation. For a fixed neighborhood size, we observe that the Hoppe’s method filters
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Figure 2.18: �2
x
dissimilarity colormap between Flynn’s and Rusinkiewicz’s curvature estimation meth-

ods.
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Figure 2.19: Curvature dissimilarity histogram for �1
x
, �2

x
when they are estimated using Flynn’s (a),(b)

and Taubin’s (left) methods (c)(d).

noise but it also smooths high frequency feature, and, compared to the adaptive neighborhood

approach proposed in [MN03], the smoothing is bigger. We believe that, since the difference

between a fixed and an adaptive neighborhood size is small for low level noisy datasets, it does

not justify to use an expensive method to have an comparably performance.

We also presented an extension of two methods to estimate the principal curvatures around

a neighborhood to work directly on raw point clouds. Both methods were originally designed to

work on triangle mesh surfaces, with a low noise level. We compared the principal curvatures

estimation with Rusinkiewicz’s method [Rus04]. We observed the estimations using both ap-

proaches [FJ89, Tau95] are based on differential quantities and an accurate curvature calculation

in the presence of statistical outliers and noise is very difficult.

Using techniques presented so far, we can compute shape descriptors directly from raw

point clouds and structure the point cloud according to neighborhood relationships. In the next

chapter, we explore these estimates to reduce data volume and built a higher-level representation

through segmentation.



Chapter 3

Segmentation of Unstructured Raw

Point Clouds

3.1 Introduction

In this chapter we address the problem of representing a noisy raw 3D point cloud as a set

of regions. Our approach falls within the framework of image segmentation, where one wants

to partition the input data into a connected set of homogeneous regions. For this matter, we

present a graph-based segmentation algorithm, a data-driven approach designed to partition

directly large and raw 3D point clouds.

Segmentation is a broad term which refers to any method of grouping together points which

are similar in a feature space, and there is a growing movement towards using segmentation

to provide preliminary point grouping. When performing registration of large and raw point

clouds, for example, low-level description, or local shape descriptor, is often an inadequate

data representation for such task. This is because local shape descriptors matching does not

guarantee one-to-one correspondence. Reflecting on the problem, segmentation can be then an

intermediate phase, in which objective is mostly a substantial reduction in data volume without

information loss. This compact data representation, given as a region set, can be used as the

input feature set to a region-based registration scheme. Such strategy will be developed in

Chapter 4.

We define our segmentation algorithm as a recursive bi-partition of the weighted neighborhood

graph. Region homogeneity is inferred from the local feature analysis on a weighted graph

constructed from the triplet: Euclidean neighborhood relationship, feature space defined by

local shape descriptors and similarity function. We extended the 2D segmentation algorithm

using the graph’s Minimum Spanning Tree (MST ), introduced in [Zah71b] and later improved

in [FH04], to work directly on raw 3D point clouds. This graph-based method is a combinatorial

69
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optimization algorithm, in which we extract the MST of the neighborhood graph to decrease

the search space of feasible segmentations. The MST is a subgraph of the neighborhood graph,

where the edges in the MST are aligned with, or point towards, the closest isolevel in the feature

space. We make very few restrictive assumptions about the shapes of the underlying sampled

surface and the segmentation generates regions of general shapes using generic cues of coherence

and affinity between points in feature space.

From the resulting segmentation, we derive a concise formulation for the region. In order to

exploit the segmentation results in a larger system, we propose a set of requirements we consider

fundamental and we also propose a taxonomy for 3D segmentation algorithms. Together, they

guide to the choice of the most appropriate segmentation algorithm for our application. We use

these concepts to validate our approach, to outline some properties of the region formed, and

to compare our segmentation algorithm to other segmentation algorithms in the same category.

Such an evaluation is used for both synthetic and raw point cloud segmentation.

3.2 Using 3D segmentation results in larger systems

(a) (b)

Figure 3.1: Perceptual grouping problem: the figurines [ED] were segmented using two different strate-
gies, but both producing acceptable results and they mimic different human perception. The models on left
were segmented using our MST-based algorithm [ADC07b] and the models on right were segmented using
a watershed segmentation algorithm [APFJ+08a].

Adhering to the notation from the previous chapter, let X be a set of points representing

the sampled surface. We define P as one of the many possible partitions of the set X. Figure

3.1 illustrates an example of two possible partitions for the same model. Given a set of feasible

partitions, the task of choosing the partition that best describes the input dataset is hard,

because it depends mainly on the type of information an application aims at exploring from the

input dataset. In fact, this ill conditioning problem leads to a lack of consensus about the formal

definition of a region and its homogeneity properties in segmentation context [UPH07, HJBJ+96].
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Thus, multiple partitions can correspond to many different human interpretations of a surface,

with different region refinement. Figure 3.1 illustrates such perception grouping ambiguity,

where, even though the results are quite different from each other, the produced regions by both

segmentations correspond well to human perception.

In the absence of an unique ground-truth segmentation, the design of a segmentation algo-

rithm is only relevant when done and measured in the context of the larger system into which it

will be incorporated [Pan08]. We believe that segmentation algorithm used as a pre-processing

step for registration should have the following crucial characteristics:

1. Correctness. The segmentation should produce regions where the level of detail extracted

depends uniquely on the input dataset.

2. Data-driven. The segmentation algorithm should produce regions of arbitrary shape. No

prior knowledge about the surface models composing the scene, neither the error model,

should be required. In this way, the segmentation can be performed on a wide range of

surfaces types, such as free-form and sculptured-based surfaces.

3. Region homogeneity predicate. All regions produced by segmentation must respect some

pre-defined homogeneity predicate.

4. Robustness to noise. The algorithm must produce correct segmentation even when the

input dataset is corrupted with noise.

5. Stability with respect to parameter choice. Only few control parameters should be necessary

to tune the segmentation, and these parameters should have an intuitive and physical

meaning. In addition, the algorithm must produce segmentations of consistent correctness

for a range of parameter choices [UPH07].

6. Scalability. The algorithm must segment directly large datasets without any pre-processing,

such as re-sampling and pre-clustering.

7. Complexity. Segmentation algorithms should run at speeds similar to the number of input

points, up to some low constant factor [FH04]. This property is important to make an

algorithm practical, once segmentation is only a pre-processing step.

If a segmentation algorithm satisfies these requirements, then it will give useful and pre-

dictable results. Consequently, the segmented regions can be reliably incorporated into larger

systems. In our region-based registration framework, for example, we use regions to perform

global registration between two scans that overlap partially. In this application, we implicitly

rely on the regions generated by the raw point cloud segmentation to be ”useful”, which means

that these regions should be large enough to compute higher-order statistics of scene structure,

but small enough to fall within boundaries.

One very important consequence of using the characteristics introduced above to evaluate

a segmentation algorithm is the fact that the correctness of a segmentation does not rely on

the ability of the algorithm to generate a partition of the input dataset that mimics human
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perception. Instead, a segmentation algorithm produces correct results when the assumptions

made, and the homogeneity predicate defined by the segmentation generates regions having such

properties. Finally, the robustness of the algorithm is evaluated in terms of the invariability of

these results under variation on the input dataset.

3.3 Foundation of 3D sampled surface segmentation

We will present in this section some fundamental definitions and properties of any 3D segmen-

tation algorithm. We propose a taxonomy that categorizes segmentation algorithm according

to the regions they generate and the hypothesis they make about the input dataset. We end

up the section reviewing the main works done in each category, and how they perform, when

considering the characteristics introduced in section 3.2.

3.3.1 Segmentation definition

In order to help 3D segmentation algorithms design, comparison and evaluation task, Hoover et

al. [HJBJ+96] presented a common formal 3D segmentation definition:

Definition 3.1 Given a set X of samples, the segmentation process consists in generating a

partition P of the set X, formed by the disjoint subsets R1, R2, . . . , Rn (regions), where the

following properties hold:

1. R1 ∪R2 ∪ ⋅ ⋅ ⋅ ∪Rn = X. It means that each point belongs to an unique subset.

2. Every subset is spatially connected.

3. ∀(Ri, Rj) ∈ X ×X, with i ∕= j, Ri ∩Rj = ∅. Regions do not overlap.

4. ∀Ri ∈ X, P̄ (Ri) = TRUE. All points in a subset satisfy the specified similarity predicate.

5. ∀(Ri, Ri) ∈ X × X, with i ∕= j, and Ri and Rj are adjacent, P̄ (Ri ∪ Rj) = FALSE. If

subsets are neighbors, they represent different regions.

From the listed properties, Ri is an open set and it is expected that an algorithm partitions

the input sampled surface into connected non-overlapping regions satisfying some homogeneity

predicate. These properties are the requirements needed only to the segmentation process.

They do not restrict neither the region homogeneity predicate neither the geometry and shape

of regions obtained from segmentation. It is mainly why different algorithms generate different

segmentation results, even when they verify the segmentation properties of definition 3.1.

3.3.2 A taxonomy for 3D segmentation techniques

Most of segmentation algorithms applied to 3D datasets are adaptation of methods designed

to segment 2D images [BFL06]. What differentiate one approach from another are the specific

criterion function J : (2∣X∣−1) → ℝ, which is a function of the partitioning of X to be optimized,
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and the technique used to this optimization. Once they are defined, the segmentation problem is

one of finding the partition P that extremes the criterion function. Different criterion functions,

and optimization techniques produce regions with different properties, like geometry, shape and

detail level.

We propose a 3D segmentation algorithm taxonomy which aims at characterizing the many

existing 3D segmentation algorithms according to criterion function to be optimized and the

properties of the regions they generate. This taxonomy groups techniques that produce equiv-

alent segmentation. It guides the choice of the evaluation and comparison criteria to analyze

segmentation algorithms in the same category. Algorithms at the same level but from different

categories are unrelated to each other, and they cannot be compared objectively and quantita-

tively because they do not generate equivalent regions. Figure 3.2 shows the 3D segmentation

taxonomy. We will examine each category, with emphasis on the categories our algorithm falls

into.

Any segmentation algorithm falls into one of two general classes: contour-based and region-

based methods. Since, whatever the chosen approach, the segmented data will contain both

region and contour information, hybrid techniques have also been developed [KS00]. Contour-

based or edge-based methods formulate segmentation as an attempt to extract regions by locat-

ing points that lie on their boundary. A contour is a closed curve, either continuous or discrete.

The output of contour-based segmentation algorithms is a set of closed contours and a region is

then defined as the set of points enclosed by a contour.

A very different segmentation formulation is used by region-based methods. They formulate

segmentation as a gathering of similar feature points in order to form regions. The criterion

function to be optimized is a region homogeneity predicate and a region is defined as a the biggest

subset that verify such homogeneity predicate in the feature space. The output of methods in

this category is a set of homogeneous regions.

To be more precise about the region homogeneity predicate, we break region-based algorithms

into two categories: model-driven and data-driven methods. Model-driven methods can be seen

as a surface fitting problem, where points are fit to some surface model and the criterion function

to be optimized is the fitting error. These methods are more or less application-dependent, since

they rely on prior knowledge of the elementary surface models composing a scene. The methods

in this category differentiate from each other by the types and the parametrization of the surface

models and by the strategy used to assign a point to a given model. Generally, segmentation

is performed into two stages. The first stage, also called surface classification, assigns to small

subsets a surface model, from the possible surface models set, that minimizes the fitting error.

In the second stage is performed the surface parameter estimation. This is done by fitting the

surface model to the set of inliers that actually describe such surface. The output of model-

driven methods is a region set, where each region is represented by a parametric surface and by

the list of inliers.

Data-driven methods, on the other hand, use concepts and techniques from differential ge-

ometry to describe shapes of arbitrary smooth surfaces arising in 3D datasets. They group

points by evaluating some local homogeneity predicate, based on local feature analysis, and
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Figure 3.2: 3D segmentation taxonomy.

combine local shape properties into global ones. Difficulties arise when local descriptors are

used to identify the shape and global similarities of arbitrary surfaces, because the mathematics

of differential geometry gives little guidance for an integrated global shape description [BJ88].

Data-driven segmentation algorithms differentiate from each other by the way in which points

are gathered into regions and their region homogeneity predicate. If we consider the latest, or

the criterion function, data-driven segmentation algorithms can be either feature analysis based

or graph-based.

Data-driven, feature analysis based approaches, form regions that are ”flat” in the feature

space. Dense regions in the feature space thus correspond to local maxima of the p.d.f. [CM02].

Once the location of a local maxima is determined, the region is delineated based on the local

structure of the feature space. The criterion function to be minimized is generally the feature

variance within a region or some other related error measure.

Data-driven, graph-based approaches, on the other hand, form regions where the criterion

function to be optimized is related to the graph minimum cut [SM00]. Here, the graph explicits

points proximity information and the edges weight the similarity in some feature space. Together,

they defines the search space of all feasible partitions.

Finding the minimum cut in a graph is a NP-hard computational problem. To solve the

segmentation problem as a graph bi-partition, two different strategies have been proposed. First,

there are the approaches that guarantee the convergence of the criterion function towards the

global minimum. The graph bi-partition is done by finding the optimal cut whose cost is

minimum among all possible graph cuts. The other graph-based segmentation category, instead

of searching for the minimum cut to bi-partition the graph, aims at decreasing the search space
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of possible partitions to a subset of more likely partitions and perform segmentation under

boundary evidence. Boundary evidence corresponds to areas where there is a strong change of

the feature value. These methods converge towards the local minimum of the criterion function

and they do not explicitly evaluate the cut cost to perform segmentation.

This 3D segmentation taxonomy can still be refined if we consider the approximation tech-

nique used to reach a solution. A segmentation algorithm in any category can be classified into

bottom-up and top-down. Bottom-up, or region growing, approaches begin with n regions, each

region containing exactly one point. Regions are constructed from seed points and the number

of seeds determine the maximum size of the region set. Then, neighbor regions are recursively

merged thanks to a similarity function. As regions are merged, the seed points move toward

the center of the region. The segmentation stops when the homogeneity predicate is no longer

verified on the neighborhood of the region. The seed choice is the most critical step of bottom-up

approaches, because seeds placed on noisy or boundary points lead to erroneous results [KS00].

Most of methods falling in this category propose algorithms to robustly place these seed points.

In top-down approaches, the original dataset is initially represented by an unique region. This

region is recursively subdivided into smaller ones until each region is connected and respects the

homogeneity predicate.

In the next section, we will examine the main works done in each category in the perspective

of using them to raw point cloud segmentation. The evaluation criteria rely on the characteristics

presented in section 3.2.

3.3.3 Review of 3D segmentation techniques

Limited work has been proposed in the literature to solve the problem of raw point cloud seg-

mentation [ADC07b, YFM01]. The difficulty of performing segmentation directly on raw point

clouds from scans is that the input data are ill-conditioned. As discussed in Chapter 2, raw

point clouds are not regularly sampled in the 3D space, and artifacts are pretty common. The

objects represented by the point clouds can take an enormous number of shapes and they should

be represented by various families of surface models which have different parametrization dimen-

sions. Additionally, raw point clouds from scans provide only partial object information, and

neither the surface models composing the object nor the object’s topology are known a priori.

Although many segmentation algorithms have been proposed in the literature to deal with both

2D images [SM00, CM02, Wei99, DV06] and 3D datasets [BJ88, YL89, Tau91, MPB04, NG04,

KS00, MW99, CF01, JM07, ZG08, FB04, HTZ04, LCS06, GKH08], their use to unstructured

point cloud segmentation is not straightforward. In this section we briefly consider some of the

3D segmentation related work of each category and in the next section we will examine in detail

the graph-based data-driven segmentation methods.

Contour-based segmentation algorithms

Contour-based segmentation algorithms have been extensively used to 3D sampled surface seg-

mentation [AM96, BS02, Jia00, MB05, BFL06]. An example of contour based segmentation

algorithm is presented by Sappa in [Sap06]. Sappa proposed a contour-based segmentation
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algorithm that extracts closed contours from range images. Sappa uses an unsupervised graph-

based and the MST is the support to closure refinement. Given a set of edge points, the MST

covering this dataset suffers iteratively morphological operations of dilatation, erosion, followed

by branches pruning, until it obtained only closed contours. The algorithm is carried out with

no prior information about the surface shape, and it takes as input the points edges, which is

obtained from segmentation.

Model-driven segmentation algorithms

A large number of model-driven segmentation methods can be found in the literature [Bes88,

BJ88, Tau91, BMG94, KS00, GBBS04, NG04, GKH08]. The segmentation algorithms in this

category are mostly used in reverse engineering applications, which deals with reconstructing

a CAD model from an unstructured input dataset. If a scene is composed only by elementary

surface models, like, for example, planes, spheres, cones, and surfaces of revolution, then the

segmentation ground truth is usually unambiguously defined. If a model-driven approach in-

corporates such surface models, it is then expected that both regions and edges are accurately

extracted and the use of a model-driven approach is justified. When such assumptions are veri-

fied, the evaluation of the segmentation performance can be done quantitatively. In [HJBJ+96],

a good overview of a model-driven range image segmentation algorithms is presented, and they

propose a comparative framework to evaluate segmentation results, when it is provided the

ground truth segmentation. Experimental results are provided to compare the methods pre-

sented. Bowyer et al. [JBM+00, MPB04] refined the region definition made in [HJBJ+96], and

they present a comparative framework, where, besides planar regions, curve regions are also

accepted.

From the many proposed model-driven segmentation algorithms, Han et al. [HTZ04] is the

only one, to our knowledge, that proposes to segment noisy scans from natural scenes. They use

both geometric and reflectance information, and they partition the input dataset into a large

number of surface models, like planes, conics, splines and 3D histogram for nonparametric free-

form objects. They formulate the segmentation in the Bayesian framework, where the posterior

probability is distributed over a search space with a countable number of subspaces. Each

subspace is a combination of surface models. To explore the search space, the algorithm simulates

both reversible jumps and stochastic diffusion, which, in combination, simulates a Markov chain

process sampling from the Bayesian posterior probability. Even though their approach is robust

to noise, without reflectance information, the segmentation using only geometric clues performs

poorly.

Data-driven based on feature analysis segmentation algorithms

Most of the algorithms in this category perform segmentation on triangle meshes, where the

main objective is to extract semantic information from the input dataset. One class of feature

analysis based methods assume an uniform-sampling, smooth input data which represents the

entire object, or a watertight 3D digital model. Then, different topological structures, like medial

axes [DGG03] and Reeb graphs [MP02, HSKK01], are used for shape segmentation. None of
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such approaches can be used in raw point cloud segmentation, since the watertight hypothesis

is never verified.

The second class of feature analysis based methods perform a preliminary clustering of local

shape descriptors associated with points proximity. The features considered must be invariant

under rigid transformation and the regions are homogeneous in the feature space. In [HP05]

a top-down segmentation algorithm generates regions with homogeneous integral volume de-

scriptor [PWHY09]. In [Pau03] the noisy point cloud is recursively split along the direction of

greatest variation defined by the split plane composed by the centroid and the second largest

eigenvector of the covariance matrix. In [YLL+05] the mean shift segmentation algorithm, which

is a non-parametric clustering algorithm [CM02], is used to partition a triangle meshes, where

the feature space is a 6D points, composed by triangle centroids equipped with triangle normals.

3.4 Graph-based segmentation

Considering the problem of raw point cloud segmentation, it quickly becomes clear that some

segmentation categories cannot be used to solve the problem. While contour-based approaches

may not extract correctly the contour of scans, since scans represent surfaces with boundaries, all

model-driven segmentation algorithms proposed in the literature, to our knowledge, are unable

to efficiently and robustly partition correctly sampled surfaces into a larger type of surfaces

models, such as the ones found in free-form and man-made objects. The use of a data-driven

segmentation algorithm seems to be the logical choice to solve the problem of partitioning raw

point clouds.

Among data-driven approaches, the use of a feature analysis approach is not the most ap-

propriated, because it relies on the analysis of the feature space, in which features are mostly

estimated from the input data. Graph-based approaches, on the other hand, appears to be the

most appropriate choice, since the criterion function to be minimized is the graph cut, not the

feature value itself. Graph-based approaches generate regions of arbitrary shape, they have only

a few input parameters, that are stable, with intuitive tuning, and they produce an arbitrary

number of regions, which shape depends mainly on the input data.

Our segmentation algorithm falls in the graph-based segmentation category. In this section

we present the definition and general properties of graph-based segmentation methods and we

examine some methods falling in this category and which are designed to partition 3D sampled

surfaces.

3.4.1 Background on graph-based segmentation

First, we will introduce some terminology. Let G = (V,E,W ) be a graph. The nodes in V

correspond to data points, edges represent neighborhood relationships, and edge weight reflects

similarity between pairs of linked nodes. The weighting function w : V × V → ℝ+ assigns

the similarity between samples in some feature space. The graph embeds the relationships

between samples xi ∈ X and it explicits similarity between them (xi,xj) ∈ E through the

weight wi,j ∈ W . Based on these considerations, the graph-based segmentation can be stated
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as:

Definition 3.2 A graph G can be partitioned into two disjoint sets, R1, R2 by simply removing

the edges that connect nodes from R1 to nodes in R2. This graph bi-partition defines a segmen-

tation according to definition 3.1. The degree of dissimilarity between these two regions can be

computed as the total weight of the edges that have been removed also called the cut, which is

defined as:

⅁(R1, R2) = {(xa,xb) ∈ E ∣ xa ∈ R1 ∧ xb ∈ R2} (3.3)

Given a cut, the cut value is given by:

cut(R1, R2) =
∑

xi∈R1,xj∈R2

wi,j (3.4)

The optimal bi-partition of a graph is the one that minimizes this cut cost, when the weight

wi,j embeds similarity between points. The partition criteria sought in graph-based segmentation

algorithms are to minimize the disassociation between regions and to maximize the association

within the regions [SM00].

Figure 3.3: A 2D graph-based segmentation example. The cost of each edge is reflected by the edge’s
thickness. A globally optimal segmentation is the graph bipartition that minimizes this cut cost.

Figure 3.3 illustrates the principle of graph partition. The analysis of the complete solution

space to find the optimum graph cut is a NP-hard computational problem. Although there is

an exponential number of such partitions, finding the minimum cut of a graph is a well-studied

problem and there exists efficient algorithms for solving it [SM00, BK04]. An alternative to this

problem is to partition the graph under boundary evidence, without explicitly computing the cut,

and this graph partition formulation was adopted by some graph-based segmentation algorithms

[CBV98, JM07]. Note, in Figure 3.3, that, from the graph-based segmentation definition, the

graph bipartition can generate regions with different shape and size. In order to minimize the

unnatural bias for partitioning out small sets, caused by the cut criterion, other partition criteria

have been proposed in the literature [SM00, BK04].

Given a feature space I and a similarity function w, a graph-based segmentation algorithms

respect the following properties:
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∙ Each region Ri corresponds to a connected component in a graph G′′ = (V,E′), where

E′ ⊆ E. In other words, any segmentation is induced by a subset of edges in E.

∙ Region shape is unknown a priori and the shape is defined by the feature space, the

distance used to weight the graph edges, and the segmentation input parameters.

∙ Given a feature space and a similarity function, a region is characterized by a limited

feature variation.

∙ Intrinsically, graph-based segmentation approaches partition the graph by evaluating whether

or not there is evidence for a boundary between two regions.

These graph-based segmentation properties correspond well with the segmentation require-

ments established in section 3.2. Graph-based segmentation methods can be distinguished by

the type of criterion function they optimize and by the technique for minimizing it. Although

there is a large number of graph-based approaches proposed to solve the segmentation problem,

we discuss next the main works done in each category.

3.4.2 Review of graph-based 3D segmentation algorithms

Over the past decades, the problem of 3D segmentation using a graph-based approach has

received significant attention and numerous algorithms have been proposed to solve the problem.

Most of them, however, were designed to partition watertight, smooth, and uniform meshes.

Only a few algorithms handle noisy, unstructured, non-uniform point cloud with holes and

boundaries. We will present the most popular N-D graph-based segmentation algorithms. Each

of the algorithms has different strengths and weaknesses which we will briefly describe here in

the context of raw point cloud segmentation. A summary of the algorithm’s properties is showed

in table 3.1.

Global convergence methods

There are many graph-based segmentation algorithms that fall in this category [SM00, BK04,

BFL06]. Although some of them have formulated the segmentation to a N-D images [BK04,

BFL06], there has been little work done in 3D sampled surface segmentation. The only graph-

based segmentation algorithm that converges toward the global minimum proposed to 3D sam-

pled surface segmentation is the normalized cut algorithm.

Yu et al. [YFM01] adapted the normalized cut segmentation algorithm, introduced in [SM00]

to 2D image segmentation, to partition large unstructured dataset. The normalized cut, or

simply Ncut, segmentation algorithm is widely used in 2D image segmentation, where, for a

given graph bi-partition, the minimal cut can be found as a generalized eigenvalue system,

originated from spectral graph theory. Its well established theoretical basis guarantees the

convergence towards the global minimum of the cost function.

The use of graph-cuts in 3D image segmentation is still limited, due to mainly their high

computational complexity (O(N2)). To overcome this problem, Yu proposed to perform the
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Ncut
[YFM01]

Watershed
and variants
[MW99,
JM07]

MST-based
[ADC07b]

Image
Foresting
Transform
[FSdAL04]

Shape descrip-
tor

Any feature
space

Features
invariant to
rigid trans-
formation

Any feature
space

Any affine
feature space

Post process-
ing overhead

Boarder
and region
refinement

Region
merging

No User interac-
tion

Scalability No Yes Yes Yes

Robustness to
noise

Yes No Yes Yes

Robustness to
non-uniform
sampling

Yes Yes Yes Yes

Number of re-
gions

User-
defined

User-defined Undefined User defined

Convergence Global Local Local Local

Table 3.1: Summary of graph-based segmentation algorithms that partition 3D sampled surfaces.

Ncut segmentation after a pre-processing clustering stage. The clustering stage reduces data

volume up to 40.000 points and it consists in grouping points with similar normal vector and

color variation. After segmentation, a post-processing stage refines both boundaries and regions.

In [YFM01], the graph edges consist of both local neighborhood and random long-range

connections to enforce global context. The edges weight is a mixte distance that takes into

account both Euclidean distance, angular and intensity similarity between points, where the

last two are in the form of a Gaussian distribution. The output regions have unknown shapes

with smooth color and normal variation. One drawback of this graph configuration is the

bias caused by mixte distance, which may reduce the effectiveness of each feature space on the

resulting segmentation. Yu supposes a local Gaussian distribution for both feature spaces, which

is not true when working on the data coming directly from the range system [BMG94]. Even if

the addition of random long-range connections enforces global context, the vertices configuration

also adds to the search space of possible partitions some regions that correspond to non compact

surfaces.

The normalized cut cost function favors the partition of the input dataset into regions with

similar size, or regularly-shaped regions, and this behavior obligates a too fine segmentation to

extract small features. The fact that the number of regions to create is an input parameter in

Ncut algorithm is a strong restriction to incorporate this algorithm into a larger system. Finally,

the necessity of both pre and post-processing in order to treat large amount of data, including

user intervention, is not practical and interferes with the algorithm performance.
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Local convergence methods

The merits of the graph-based segmentation algorithms that converge to the local minimum of

criterion function are that they run in time linear in the number of graph edges, they perform

segmentation directly on large datasets, and their results have acceptable global properties.

These methods do not explicitly evaluate the cut cost to perform segmentation but they evaluate

local graph properties to find boundary evidence. Algorithms in this category are among the

standard segmentation algorithms and there are large amount of algorithms proposed in the

literature [UPH07, CBV98, MW99, PKA03, APFJ+08a, JM07, BJ88, ZY96, AB94, KS00]. We

focus on works done to perform segmentation of 3D sampled surfaces.

Watershed segmentation and variants [MW99, PKA03, APFJ+08a, JM07]. Origi-

nally designed to 2D image segmentation [BM93, RM00], the watershed segmentation algorithm

has become one of the standard techniques to partition triangle mesh surfaces. Mangan and

Whitaker [MW99] proposed a graph-morphology based, bottom-up, algorithm to partition trian-

gle mesh surfaces. There is no explicit energy function to be minimized and they use boundary

evidence to form regions. The original algorithm is designed to provide good segmentations

only for uniform meshes. In [JM07] is presented a variation of [MW99], where it is taking into

account non uniform sampling and they proposed an adaptive threshold selection technique.

The variations of the watershed algorithm [PKA03, JM07] could be directly used to raw point

clouds segmentation by replacing the neighborhood graph over the triangle mesh to structure the

dataset. However, the watershed segmentation algorithm is sensitive to the edges configuration,

since they are used to identify local curvature minima, and even small variations on the neigh-

borhood size can result in completely different segmentations. Even if a post-processing region

merging avoids too fine segmentation, the watershed segmentation algorithm is quite sensitive

to noise because it is restricted to features invariant under rigid transformation, like curvature

and other local shape descriptor, which are not robustly estimated in raw point clouds. Besides

the watershed algorithm performs poorly for ”textured” surfaces such as the Stanford bunny

and dragon.

The Image Foresting Transform (IFT) [FSdAL04]. Falcão et al. [FSdAL04] presented

a region growing segmentation algorithm to N-D images that computes shortest-paths in a

weighted graph to find region boundaries.

The use of shortest-path in vision problems has been extensively studied [Mon71]. Their main

contribution is to formalize the shortest-path approach to allow the construction of spanning

forests of multiple sources, which is essentially Dijkstra’s procedure for computing minimum-

cost paths from multiple sources in a graph [Dij59]. They proved that IFT and watershed

segmentation algorithms were equivalent. They also proved the correctness of their algorithm

to smooth path-cost function, and they set the hypothesis, the limitations and the extensions of

their algorithm. Although they formulated the IFT segmentation to N-D images, there is not

any work done on 3D sampled surface. Like any region growing approach, the IFT segmentation

algorithm rely on the accurate choice of seed points. In the original work, this problem was not
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treated and the seed were taken manually. Although there are various ways to pick these seed

points automatically [BJ88, ZY96, AB94, KS00], this issue becomes critical in raw point clouds

segmentation. This is because of the presence of noise and non-uniform sampling that affects

both feature estimation and graph connectivity.

MST-based raw point cloud segmentation algorithm [ADC07b]. Our graph-based ap-

proach to 3D raw point cloud segmentation belongs to the group of methods that uses the

minimum spanning tree (MST ) to decrease the search space of all possible partitions and the

graph bi-partition is done under boundary evidence. In [FH04] and [XOU96] the original clus-

tering algorithm is adapted to 2D image segmentation. Their experimental results showed that,

although this method converges to a local minimum, it produces segmentation with satisfactory

global properties.

The MST -based is efficient because the search space is restricted to MST edges. Noise

changes the edges configuration on the MST and thus, the search space of possible partitions,

even if it is variant under rigid transformation. Because of its high frequency profile, noise is

explicitly identified on the MST , which prevents too fine segmentation. Surface roughness can

be seen as region with high, but homogeneous, edge variation. The use of an adaptive threshold

allows to correctly extract such surfaces. Compared to the other graph-based segmentation

algorithms, the MST -based has some advantages. First, the segmentation can be performed in

any feature space. Since the normal vector is quite accurately estimated in noisy point clouds,

it can be taken as feature, even if it is variant under rigid transformations. Second, noise and

surface roughness are both explicitly taken into account during segmentation. Finally, like the

other graph-based segmentation algorithms that converge towards the local criterion function,

the MST -based algorithm is applicable to large datasets. In the following sections, the MST -

based segmentation algorithm is further discussed.

3.5 Graph based segmentation of dense, unstructured, 3D point

cloud

In this section we will present a new graph-based segmentation algorithm that produces regions

that verify the region property requirements, introduced in section 3.2. Our work is an exten-

sion of segmentation algorithms using the MST , introduced in [Zah71a] and later improved in

[FH04]. The MST is a tree of the original graph, where, in a noise-free case, the paths of the

MST traverse the entire input dataset passing on the isolevel of feature space. The segmen-

tation procedure consists on traversing the edges in MST looking for boundary evidence. The

solution space of feasible partitions is given by the MST edges configuration. This segmen-

tation definition is coherent since any feasible cut either passes near a isolevel of the feature

space either passes on the boundary between two regions. We define the initial search space of

possible partition as the neighborhood graph GN and the feasible search space of possible graph

partitions is reduced by exploring the MST of GN .
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3.5.1 Overview of the algorithm

Figure 3.4: MST-based segmentation pipeline. From a raw unstructured point cloud to a set of connected
subsets.

We formulate 3D point cloud segmentation as a partition of the neighborhood graph GN

into nonempty subgraphs. The algorithm pipeline is illustrated in Figure 3.4. The input of our

algorithm is an unstructured raw point cloud and our algorithm consists of the following steps:

1. Euclidean neighborhood graph construction. The neighborhood graph, GN , is constructed

to limit the search space of all possible graph partitions to connected subsets in Σ.

2. Edge Weighting. For each point xi ∈ X, there exists a feature value f(xi) and the edges

weights measure the dissimilarity between two connected points, in the feature space. Any

feature can be taken to characterize the point cloud and the edges weights embed the

variation of the local shape descriptors along the surface Σ.

3. MST Extraction. The segmentation is based on the analysis of the MST of GN . The

MST is a sugbraph of GN connecting all nodes in GN . There are two important MST

properties exploited on the segmentation. First, the MST is the tree covering the entire

dataset with minimal cost. It means that any edge (xi,xj) ∈ MST is aligned, or points

towards, the isolevel of I at xi,xj . Second, any edge (xi,xj) ∈ MST defines uniquely one

cut on the neighborhood graph, and consequently, it defines one possible partition.

4. Recursive cutting. The solution space of feasible partitions is composed by the cuts defined

by the edges (xi,xj) ∈ MST . The MST is recursively traversed, and, at each iteration,

the edge (xi,xj) ∈ MST with wmax, likely to be on the regions boundaries, is evaluated.

A defined homogeneity predicate must be hold false in order to bi-partition the graph in

(xi,xj). The segmentation stops when all regions verify the homogeneity predicate.

Each step of the algorithm has different assumptions, complexity, and different strengths and

drawbacks. In the following sections, we will detail each of these steps and their role in the

segmentation.
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3.5.2 Invariance of the MST through graph bipartition

The minimum spanning tree was an early approach in many computer graphics applications, such

as clustering [Zah71a], 2D image segmentation [FH04] and feature lines extraction [PKKG03].

We will present the definition and properties of theMST -based segmentation algorithm and how

it reduces the search space of all possible partitions to a smaller subset of more likely partitions.

Definition

Consider a weighted graph G = (V,E,W ). The minimum spanning tree MST , defined by the

subgraph ΓG ⊂ G, is a tree subgraph covering the entire dataset and ΓG is such that the sum of

edge weights is minimum. As a skeleton of a data set, the MST has some particular properties.

First, ΓG is a sparse graph, since it has only N−1 edges, for N nodes, and the paths � ⊂ ΓG form

no cycles. Second, the tree with minimal cost can be seen as a set of paths that remain aligned

with, or point towards, the closest isolevel of I, where I is the feature space. Such properties

are illustrated in Figure 3.5. In this example, the feature space is the z coordinate and the

similarity function is set as the Euclidean distance between points z coordinate. Observe how

the MST paths are aligned with the isolevel of the z coordinate.

Figure 3.5: The Minimal spanning tree is constructed by trying to connect points in order to remain in
a same isolevel of I. In this example, the feature space is the z coordinate and the similarity function
wi,j is set as the Euclidean distance between points z coordinate.

From the MST minimal cost property, there is no guarantee of the uniqueness of the minimal

spanning tree connecting points within X, since multiple trees of minimal cost can be found.

As will be later discussed, an edge rearranging in ΓG will change the search space of feasible

partitions and the segmentation is sensitive to this rearranging.

Fundamental property

One important MST property is that any edge (xi,xj) ∈ ΓG determines a unique cut on GN ,

and, by removing this edge, it results in a partition of G into two disjoint subsets with their

associated MST s. The next theorem enunciates such property.

Property 3.5 Given a connected graph G and its MST ΓG, by removing any edge (xi,xj) ∈ ΓG,
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it is generated two disjoint spanning trees, which are the MST s of the subsets obtained by the

partition of the original set.

Proof: This property can be summarized as follows. Let G′ = (V ′, E′,W ′) be a subgraph of G.

All edges of the ΓG that link the nodes V ′ ⊂ V also belong to ΓG′ . In other words,

(xi,xj) ∈ ΓG ⇒ (xi,xj) ∈ ΓG′ (3.6)

Equation, (3.6) can be written as:

(xi,xj) /∈ ΓG′ ⇒ (xi,xj) /∈ ΓG (3.7)

Let ΓG′ be the MST of the subgraph G′ = (V ′, E′,W ′). P is the partition of G′ into two

non-empty disjoint subsets A ⊂ V ′ and B ⊂ V ′, with A ∪B = V ′ and A ∩B = ∅.
Let (xa,xb) be an arbitrarily crossing edge, with xa ∈ A and xb ∈ B. Suppose that (xa,xb)

is not the minimal crossing edge of the partition P. In other words, suppose that

∃(xa,xb) /∈ ΓG′/

⎧







⎨







⎩

∃xi ∈ A

∃xj ∈ B

wi,j < wa,b

(3.8)

Now, consider the partition Q of G into two non-empty disjoint subsets A and C = V ∖A,
with A ∪ C = V and A ∩ C = ∅. Since E′ ⊆ E, we have that the edges (xa,xb) and (xi,xj) are

also crossing edges of the partition Q, where xa,xi ∈ A and xb,xj ∈ C. Thus, the edge (xa,xb)

cannot be the minimal crossing edge of the partition P, and, consequently, (xa,xb) /∈ ΓG, and

the theorem is proved.

The MST connectivity and minimum cost properties allow us to define the search space

of the MST -based segmentation algorithm. Let G be any graph and the search space of all

possible partitions is given by {P}. The search space of more likely partition is defined as the

subset {P ′} ⊂ {P} obtained by removing edges (xa,xb) ∈ ΓG. The size of this search space of

feasible partition is reduced to N − 1, the number of edges in ΓG, that is equal to the data size.

Observe that this definition is independent of the datas dimension or the similarity function.

Once the search space is established we will show how the segmentation is performed and the

cost function we aim at minimizing. Once the search space is established we will show how the

segmentation is performed and the cost function we aim at minimizing.

Minimum spanning tree recursive cut

One property of the MST is that the paths � ∈ ΓG traverse the entire input dataset passing on

the isolevel of feature space. It means that edges between two vertices in the same component

should have relatively low weights, and edges between vertices in different components should

have higher weights. When one path passes from one isolevel to another, or from one region to
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another, a larger edge weight variation is expected connecting these two parts. In a noise-free

case, there is a unique edge in ΓG connecting two regions, or two isolevels. Thus, the basic

assumption of a MST -based segmentation algorithm is that edges with large weight cost in ΓG

are likely to be on a boundary between two regions. This situation is illustrated on Figure 3.6.

Observe in Figure 3.6(a) that the edges weight within a region are similar and connecting two

different regions have larger costs. In the MST colormap (Figure 3.6 (b)) is observed that paths

passing through edges with lower weight cost is preferred and there is only one edge, with large

weight cost connecting two different regions. Segmentation removes such edges in order to form

regions with homogeneous edges weight cost.

(a) Neighborhood graph col-
ormap

(b) MST colormap

(c) Final segmentation

Figure 3.6: Segmentation through boundaries evidence.

Let Ri and Rj be two neighbor regions obtained from a bipartition of G. From the subset

of edges belonging to the cut, connecting points in the two distinct regions, we characterize the

cut by the minimal difference distance, Difmin(⅁(Ri, Rj)), which is the smallest edge weight on

the cut :

Difmin(⅁(Ri, Rj)) = min
(xa,xb)∈⅁(Ri,Rj)

wa,b (3.9)

Necessarily, the edge (xa,xb) = arg(Difmin(⅁(Ri, Rj))) must be in ΓRi∪Rj
and it con-

nects different regions, or different isolevels. If there is no edge connecting Ri and Rj we

set Difmin(⅁(Ri, Rj)) = ∞.

Under such assumptions, the segmentation is performed by traversing the edges in ΓG looking
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for boundary evidence. Graph partition is done by removing such edge when boundary evidence

is confirmed. Such segmentation is coherent since any feasible cut P ′ passes near a isolevel of I

or passes on the boundary between two regions.

The segmentation based on boundary evidence takes into account only edges in ΓG, not

considering the cut cost between any potential partition. The MST -based segmentation is es-

sentially the MST extraction, using Prim’s algorithm [Pri57], followed by its recursive traversal.

The algorithm produces a set of disjoint subgraphs, where the MST of each subgraph veri-

fies a homogeneity predicate. We will use an adaptive threshold as homogeneity predicate that

compares the boundary evidence Difmin(⅁(Ri, Rj)) to the edges within the regions. This homo-

geneity predicate is adaptive with respect to the local characteristics of the data and produces

homogeneous regions with bounded edge variation.

Although we use a top-down segmentation approach, the MST -based segmentation algo-

rithm can be implemented in a bottom-up fashion. The last approach was adopted by Felzen-

szwalb and Huttenlocher in [FH04], where the segmentation is performed at the same time with

the extraction of the MST . This approach is much more efficient because it traverses the entire

dataset only once, while in top-down approach, the MST of a region is traversed each search

for boundary evidence.

MST reconfiguration caused by noise

Noise affects both feature estimation, graph connectivity, and, consequently, the MST edges

configuration. Therefore, an intrinsic property of the MST -based segmentation is that the

search space of possible partitions is highly sensitive to noise. If segmentation is performed on

raw point clouds without any pre-processing, such behavior is unavoidable.

The edge cost, w, is a differential function which amplifies the noise in a small area around

the noisy point. Thus, the MST -based segmentation algorithm usually interprets noisy edges as

a boundary evidence. However, noise has a small and limited range of influence on neighborhood

graph weighting. It means that it is expected larger weight cost on edges leaving noisy points,

compared to other nearby edges. As a consequence, these noisy points are the naturally placed

in leaf nodes of the MST , since any path passing through noisy points neighbors have higher

weight cost. We assume that noise does not change considerably the search space of partitions,

since we perform segmentation on dense, large datasets, and the noise has only a local influence

on the MST configuration.

There are two possible strategies to make the MST -based segmentation algorithm robust

to noise: build a pseudo MST , more robust to noise than the original MST , or filter noise

during segmentation. The first strategy, proposed in [CZ05] and used in [Unn08], combine

multiple MST s from the same graph in order to reduce their sensitivity to noise. They exploit

a perturbed minimum spanning trees (PMST ), which is the MST extracted from the point

cloud, when this last is corrupted by a known noise model. Finally, the original MST update

the edges weight according to the frequency these edges appear in different PMST s. A second

robust MST construction, called disjoint minimum spanning tree (DMST ), is inspired on the

Kruskal’s minimum spanning tree algorithm and construct successively the graph MST , where
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at each construction the edges from the previous MST are removed on the original graph.

At the end, it is manipulated a deterministic collection of t MST s, where t is the number of

MST s. Both MST construction strategies results in a pseudo MST more robust to noise than

the original MST . We say a pseudo MST because the resulting tree is not necessarily the

one minimal cost. However, the algorithms to construct robustly the MST are both time and

memory consuming, limiting their use to large datasets.

Our strategy to handle noise consists in using the original, noise affected, MST and, during

segmentation, separately process noise and boundary. From the property that noisy points

are placed in the leafs of the MST , and it leads to the segmentation of the data into small

and meaningless subsets. We solve this problem by setting a minimal region size. By using

this strategy, we actually set the maximal noise influence on the MST configuration, and we

minimize the noise effect on the segmentation. In our approach, we set the minimal region size

as proportional to the number of samples, and it is an user-defined input parameter.

3.5.3 Criterion function and homogeneity predicate

The MST -based segmentation algorithm is driven by the assumed knowledge of a homogeneity

predicate P̄ . It identifies correct partitions by comparing boundary evidence to within regions

feature variation. In this section we propose a homogeneity predicate P̄ based on an adaptive

threshold. The motivation for the threshold selection process described here is derived from

[FH04] and [JM07].

Consider the regions extracted throughMST -based segmentation. Such regions are obtained

by removing some edges from the MST . Given a partition P ′ = {R1, ⋅ ⋅ ⋅ , Rn}, each region

Ri ⊂ V is characterized by the Maximal internal difference, which is the largest edge weight in

ΓRi
:

Difmax(Ri) = max
(xa,xb)∈ΓRi

wa,b (3.10)

This measure relies on the properties of the tree connecting points within a region. The

criterion function we want to optimize is the the Maximal internal difference within a region.

The segmentation procedure is defined as the partition P that extremes this Difmax(Ri). For

this purpose, we define a region comparison predicate P̄ , which is an adaptive thresholding that

evaluates the evidence of boundary between potential regions and feature homogeneity within

regions. It is given by:

P̄ (Ri, Rj) =

⎧

⎨

⎩

True if Difmin(⅁(Ri, Rj)) > �i,j

False otherwise
(3.11)

where �i,j is the threshold . In the standard MST -based segmentation, �i,j is a constant that

can be either user defined either computed from the dataset. We use the adaptative threshold

�i,j , proposed in [FH04], which is defined as:

�i,j = min

(

Difmax(Ri) +
�min

∣Ri∣
, Difmax(Rj) +

�min

∣Rj ∣

)

(3.12)
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where �i,j is an adaptive data-driven parameter and it bounds the edges weight variation along

the paths within Ri and Rj . The parameter �min controls the minimal region size and the degree

Difmin(⅁(Ri, Rj)) must be greater than Difmax(Ri) and Difmax(Rj) so the region comparison

predicate holds true and the partition is performed. Felzenszwalb and Huttenlocher in [FH04]

have proved that the segmentation produced using an adaptive threshold obeys the properties

of being neither too coarse nor too fine.

The parameter �min is estimated as follows. Given the point cloudX, we compute a histogram

of the edges weights. This histogram is an approximation of the probability density function

(pdf) that represents the variation of the descriptor over the region. We choose �min as the value

on the p.d.f. function that guarantees to cover K% of the input edge set.

One very important property of the regions constructed under the predicate (3.11) is that

these regions are homogeneous in the feature space. The consequence of such property is that

regions can be equally homogeneous according to (3.11) but have different feature dynamic

within the regions. Such behavior is illustrated in Figure 3.7. Although all regions respect the

homogeneity predicate, the have distinct shapes and feature dynamics.

Figure 3.7: Homogeneity predicate. Segmentation of an object using a fixed partition threshold with
�i,j = �min. Every region is homogeneous according to the edge weight cost, but different regions have
distinct shape and feature distribution.

3.5.4 Mathematical formulation of a region

In this section, we introduce a mathematical formulation of a region derived from the MST -

based segmentation and we discuss its properties. We will use this region definition to prove that

it respects the segmentation properties (definition 3.1) and it optimizes the criterion function

(3.10).

Region definition and properties

We want to model the segmentation in terms of points connectivity and their similarity in some

feature space. The MST -based segmentation algorithm can be done in any N -dimensional

feature space. First, we define a region as a set of points connected by a singular tree, as follows:
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Figure 3.8: Region and boundary definition. Given a unstructured raw point cloud, the segmentation
produces a set of disjoint regions and boundaries between regions.

Definition 3.13 Lets x0 be a point in X. The region Ri

Ri = {x0,x1, ⋅ ⋅ ⋅ ,xn} ⊆ X (3.14)

is defined as the biggest subset of X in which points within Ri respect the following conditions:

1. Seed point: x0 ∈ Ri is called seed point and it is the origin of any path � ⊂ ΓRi
.

2. Homogeneity: any path � ⊂ ΓRi
must respect Euclidean distance constraint and feature

homogeneity:

∀xk ∈ X, xk ∈ Ri ⇔ ∃� = (x0,x1, . . . ,xk) ⊆ ΓRi
,

with ∀j ∈ [0, k − 1]

⎧

⎨

⎩

∥xj − xj+1∥ < ri

wj,j+1 < �i

(3.15)

3. Connectivity: an unique tree ΓRi
connects all points within Ri.

The parameter ri incarnates the Euclidean spatial distance constraint between two points

and this parameter is fundamental to guarantee that connected points in Ri represent connected

surfaces in Σ. The parameter �i characterizes the homogeneity predicate in feature space. This

parameter limits the maximal magnitude of wj,j+1 and it also sets the equivalence relation

between points within a region. If, for example, we set �j,j+1 → 0, a region will be ”flat” in

feature space. The control parameter �j,j+1 can be either set constant [Zah71b] or adaptive

[FH04].

This region definition also emphasizes a singular point that plays an important role for the

region Ri: the seed point xi. In fact, this is only a consequence of our formalization. Actually,

any point of the region can be taken as seed point. This is demonstrated in the following

property.

Property 3.16 Let Ri ⊂ X be a region. Any point xj ∈ Ri can be taken as seed point of Ri.
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Proof 3.17 Let Ri ⊂ X be a region. Suppose that x0 ∈ Ri is the seed point of Ri. Given any

two points xa,xb ∈ Ri, we have from definition (3.15) that

∃� = (x0, . . . ,xa) ⊂ ΓRi
, such that ∀j ∈ [0, a− 1]

⎧

⎨

⎩

∥xj − xj+1∥ < ri

wj,j+1 < �i

and

∃� = (x0, . . . ,xb) ⊂ ΓRi
, such that ∀j ∈ [0, b− 1]

⎧

⎨

⎩

∥xj − xj+1∥ < ri

wj,j+1 < �i

are hold true.

The path (xa, . . . ,xb) can be expressed as the union of the two paths (xa, . . . ,x0) and (x0, . . . ,xb).

Since the distances ∥xj − xj+1∥ and wj,j+1 are symmetric, we obtain

∀j ∈ [a, b− 1]

⎧

⎨

⎩

∥xj − xj+1∥ < ri

wj,j+1 < �i

Hence, any point xa ∈ Ri can be taken as seed point of Ri.

Do these regions define a segmentation ?

In the previous section, we introduced a region definition based on the construction of paths

connecting points within the region, and respecting some connectivity and homogeneity condi-

tions. In this section we will show that the region defined in (3.15) actually forms a partition of

X and respects the segmentation properties defined in 3.1.

To prove that {Ri} is a partition of X, we must show that:

1. ∀Ri ∈ X,Ri ∕= ∅: because each region Ri contains at least the seed point used for its

construction, this property is respected.

2.
∪

Ri = X: each point belongs to, at least, one region, since it can be used as a seed to

build the region.

3. ∀Ri, Rj ∈ X,Ri ∩ Rj = ∅: if two regions Ri and Rj have a non empty intersection, then

at least one point x0 belongs to both of them. In this case, a path can be defined between

any two points from Ri and Rj via x0 and this path would respect the constraints given in

equation 3.15. Thus, Ri and Rj cannot be regions of X, because they violate the definition

of region as the biggest subsets of X respecting this constraint.

4. Any region Ri ⊂ X is a ri-connected : given any two points xi and xj in Ri. We can

consider xi as the seed point of Ri. Thus, by definition of the region, we can define a

path inside Ri between xi and xj where the distance between two consecutive points of

the path is less than ri.

If we consider the properties of partition and ri connectivity of the regions, the definition

given in 3.13 fulfills all the requirements given by Hoover to define a segmentation. We turn



92 Chapter 3. Segmentation of unstructured raw point clouds

our attention now to the problem of using the MST -based segmentation algorithm presented to

partition dense, raw point clouds. We will then present how the graph is constructed from an

unstructed dataset and how it is defined the feature space and the similarity measure between

nodes.

3.5.5 Building the graph from raw point clouds

The input data to this problem is a 3D raw point cloud. In order to use the MST -based seg-

mentation framework to partition this unstructured point cloud, we must represent the dataset

as a undirected weighted graph. Besides points connectivity, other information are encoded in

the graph, like feature and the similarity values, which must be defined. In this section, we

will present how we build this graph, and which feature space and similarity functions are used.

Once they are defined, we can infer the segmentation properties in terms of robustness to noise,

number and size of regions.

Building the neighborhood graph

(a) r = 1.0 (b) r = 3.0 (c) r = 6.0

Figure 3.9: Influence of the neighborhood size on segmentation. Example of segmentations when the
only parameter that varies among these results is the neighborhood size. In this example, it was used the
ball neighborhood system to build the neighborhood graph.

Given an unstructured 3D point cloud X, the first step towards establishing the search space

of all possible segmentations, through the graph G, is the definition of the edge set E. The edge

set embeds points connectivity through points proximity in some feature space.

One common approach to build is based on mapping each point to some feature space,

and then finding clusters of similar feature value. In this case, the graph G = (V,E) has a

node corresponding to each point and there is an edge (xi,xj) connecting pairs of points xi

and xj that are nearby in the feature space, rather than using neighboring points in Cartesian

space. Segmentation then produces regions that are connected in feature space, but they do not

necessarily represent compact surfaces in Σ.
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We consider a construction approach. It consists in building the edge set by connecting

neighboring points in Cartesian space and setting the edges weight as a similarity measure

between points in some feature space. In this case, segmentation not only produces regions that

respect some homogeneity predicate in feature space, but also these regions represent compact

surfaces in Σ.

We assume that the point cloud is "-dense and �-noisy, where (" + �) is estimated as pro-

portional to the mean local sampling spacing over the input dataset. Although any symmetric

neighborhood system can be taken, we choose the ball neighborhood system because it avoids

the connection between points from different surfaces and between outliers. The ball neighbor-

hood system is also preferred to restrict the search space to monolithic regions. To this end, the

neighborhood size, given by the sphere radius r, is set proportional to ("+ �), and we obtain a

sparse graph. The neighborhood size determines the search space of all possible partitions, since

the search space is proportional to the edge set size. Too small neighborhood size results in a

small set of possible segmentations, but it restraints local homogeneity analysis to a small area,

which makes the algorithm sensitive to noise. Too big neighborhood size, oppositely, enforces

global information on the graph, is more robust to noise. However, too big neighborhood size

also increases the number of possible segmentations, and it adds to the search space some non-

monolithic regions as possible solutions. Figure 3.9 shows some segmentations when the only

parameter that varies among these results is the neighborhood size.

Feature space and dissimilarity function

(a) (b) (c)

Figure 3.10: Example of segmentations in different feature spaces. Points within a region are homoge-
neous according to (a) normal variation (c) Gaussian curvature variation.

The weighting function w : X × X → ℝ+ is used to edge weighting (xi,xj) ∈ E and it

determines the feature space in which the segmentation is performed. The weight wi,j over an

edge (xi,xj) is a local measure of how likely the points are to belong to the same region. For

a normalized dissimilarity function, when the weight cost wi,j is close to 0, the points xi and

xj are likely to belong together, since they are close to each other in the feature space. On the

other hand, when the weight cost wi,j is close to 1, the points xi and xj are likely to belong to

separate regions, as judged purely from local evidence.
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The weighting function w is estimated comparing feature value at a point xi with its neigh-

bors. For features that are invariant under rigid transformation, we use the Euclidean distance

between points in feature space as the edge weights. In this case, we consider only the case

of one dimensional feature space, since multi dimensional feature spaces have usually different

abstraction levels and types, their vicinities are relative to different scales of interests, and the

use of mixte distance results in bias problem. Example of possible features are local curvature

[HJBJ+96, ULVH06a, FJ89] and normal cones [ADC07a]. These features measure how gently

or strongly curved a surface is at point, and, as outlined in the previous chapter, the quality of

these estimates depend on the accuracy of the input data as well as the method used to compute

them.

When the feature is the normal vector, which depends on the reference frame, we define

the dissimilarity function as the angular difference in the case of normal orientation, wi,j =

∠(xi,xj). As showed in the previous Chapter, the normal estimation is quite accurate even when

the data is corrupted with noise, which is the case of raw point clouds. Thus, this similarity

function provides a reliable measure of the local surface curvature, and it is used in most of the

experiments showed in this Chapter.

To illustrate the influence of the feature space and the dissimilarity function on the segmen-

tation, in Figure 3.10 we show two segmentations when the similarity function is computed in

different feature spaces. The similarity functions were the angle between the normals (Figure

3.10 (a)), when the cost function is set as wi,j = ∠(xi,xj), and the Euclidean distance in Gaus-

sian curvature space (Figure 3.10 (c)), when the weight function is set as wi,j = ∥K(xi)−K(xj)∥.
Observe that, even though both feature spaces consist of local shape descriptors, the segmen-

tation does not produce the same regions. This is because the information embedded in each

feature space are not equivalent. While differences between normals is proportional to local

curvature amplitude, Gaussian curvature provides convexity/concavity information.

In the case where any other feature space is more relevant and more discriminant than local

shape feature spaces, it is preferred in the mapping function. For example, some acquisition

systems provide color or/and texture information, and for sampled surfaces with poor geometric

information, or high symmetry, such color spaces are preferable. Other possibility, frequently

used in segmentation community, is to approximate the similarity function as an approximation

of a statistical distribution and the use mixed similarity functions [JBM+00, BFL06, YFM01].

In fact, region homogeneity predicate relies on the assumption that the path cost function is

monotonic-incremental, which satisfy:

s(� ⋅ (xi,xj)) ≥ s(�) (3.18)

s(� ′) ≥ s(�) ⇒ s(� ′ ⋅ (xi,xj)) ≥ s(� ⋅ (xi,xj)) (3.19)

(3.20)

where � is a path, s(⋅) is the path cost function, and � ⋅ (xi,xj) is the concatenation of two paths.

This property guarantees that, by removing an edge (xi,xj) ∈ ΓG, the cost of the resulting
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ΓG is reduced. Such property is the basic assumption of MST -based segmentation, where

region homogeneity is achieved by removing edges in ΓG that connect different isolevels in I.

A counterexample of weight cost function that is not monotonic incremental, which causes the

segmentation to fail, is when the edges weight are allowed to be negative.

Segmentation properties

We now turn to the complete raw point cloud segmentation algorithm. We resume the main

properties of the algorithm and we want to show that, although the algorithm makes only greedy

decisions, it produces a segmentation that satisfies global properties.

Region homogeneity. The MST -based segmentation algorithm produces regions that ex-

tremizes the criterion function (3.10). The criterion function, defined by the Maximal internal

difference, Difmax(Ri) (3.10), is a smoothing parameter that specifies the minimum radius of

dilatation, in the feature space, necessary to connect points into the same region. Similarly, the

homogeneity predicate, P̄ (Ri, Rj) (3.11), specifies the minimum radius of dilatation necessary to

connect, at least, one point from Ri to one point from Rj . This interpretation is close related to

the mean shift method [CM02], which is a non-parametric “feature space analysis” segmentation

algorithm. In [CM02], a similar dilatation approach is used to group points in feature space,

where points are grouped if they are up to a kernel radius apart from the same mode of the

probability density function (p.d.f.) in feature space. The difference between these approaches

is that our approach is less sensitive to input parameters than the mean shift approach [UPH07].

Finally, the regions are represented by a set of paths aligned to the isolevel of I, where

the homogeneity predicate (3.15) is verified over this path. For small neighborhood size, these

regions represent a compact surface in Σ.

Input Parameters. There are three input parameters in our segmentation algorithm: the

neighborhood size, r, the minimal partition cost, �min, and the minimal region size. The neigh-

borhood size, or the sphere radius r, is taken proportional to the average sampling spacing. The

minimal region size is taken as a constant proportional to the point cloud size, which varies in

the range [0, 100%]. The threshold is taken as the value on the p.d.f. function that guarantees

to cover % of the input edge set, and it varies in the range [0, 100%].

Number of regions. The MST -based segmentation algorithm produces an undetermined

number of regions. The parameter �min is the factor that influences the quantity of regions, and

consequently, the level of details extracted.

Robustness to noise. Although the segmentation algorithm makes greedy decisions and the

dataset partition is done according to local feature analysis, the influence of noise in the MST

configuration is well established, as presented in section 3.5.2. We assume that the dataset is

dense and the influence zone of noise is limited to a small area and it does not change the global

topology of the MST , thus preserving the boundary edges. Since noisy points are placed on
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leaf nodes in the MST by setting an appropriate value for the minimal region size, their effect

on the final segmentation is minimized.

Scalability. The memory cost of our MST -based segmentation algorithm consists basically

on the neighborhood graph, GN , construction, that requires O(mn), where m is the number

of edges and n the dataset size. Since the segmentation consists in recursively traversing the

MST , the running time of the segmentation algorithm can be done in O(n logn) in an efficient

implementation [FH04].

3.6 Evaluation of the algorithm

(a) (b) (c) (d)

Figure 3.11: Too fine, too coarse and neither too fine nor too coarse segmentation. Given a point cloud
(a), a data-driven segmentation can be classified as: (b) neither too fine nor too coarse, (c) too fine and
(d) too coarse.

We demonstrate our MST -based segmentation algorithm on several generic examples. The

main goal is to prove the correctness and the robustness of the segmentation algorithm when

partitioning scans raw point clouds. We show the original data and segments generated by

our technique for a given set of input parameters. We present segmentation results in different

formats, depending on what is more appropriate in each case.

Before we show the experimental results, we will define the criteria used to evaluate a seg-

mentation. Since there is no assumption about the surface models composing the scene, it is

impossible to determine a consensual segmentation ground truth. The segmentation rarely cor-

responds perfectly to objects. These relationships between segmentation regions and objects

can vary with the algorithm’s parameters, with the point cloud used, in fact they can even vary

within a point cloud. As a consequence, the segmentation produced by data-driven methods

cannot be evaluated as the model-driven approaches. The segmentation is classified according

to the level of details associated with regions, and they fall into three categories [FH04]: neither

too fine nor too coarse, too fine and too coarse segmentation. A segmentation is too fine (Figure

3.11 (c)) if there is some pair of regions R1, R2 ∈ P for which there is no evidence for a boundary

between them. Oppositely, a segmentation is too coarse (Figure 3.11 (d)) if there exists a proper

refinement of P that is not too fine.

Figure 3.12 shows the results of our segmentation algorithm on various point clouds. The
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Segmentation results for a variety of point clouds.

results show the main properties of theMST -based segmentation algorithm, which is to generate

regions of arbitrary shapes and to partition under boundary evidence. The feature space is the

normal vector and the criterion function to be optimized is the angle between normals. The

scenes represent a variety of surface types, from CAD geometric models, to free-form, man-made

objects and roughness surfaces. Note that, in the case of the synthetic data, composed only

by planes, the MST -based data-driven segmentation algorithm agrees with the segmentation

ground truth. For the other scenes, they were taken by different acquisition systems, with

different sampling density and noise model, and we verify the property of the algorithm to

partition regions that represent compact surfaces, the roughness surfaces do not cause too fine

segmentation, neither ill-defined boundaries causes too coarse segmentation.

3.6.1 Performance evaluation

To evaluate the MST -based segmentation algorithm for the characteristics proposed in section

3.2, we perform a set of experiments on both synthetic and scans. To measure the correctness

of the algorithm, we will generate multiple segmentations of each point cloud with multiple

parameter settings. For each point cloud, the segmentation that best corresponds to a neither

too fine nor too coarse segmentation is an approximation of the best performance possible.

The first experiment examines the parameter stability of the segmentations produced by the

the MST -based algorithm with all possible input parameters configuration. Since we are only
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interested in segmentations that produce regions representing compact surfaces in Σ, we set the

neighborhood size fixed as three times the average sampling spacing.

Figures 3.13 and 3.14 show the results of our MST -based segmentation algorithm on a

synthetic point cloud. In Figure 3.13 (a) is showed the curvature colormap, and Figure 3.13 (b)

is showed the edges weight colormap of the neighborhood graph. In Figures 3.14 (a), (b), (c),

are illustrated three segmentations using different parameters. Looking at the graph in Figure

3.14(d), that shows the resulting number of regions for a set of all possible input parameters,

we can observe the interval of the parameter where the segmentation is neither too fine nor too

coarse is quite large for this model.

(a) Curvature colormap (b) Graph edges weight colormap

Figure 3.13: Synthetic dataset used to evaluate parameter stability.(a) Curvature colormap and (b)
graph edges weight colormap.

In Figure 3.15 we show the results when the same input parameters are used to segment

three raw point clouds. The Bali scans are from our database, and they were acquired using

the Breuckman TRITOS HE 100 (60x60x3 �m resolution). They are noisy point clouds, large

dataset (about 300.000 point per scan), and with color information. The region homogeneity

predicate was set as a hard threshold, and the partition was performed when the edge weight in

the MST was above 5 degrees. We did not constraint the minimal regions size. It is observed

missing data, holes, noise and outliers in every scan. Looking at the segmented regions obtained

on all three segmentation and comparing them, we can notice that the algorithm is repeatable,

once it generates similar regions, with similar feature variation, for equivalent surfaces. The

differences observed in the obtained regions were mainly due to missing data. We can also

notice that details in different scales were correctly extracted by our algorithm. Some small

and meaningless surfaces are generated especially because of boarder points. These points have

generally smaller density compared to the rest of the point cloud, and consequently, local shape

descriptor estimation is less accurate over the entire region, and it is not recognized by our

algorithm as noise.

3.6.2 Comparison with related graph-based segmentation methods

A comprehensive comparison of our algorithm with all the existing state-of-the-art approaches

is beyond the scope of this thesis. From the 3D segmentation literature, we selected the Ncut
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(a) (b) (c)

(d)

Figure 3.14: Influence of the parameters on the segmentation results. We show the parameters intervals
where the algorithm produces too coarse, too fine, and neither too coarse nor too fine segmentations.

algorithm for evaluation purposes, primarily because it is also a graph-based approach and,

contrarily to our approach, they guarantee to converge towards the global minima of the criterion

function. We use the original Ncut segmentation algorithm designed to 2D image segmentation

[SM00], instead of its extension to 3D point cloud segmentation [YFM01]. This choice was

motivated by the fact we aim at comparing the performance of the algorithms without any

pre or post processing. Besides, we want to take the same input graph in both segmentation

algorithms, and thus the same search space of possible partitions. The drawback of using the

original Ncut is that it limits the segmentation to only small models (up to 10.000 points).

The input parameters for the MST -based segmentation algorithm are set �min = 40% and

minimal region size is 1% of the point cloud size. The input parameter of the Ncut segmentation

algorithm is the number of regions. We set this parameter as the number of regions generated

by our MST -based segmentation algorithm.

In Figure 3.16 is showed some segmentation results for two synthetic point clouds. These
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(a) (b) (c)

(d) (e) (f)

Figure 3.15: Parameter stability and scalability evaluation. (a), (b), (c) Original point clouds and (d),
(e), (f) their respective segmentations. The feature space considered was the angle between normals and
a hard threshold is taken as the partition criterion.

results clearly outline the properties of both graph-based segmentation algorithms, their simi-

larities and their differences. In Figure 3.16 (a), (b), the segmentation are quite different from

each other. While the MST -based segmentation algorithm tries to find a partition of a weighted

graph under boundary evidence, the Ncut approach aims at finding the optimal partition that

produces regions of similar sizes. In Figure 3.16 (b) we observe the main drawback of the Ncut

segmentation algorithm: the optimal cuts not always follow the surface boundary, since the

noiseless plane is partition into four regions and the high small feature on the top face is not

break into two, as expected.The segmentation results in Figure 3.16 (c), (d) agree, since the

point cloud is partition into two regions of balanced sizes.

In Figure 3.17 we show some visual comparison of segmentation results obtained with the

methods Ncut, two watershed variants and ours. The Stanford Bunny dataset is a complex

model, because of the presence of roughness regions and the smooth boundaries that can in-

duce an ambiguity in boundary evidence evaluation and, consequently, the ”leaking” effect.

Re-sampling reduces the size of the Stanford Bunny dataset to 7.000 points. The normals are

estimated from the triangle mesh representation. The input parameters for the MST -based

segmentation algorithm are �min = 40% and minimal region size is 1% of the point cloud size.

Although our MST -based segmentation algorithm converges towards the local minimum, it ex-

tracted meaningful regions that satisfy global properties (Figure 3.17 (a)). However, because

of the surface roughness, the region boundaries of our segmentation have irregular shapes, and

we can observe the ”leaking” effect on the right ear. Again, the Ncut segmentation algorithm

produced regions that do not follow the shape natural boundaries, like the tail, and the segmenta-
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(a) MST -based: 21 regions (b) Ncut: 21 regions (c) MST -based and Ncut: 2 regions

Figure 3.16: Comparison between MST -based and Ncut segmentation algorithms on a synthetic noise-
less dataset. (a), (c) The MST -based segmentation and (b),(d) the normalized cut segmentation results.

tion extracted only the global shape structure (Figure (b)). Both watershed variants performed

poorly on this dataset, mainly because of their inability to handle ”textured” surfaces (Figures

3.17 (c),(d)). The results of watershed algorithm were taken from two variants [PKA03, JM07],

and there is no control about their input parameters.

Figure 3.18 shows the segmentation using the MST -based and the Ncut algorithms when

the input data is heavily corrupted with a zero mean Gaussian noise. We can observe that both

algorithm performed poorly. The noise affects not only the neighborhood graph connectivity,

but also the feature estimation. This effect is amplified by the fact the data is sparse. The

instability of the MST -based segmentation is observed mostly on the ”texture” surface, where

the boundary is hardly detected, and more regions are generated for the noisy model, from 12

to 14 regions. However, the Ncut algorithm, even if the number of regions remains the same,

produces a segmentation far from the noiseless case.

3.6.3 Application of the algorithm to other datasets

The MST -based segmentation algorithm can be applied to any N -dimensional image. Volu-

metric images, for example, are commonly obtained from devices such as CTs and MRI. It is

composed by a set of 2D images, grouped in layers in order to form the volume. Point coordinate

pi = (x, y, z)T is directly obtained by image pixel coordinate and the relation between successive

image layers. Gray level embeds material properties. Segmentation breaks the input image into

volumes, where each region has an homogeneous material property.

If we consider time as a third dimension in our neighborhood graph, the method can be

extended to video sequence segmentation. The initial dataset is indeed composed of a video

stack. The problem with this approach is the sampling frequency inconsistency between spacial

and temporal dimensions. To overcome this difficulty, we set the time step to one. This extension

can only be envisaged when dealing with offline video segmentation because all the pixels must

be available for the neighborhood graph construction.

Figure 3.19 shows the original and segmented frames of a video sequence [Ohi]. Note that

the texture on the background did not caused too fine segmentation. This kind variability is
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(a) MST -based: 12 regions (b) Ncut: 12 regions

(c) Watershed variation [JM07] (d) Watershed variation [PKA03]

Figure 3.17: Comparison between the MST -based, the Ncut and the watershed segmentation algorithms.
Segmentation results when segmentation is performed using the (a) MST -based, (b) the normalized cut,
and two variations of the watershed segmentation algorithm (c), (d).

handled by choosing a large neighborhood size and the adaptive threshold.

3.7 Conclusions

In this chapter we have proposed an algorithm for raw point cloud segmentation. We have

established a set of requirements necessary to any segmentation algorithm in order to produce

useful and predictable results. We consider five main properties: correctness, stability with

respect to parameter choice, robustness to noise, scalability and data-driven. We propose a

taxonomy for 3D segmentation algorithms, taking into account both criterion function to be

optimized and the technique used. Among all segmentation algorithms, we concentrate ourselves

to data-driven, graph-based segmentation algorithms, since this is the category in the taxonomy

that best fulfills the segmentation requirements to raw point cloud segmentation.

We then extended a graph-based segmentation approach, originally designed to 2D image

segmentation [FH04], to work on raw point cloud. We evaluate the performance of the algorithm

on both synthetic and real raw point clouds. The underlying numerical optimization scheme is

straightforward and robust. It is easy to implement, not expensive to compute, robust across

many noise levels and parameter settings, and useful for segmentation of raw point clouds. From



3.7. Conclusions 103

(a) MST -based: 14 regions (b) Ncut: 12 regions

Figure 3.18: Comparing the robustness of (a) our MST -based segmentation and (b) Ncut when the data
is corrupted with noise.

Figure 3.19: Video Segmentation. (a) Original range image and (b) segmented image in RGB color
space.

our experiments regarding the performance of the MST -based segmentation algorithm in terms

of parameter stability and correctness of its results, we conclude that the algorithm produces

correct segmentation for a quite large parameter interval, and, given a stable parameters set, it

provides acceptable segmentation for different input shapes and noise levels. The segmentation

results on raw point clouds scans were repeatable, even in the presence of missing data and

noise.

Another contribution was the comparison between our MST -segmentation with one of the

standard graph-based segmentation algorithms, theNcut. We verified that theNcut is incapable

of extracting regions of general sizes and it does not partition following the surface boundaries.

Besides, it requires the number of regions to be set a priori and it does not work on large

datasets. These drawbacks were not verified when segmentation was performed using our MST -

based segmentation algorithm. These discoveries motivate our approach to using segmentation

in a global registration scheme, which will we presented in the next Chapter.
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Chapter 4

Global pairwise registration based

on region correspondence

4.1 Introduction

In this chapter we investigate the problem of pairwise global registration. As discussed in

Chapter 1, paiwise global registration is the problem of optimal alignment of two scans in

arbitrary initial positions and it is the first stage towards obtaining a 3D digital model from a

scan set. We are interested, in particular, in registering raw noisy data, possibly contaminated

with outliers, without pre-filtering or denoising the data.

We introduce a global registration algorithm [ADC09] based on region correspondence, an

efficient scheme for raw point clouds, which is resilient to noise and outliers. We will incorporate

the regions obtained from the segmentation of scans, using the method presented in Chapter

3, into this higher level application. The originality of our work is to use region as data rep-

resentation. Instead of using salient features to find correspondence between scans, we want

to incorporate all features available. This approach aims at solving the problem of comparing

inconsistent, noisy features, or comparing only features that are not in the overlapping area.

Thus, region representation is preferred because of its descriptive power and because it also

reduces the data volume treated and inimizes the noise effect on the pipeline.

Before we present our global registration algorithm, we will pose the registration problem

(Section 4.2). We will examine each one of the sub problems envolving the global registration

of two scans, and which strategies where proposed in the literature to solve these problems.

We outline their advantages and their drawbacks. Then, we will present the formalization of

our global registration algorithm (Section 4.3), the hypothesis made about the data, about the

regions representing the data, and the analysis of the performance of the algorithm.

105
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4.2 Foundation of pairwise global registration

The global registration, or scans alignment, is the process of matching the common overlapping

area between two 3D scans in arbitrary initial position and estimating the corresponding align-

ment. This is an important problem not only to 3D model acquisition, but also to 3D object

recognition, geometric processing, 3D object indexing, motion capture, shape morphing, texture

transfer, and statistical shape analysis. In this section, we present the basic concepts, hypothesis

and main works done on pairwise global registration.

4.2.1 Registration problem

Let SA and SB be a scan pair, consisting of {p1, ⋅ ⋅ ⋅ ,pN} and {q1 ⋅ ⋅ ⋅qM} points, respectively.

We call SA the source and SB the target scan. We assume that, at least partially, the surfaces

represented by the point clouds overlap. The goal is to find the rigid transformation that best

registers the source with respect to the target.

Let {(pi,qi)} ⊂ SA×SB be a set of corresponding points. The best rigid transformation that

brings both point clouds to the same reference frame is the one that minimizes the coordinate

root mean squared error (cRMS):

cRMS2(SA, SB) =
1

n

n
∑

i=1

∥Rpi + t− qi∥2 (4.1)

where the rigid transformation is represented by the translation vector t and the rotation matrix

R, and ∥Rpi+t−qi∥2 is the distance from the transformed source point pi to its corresponding

point qi in the target scan.

Theoretically, if we can correctly establish correspondence between just three points in a non

degenerate configuration across the target and source, then we can uniquely solve the aligning

rigid transformation. A brute-force approach to testing all possible alignments involves select-

ing a pair of triplet points, {(p1,q1), (p2,q2), (p3,q3)}, computing an initial alignment based

on these points, to recover a candidate matching error cRMS, and repeating the process for

all pairs of triplets points distributed around each scan. This naive alignment scheme has a

time complexity of O(M3N3), and it requires to compute the transformation for the entire set

[GMGP05],which becomes overly expensive as the number of regions grows.

The main idea behind global registration algorithms is to reduce considerably the set of

possible corresponding pairs (pi,qi) and explore it efficiently in order to find a subset {(pi,qi)}
that minimizes the alignment error cRMS defined by (4.1). In the next section, we present some

of the proposed solutions to the global registration problem and we examine their strategies to

reduce the solution space and to be robust to noise and partial overlapping.

4.2.2 Pairwise global registration: a review

There is an abundant literature for the problem of automatic pairwise global registration [PMW05,

HP05, HFG+06, GMGP05, HCH00, MGGP06, Mit06]. The general pipeline of global registra-

tion algorithms is illustrated in Figure 4.1.
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Figure 4.1: Global pairwise registration pipeline. First, data are represented in some feature space, then
discriminant features in both scans are independently identified, and feature correspondences is established
in order to compute the rigid alignment transformation.

The first part of the pipeline aims at reducing the search space of possible correspondences.

To this end, initially, it is derived a concise representation for the input data. It can be geometric

features associated with points [PMW05], or descriptors associated with subsets of the input

data [HP05, HFG+06]. These features must be invariant to translation, rotation and robust

to re-sampling. In a typical scan, the majority of the features are redundant and, thus, an

intermediary step, called feature extraction, identifies the discriminant features in both source

and target, independently. In a feature extraction algorithm, discrimi nant features are those

whose values are rare among the input data. To prevent noise, discriminant features are the

ones that remain rare even when computed in different scales [GMGP05]. Represent the input

data as a subsample not only reduces the set of potential correspondences, but it also removes

featureless descriptors which can induce the algorithm to converge towards a local minimum.

The second part of the pipeline aims at efficiently exploring the search space in order to find

the correspondence set that minimizes the registration error. After feature extraction, features

from different scans are matched according to their similarity in feature space. It gives the ini-

tial set of potential correspondences. Even in the case that local shape descriptors are perfectly

distinctive, symmetries in the models can give rise to multiple correspondences, and one-to-one

correspondence based on the comparison of feature descriptor values is rarely found. Addi-

tional hypothesis about inter features relationship, or geometric consistency, must be verified

to reinforce the potential set of correspondences. This additional constraint prunes some wrong

correspondences and only a small subset of potential feature correspondences are left. At this

point, the set of potential correspondences is considerably reduced, and we can afford to com-

pute the aligning transformation for each correspondence subset, with the associated registration

error cRMS. Given the subsets of potential feature correspondences, the rigid transformation

computed to align these features and their associated cRMS, the initial alignment is chosen to

be the rigid transformation with the smallest error cRMS associated.

Global registration algorithms differentiate from each other by the techniques used and the

assumption made at each stage of the pipeline. If we take into account only the first part of

the global registration pipeline, any algorithm falls into one of two general classes: feature-

based and region-based approaches. If, however, we take into account the second part of the

global registration pipeline, the algorithms are characterized by the corresponcence techniques

they use. Examples of correspondence search algorithms are graph optimization [SOS05, HH01],

foward search [HFG+06] and branch-and-bound-based combinatorial search [GMGP05]. We will

focus on the first stage of the pipeline, because this stage is crucial to the correctness and the
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robustness of the algorithm.

A summary of the most popular global registration algorithms is showed in table 4.1. The

first observation is that most of the past research efforts concentrated on finding local shape

features correspondences to estimate the initial alignment [PMW05]. Region-based matching

has gained much less attention, partly because of the lack of segmentation algorithms which

produce repeatable regions [VH08]. While the first approach focuses mainly on the choice of a

robust surface descriptor, on selecting rare local surfaces descriptors and comparing them over

different scans, region approaches are less depend on the local feature itself and more dependent

on the feature distribution over the region. We will examine some of the works done in each

category, in the context of large raw point cloud registration.

Feature-based global registration algorithms

Feature-based approaches are categorized according to the dimension and the level of detail

of their local shape descriptors. The performance of such techniques is directly related to the

feature estimation process, to the robustness and to the repeatability of this estimation under

noise and re-sampling. The correctness of feature-based registration algorithms also depend in

the strategy used to extract discriminant feature, which must guarantee that some of features

used to find correspondence are in the overlapping area. A survey on scans pairwise initial

alignment based on features correspondence is presented in [PMW05].

Johnson in [JH97], introduced the spin image, a high-dimensional local geometric descriptor.

The spin image is a 2D histogram of surface locations around a point, which provides a fairly

detailed description of the shape around the point. It is the most popular high-dimensional

feature and was used to other applications such as 3D recognition [FHK+04], shape similarity

and retrieval [MGGP06]. The original algorithm to compute this feature was later modified by

Huber in [HCH00] to treat large and non-uniform datasets. However, neither of the proposed spin

image variants are sufficiently robust for partial surface alignment. Compared to other global

registration algorithms, the spin image matching has the advantage that, given a discriminant

point in one scan, it is likely that it will be found only a few points with similar descriptors on

the second scan.

Low-dimensional descriptors, on the other hand, compute only a few values per point. Exam-

ples of such descriptors include curvature-based quantities [HJBJ+96, ULVH06a, FJ89], shape

index [DJ97], integral descriptor [GMGP05, HFG+06]. Since they are not discriminant, match-

ing low-dimensional descriptors doesn’t guarantee one-to-one robust feature correspondence. To

solve this problem, the global registration methods using these descriptors performed robust fea-

ture extraction, in order to find rare features used in matching process. From all low-dimensional

descriptors, the integral invariant [PWHY09] has been largelly used in global registration algo-

rithms [GMGP05, HFG+06]. This local shape descriptor provides curvature information, and

its estimation is based on performing integral operations on the underlying shape. It was proved

the robustness of this shape descriptor for uniform smooth meshes, but a robust estimation for

non-uniform data and corrupted with noise is still an open problem. Another drawback of using

features to compute correspondences is that global registration algorithm using this data rep-
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Spin image correlation No Discriminant spin image in
target and entire dataset
on source

Euclidean feature distance Branch-and-bound search Rare features in both data
and model

Shape descriptor Eu-
clidean distance

Foward search Entire region set

Region histogram compar-
ison

Branch-and-bound search Entire region set

Table 4.1: Summary of some global registration algorithms.



110 Chapter 4. Global pairwise registration

resentation suffer from the problem of picking inconsistent features on the input dataset, since

the two datasets are processed separately.

Region-based global registration algorithms

Region-based global registration has resemblance to the works on partial shape matching [GCO06,

OFCD01, TV04, TV08]. Compared to the shape matching problem, where the goal is to define

a similarity function to compare shapes, the global registration problem has the additional reg-

istration issue. To our knowledge, only one region-based global registration algorithm has been

previously proposed in the literature [HP05]. In fact, the use of region has not been very pop-

ular and it has even been avoided in tasks that require region matching. This is because of the

difficulty found in describing robustly the region, in generating repeatable regions in different

scans, and matching partial overlapping regions.

In [HP05], Huang and Pottmann proposed a complete pipeline to solve the registration

problem. They partition the input dataset into homogeneous regions in feature space, using as

feature the integral invariant [PWHY09]. The success of their region matching rely on the use

topological relations of regions to prune incorrect correspondences, where regions hierarchy is

used to select the set of region correspondences. They use regions to find a rough correspon-

dence between regions, and these correspondences are later refined by a feature correspondence

strategy, close to the one developed in [GMGP05]. Such an approach increases the complexity

of the algorithm, but the use of region correspondences to guide feature extraction improves the

robustness of the algorithm to partial matching. The main drawbacks of this global registration

algorithm are that it is not efficient to large data, and there is a large number of tuning parame-

ters. Besides, both segmentation and feature extraction are not robust to noise, since noise can

drastically change regions configuration because of feature variation, which affects both region

and feature correspondences search.

Comparing the methods showed in table 4.1, we observe that all algorithms propose strate-

gies to process efficiently large point sets and to be robust to both noise and partial matching.

However, they all suffer from the same drawback: they do not guarantee that the initial feature

set contains features located in the overlapping area. In such scenarios, there are several advan-

tages of using regions over interest points for global registration. Region-based approaches are

less dependent on sample density, noise and holes presented on the input data. Besides, once

region reduces naturally the data volume, we can use the entire solution space to find the best

correspondence set. Motivated by these arguments, we develop in the next section a pairwise

global registration based on region correspondence.

4.3 Global registration as region correspondence problem

We formulate global registration as the problem of finding a set of region correspondences,

and use these correspondences to compute the initial alignment transformation. Our algorithm

explores the fact that the aligning transform is low-dimensional and only a small set of corre-

sponding region pairs is necessary to specify the rough alignment of the scans.
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Let PSA
= {A1 . . . An} and PSB

= {B1 . . . Bm} be the partition of the source, SA, and the

target, SB, scans, respectively. The correspondence between two regions Ai and Bj is then

establish through the binary equivalence relation, enunciated as follows: two regions Ai and Bj

are equivalent with respect to Ē, or Ai ∼Ē Bj , if it is observed both regions similarity according

to their descriptor values, and geometric relations between regions within the scans.

The first condition states that global, or absolule, properties of corresponding regions must

agree. Two regions, Ai and Bj , potentially represent the same surface in the scene if they

have similar absolute region properties. Inversely, if there is a large disagreement between the

absolute region properties, is likelly that they represent different surfaces in the scene. Examples

of global properties of a region are its shape, its area and the feature distribution. In Figure

4.2 is illustrated how absolute region properties change between scans and how it is established

correspondence between these regions, when considering only the first equivalence condition. In

this example, it is taken two scans that partially overlap and they are represented by a region set,

as showed in Figure 4.2 (a). The absolute property that characterizes a region in this example

is its shape and, in Figure 4.2 (b), we show some regions in both scans that represent the same

physical surface. Regions have the same index if they represent the same physical surface. Here,

the shape of the region a is similar in both scans, and the comparison between these regions is

done by directly comparing their shape descriptors. A different situation is observed between the

regions b and b′, where the shape of the regions b and b′ matches only partially. Consequently,

the global properties of the shapes b and b′ change drastically and the comparison of their shape

descriptors might not provide a good match cost. A third situation that also occurs frequently

is showed in the region c. In the ideal case, c should be matched to both c1, c2, and c3. However,

the absolute properties of c1, c2, and c3 differ significantly as compared to their correspondence

c, and these three regions should be merged before comparing their shape descriptors with c.

From the equivalence definition, only the regions a are in correspondence, since they are the only

in which shape did not change drastically between the scans, and we say that there is one-to-one

region correspondence. In the present work, we will not adress the problem of partial region

matching, or many-to-one region correspondence. This one-to-one correspondence hypothesis

may seem too restrictive, and we are aware that partial matching occurs frequently on real

datasets, especially on noisy datasets and where missing data and holes occur. Since we aim at

finding a minimum number of region correspondences necessary to compute the initial alignment,

a partial region matching seems overly expensive [BAAC08, VH08], and unecessary for most of

point clouds treated.

The second condition states that the geometric constraints given by the hypotheses made

about the data and the transformation class must be verified between correspondences. Such

condition is necessary to renforce the correspondences and filter wrong ones. Assuming that the

scans represent only rigid objects, we have that the distance between any two points must not

change. Besides, if only affine trasnformation is applied to the scans, we have that any rigid

transformation has to preserve inter-point distance, which is based on the distance between

two points on the same point cloud. Let (A1, B1), (A2, B2) be a pair of consistent region

correspondences. From the rigidity hypotheses, we have that, the relative pose between A1
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(a) (b)

Figure 4.2: Equivalence condition. (a) Two scans represented by a region set. (b) Correspondence
between regions when the region absolute property is taken as its shape, where we outline some regions
for better illustration of the concept. Matched regions have the same region index.

and A2 should be consistent with the relative pose between B1 and B2, even when they suffer

some rigid transformation. If this geometric consistency is not verified for a pair of region

correspondences, one of the correspondences, or both, are necessarily wrong. This last condition

is an important supplementary constraint that avoids situations where symmetries and regions

in the same sample with similar descriptors induce ambiguities on the correspondence process.

Based on these conditions, we formulate the global registration as the problem of finding

a set of region correspondences that minimizes the registration error, where the corresponding

regions verify the equivalence conditions. In the case of rigid motion, three corresponding points

are sufficient to uniquely determine the alignment transform. Working in the region space, the

alignment transform is determined by, at least, three corresponding regions. Thus, we devel-

oped an algorithm that searches for potential region triplets that are in correspondence and find

the correspondence that minimizes the registration error. To be robust to noise and incorrect

correspondences, other approaches enforces the matching by finding more than three corre-

spondences. However, when working in region space, the number of correspondences required

imposes the minimal size of the overlapping area. If we aim at finding more than three region

correspondences, it implicitely requires a larger overlapping area. For this reason, we formulate

the correspondence problem as the search for three region correspondences. The algorithm is

illustrated in Figure 4.3. First, the raw point clouds are independently partition into regions,

and each region has a feature associated to it. Then, we use the first equivalence condition to

built the set of potential correspondences, which is done by matching the regions, in feature

space. From the second equivalence condition, we prune the set of potential correspondences by

verifying the geometric coherence between pairs of possible correspondences. We built triplets

of corresponding regions that verify both equivalence conditions. We search efficiently the cor-

respondences triplet which alignment transformation minimizes the registration error and this

alignment is finally applied to the scans.
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Figure 4.3: Pipeline of our global registration based on region correspondence.

4.3.1 Region representation

The computational complexity of establishing correspondences between models has motivated

a large body of research in the area of shape and region descriptors [KFR03]. Two regions

can be compared by independently computing their region representation and then defining the

measure of similarity in terms of the distance between their descriptors.

To this purpose, we derive a concise representation of each region using a set of characteristic

values, vectors, and points. A region is a subset of the point cloud, where points have both spatial

coherence and some common property in the feature space. We store the following information

for each region Ri:

Ri −→ {c(Ri), ∣Ri∣, H(Ri)} (4.2)

∙ The point c(Ri) represents the position of the region, defined as the closest point to the

barycenter of the region.

∙ ∣Ri∣ is the size of the region Ri.

∙ H(Ri) is the local shape descriptor histogram of points x ∈ Ri.

The histogram H(Ri) is a non-parametric representation of the probability density function

of a region. It is a practical and reliable mean for approximation of the probability density

function of the local descriptors and it contains the signature of the region Ri. This descriptor

yields invariance under rigid motions and mirror imaging. In this case, invariance under scaling

can be added by normalization of the histogram before comparing them and/or by factoring out

scale during the comparison. Histograms have been used in both 3D global shape representation

[AKpKS99, OFCD01] and high-dimensional local descriptors [JH97, ZIZ99]. We preferred a

non-parametric p.d.f. representation over a parametric representation because non-parametric

p.d.f. has the ability to discriminate, since it can model higher dimensional information and

multivariate distributions.
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Any point descriptor that is invariant under rigid transformation can be considered to com-

pute H(Ri). In our experiments, we use local shape descriptors, like Gaussian and mean curva-

tures and normal cone, but any other invariant feature associated with points can be used, such

as shape distribution [OFCD01], color and texture. Once we have computed the local shape

descriptor histogram for two regions, the dissimilarity between the regions can be evaluated

using any metric that measures distance between distributions.

4.3.2 Region through segmentation

The global registration based on region correspondences implicitly rely on the regions generated

by the segmentation to be equivalent among scans. It means that, given a scan set from the

same scene, we say that the segmentation algorithm produces equivalent results if regions in

the overlapping area conserve global shape properties among different scans. If this property is

observed, we have that any object/part presented in different scans is partitioned into similar

regions, even when local shape property varies among scans. In our experiments, we use the

MST -based algorithm presented in Chapter 3. However, other data-driven algorithms can be

used instead.

An example of correct segmentation, according to the above criteria, is showed in Figure

4.4, where the MST -based segmentation algorithm is used to partition a set of scans from

the same object. All scans were segmented with the same input parameters. Note that there

are some regions in the overlapping area where all segmentations are in agreement, and other

regions where there are varying levels of disagreement. Segmentation differences are mainly

due to missing data, holes or the presence of a few spurious points on the boundaries. In the

presence of these artifacs, the original regions of the object leak out to form new regions and it

is extremely unlikely to generate a segmentation of an entire scan that corresponds to human

partitioning of the same scene [Pan08].

The main advantages of using the MST-based segmentation algorithm over other data-driven

methods are that the solution space of all possible partitions is drastically reduced when using

this approach and the fact that the noise can be detected and filtered during segmentation

process [ADC07b]. Additionally, the MST-based segmentation algorithm bounds only local at-

tribute variation and, consequently, the regions regenerated by this algorithm are not necessarily

homogeneous in feature space. It allows more dynamic to the descriptors within a regions, which

aids in regions differentiation.

4.3.3 Pairwise region matching

Having constructed the representation for two 3D regions, we are left with the task of comparing

them. The region representation maps a complex region onto a feature vector in a multidimen-

sional space. The similarity of two regions is then defined as the vicinity of their feature vectors

in the feature space. In the literature, there is a large number of similarity functions to com-

pare histograms, such as Euclidean distance, quadratic form distance [AKpKS99], statistical

and probabilistic approaches [JH97, HLLS01], among others. The Euclidean distance exhibits

severe limitations with respect to similarity measurement, since individual components of the
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Figure 4.4: Equivalence of point cloud segmentation. Given a set of scans, covering the entire object,
the segmentation produce equivalent regions in the overlapping between scans.

feature vectors are assumed to be independent from each other and a shift in the histogram is

neglected by the Euclidean distance. In this thesis, we restrict ourselves to statistical similarity

functions, where, given the distribution for a region in the target, the correspondence problem

reduces to the task of finding the region in the source with the distribution that best match the

region in the target. Compared to other similarity functions, statistical similarity functions is

adapted to be computed and evaluated efficiently.

Histogram matching

The formal statistical method for assessing the similarity between two probability is the �2-

test. We use an equivalent histogram distance function, the intersection-measurement between

histograms, which is a measure that quantifies the common parts of two histograms. The

intersection of two histograms H(Ai) and H(Bj) defines regions resemblance with respect to

their corresponding signatures and it is given by [HLLS01]:

∩ (H(Ai), H(Bj)) =
∣Ai ∩Bj ∣
∣Ai ∪Bj ∣

, (4.3)
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where ∣Ai ∩Bj ∣ denotes
1

�

∑

k

min(ak, bk) (4.4)

and ∣Ai ∪Bj ∣ denotes
1

�

∑

k

max(ak, bk) (4.5)

where � is the number of cells in the histograms and ak, bk are the k-th histogram cell. Equation

(4.3) assumes values in the range [0, 1].

This measure does not take into account regions shape information or points location. This

property is an advantage for matching partial overlapping regions, since small variations on shape

and region size do not affect considerably the local shape descriptor histogram. Furthermore,

each cell in the intersection distance function (4.4) is treated equally and are supposed to be

equally probable. As a consequence, this distance function defavours regions of similar sizes.

From the histogram intersection function, we define the dissimilarity function between two

regions Ai and Bj as:

Ds(Ai, Bj) = [1− ∩(H(Ai), H(Bj))]
2 (4.6)

We compute the dissimilarity function Ds(Ai, Bj) for every pair (Ai, Bj), with Ai ∈ PSA
,

Bj ∈ PSB
and the values are stored in a dissimilarity matrix. This dissimilarity measure is

invariant under rigid transformation and robust to small perturbations. It also has the favorable

property: the histograms can be subject to considerable noise before noise bias the region

p.d.f. representation. On the other hand, if the region is not globally discriminative or unique,

a matching algorithm based uniquely on histogram comparison doesn’t guarantee one-to-one

region correspondence. Thus, we associate to each region Ai ∈ PSA
a set of regions in PSB

that provides a good match, so we expect that the correct correspondence is in the initial set of

possible correspondences.

Finally, we build the initial set of potential region correspondences as the region pairs char-

acterized by low dissimilarity measures. In the next section we show how this initial potential

region correspondences set is constructed.

Initial set of potential correspondences

The first part of the global registration algorithm aims at finding an initial set of potential region

correspondences, C(Ai), for each region Ai ∈ SA in the source by selecting all regions {Bl
i} in

the target where the dissimilarity is such that:

C(Ai) = {Bl
i ∈ SB ∣ Ds(Ai, B

l
i) < "Ds} (4.7)

where "Ds varies in the range [0, 1]. The initial correpondence set C(Ai) correspond to all regions

in SB that are distant "Ds from Ai in feature space (4.7).

The best value for this threshold depends on the density on both scans, which determines

the descriptor estimation accuracy. Since we want to decouple the feature estimation problem
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from the global registration problem, we fixed the value of "Ds as a user-defined parameter. In

[HP05] is proposed a statistical method to estimate parameters similar to "Ds.

To be able to efficiently compare histograms, we will construct a histogram for every region

pair Ai ∈ SA and Bl
i ∈ C(Ai) with the same parameters, so the dissimilarity function (4.6) is

computed straightfoward.

The number of cells � in the histograms H(Ai) and H(Bl
i) is computed using Scott’s rule

[Sco79], � = 3.49�fN
− 1

3 , where �f is the standard deviation of the N points. We take N =

∣Ai∣+ ∣Bl
i∣ and �f is computed over the data represented by Ai and Bl

i.

Then, H(Ai), H(Bl
i) are characterized by the Hmin and Hmax values, defined by:

Hmin = min{f(x)
x∈Ai

, f(x)
x∈Bl

i
} (4.8)

Hmax = max{f(x)
x∈Ai

, f(x)
x∈Bl

i
} (4.9)

where f(x) is the shape descriptor at x.

The advantage of using a threshold over exact matching to find the initial correspondence

set is twofold. First, when it is considered more than one possible correspondence for each

region Ai, we ensure that the correct correspondence, if it exists, is in C(Ai). Second, the exact

matching approaches assume that all regions in both source and target have discriminative

information and their descriptors are robust. Only when these hypotheses are verified, exact

matching approaches guarantee that the correct correspondences are in the initial potential set.

Finally, the correspondence set is represented by the set C(A1)×C(A2)× ⋅ ⋅ ⋅ ×C(An). The

initial set of region correspondences is illustrated in Figure 4.5. Observe that, region matching

based only on the descriptor similarity is not enough discriminant to provide uniquely correct

correspondences.

Figure 4.5: Initial set of region correspondences.
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4.3.4 Geometric consistency

Given the region set PSA
= {A1 . . . An} from the source scan, let {C(A1), . . . , C(An)}, with

C(Ai) = {Bl
i} ⊂ PSB

, be the initial set of potential region correspondence, established through

region dissimilarity measure (4.3). In this section we will show how we evaluate the geometric

consistency to prune the solution space of possible region correspondences.

When evaluating correspondences, the most used point sets distance function is the registra-

tion error, also known as coordinate root mean squared error, or cRMS (4.1). The cRMS gives

a quantitative measure about the correspondence. However, to compute the registration error,

the optimal alignment transformation must be computed over the entire dataset. Even for a

small number of regions and when each region has a small number potential correspondences,

the use of the registration error to find the best set is still prohibitive. We will use the internal

distance to evaluate geometric consistency, which is based on the distance between two regions

on the same point cloud.

Under rigid transformation assumption, we have that for any region pair (Ai, B
l
i) and

(Aj , B
k
j ) in correspondence, the pose between the pairs (c(Ai), c(Aj)) should be the same as

between their corresponding regions (c(Bl
i), c(B

k
j )). The error metric based on inter-point dis-

tance is known as distance root mean squared error, or dRMS, and it is computed by comparing

all internal pairwise distances related to the correspondences:

dRMS2 =
1

n

n
∑

i=1

n
∑

j=1

(∥c(Ai)− c(Aj)∥ − ∥c(Bl
i)− c(Bk

j )∥)2 (4.10)

where n is the number of correspondences for the given regions Bl
i ∈ C(Ai) and Bk

j ∈ C(Aj).

The dRMS function is used as an alternative distance function in [GMGP05] to robustly find a

set of corresponding features. They proved the equivalence between the dRMS and the cRMS

functions, by showing that dRMS is both lower and upper bounded by cRMS.

The main advantage of using dRMS to evaluate potential correspondences is that it does not

require computation of the alignment transformation. In fact, dRMS cost is only computed once

for every region pair, since it compares intrinsic properties of two sets of corresponding region,

namely the internal pairwise distances, of each region set. For every region pair (Ai, Aj) ∈
PSA

× PSA
, the internal pairwise distance is computed only once and stored into a matrix.

Independently, the same procedure is repeated for every region pair (Bi, Bj) ∈ PSB
× PSB

.

When computing dRMS for a set of potential correspondences, the terms in (4.10) corresponding

to the internal pairwise distance between two regions are obtained by accessing the respective

matrix.

We will use the dRMS distance to evaluate potential corresponding regions. When employed

to compare potential feature correspondences, dRMS distance is upper bounded by feature

neighborhood size as defined in [GMGP05], and this hypothesis is used to filter wrong corre-

spondences. The same assumption cannot be made when employing dRMS error to compare

region correspondences. Even if the segmentation of the two scans produces equivalent regions,

most of the time, some differences can be observed in the size and shape of the region. As a

consequence, it occurs a shift of the region barycenter, and consequently, its position c(Ai). It
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causes a bias on dRMS function cost and this bias cannot be measured or estimated. We assume

that we have an one-to-one set correspondences in the overlapping area. If this constraint holds

true, we can upper bound the dRMS distance cost to filter wrong correspondence.

4.3.5 Global registration algorithm

In this section we will present a branch-and-bound algorithm that searches efficiently the set of

potential region correspondence in order to find a triplet of corresponding regions that minimizes

the registration error (4.1). The input of the algorithm is the set of regions, where each region

is represented by (4.2). Finding the best triplet of corresponding regions is done by descending

the decision tree [GLP87]. Each node of the tree describes a potential correspondence between

regions in source with regions in the target scan and the node with the best possible pairing, as

measured by a matching function, is chosen as the result of the search. It incrementally makes

choices about which regions should be in correspondence, until it converges to the triplet that

best registers the source with respect to the target. The advantage of this search method is that

it explore all possible correspondence between source and target regions, and are guaranteed to

find the best possible alignment globally.

The initial set of potential correspondences {C(A0), C(A1), ⋅ ⋅ ⋅ , C(An)} is computed from

(4.7). If any two region pairs (Ai, B
o
i ) and (Aj , B

p
j ) form a correspondence, they must preserve

inter-point distance (4.10), and we have that

∣∥c(Ai)− c(Aj)∥ − ∥c(Bo
i )− c(Bp

j )∥∣ ≈ 0 (4.11)

However, region location, represented by c(R), is shifted when too fine or too coarse segmen-

tation and missing data occurs. In this situation, the correspondences are approximated within

a certain error tolerance "dRMS :

∣∥c(Ai)− c(Aj)∥ − ∥c(Bo
i )− c(Bp

j )∥∣ < "dRMS (4.12)

This thresholding (4.12) is applied to verify the geometric consistency between every pair

of corresponding regions and it results in a filtering of wrong correspondences. The output

of this initial bound is a set of pairs of corresponding regions {(Ai, B
o
i ), (Aj , B

p
j )}, where, for

each pair (Ai, B
o
i ), (Aj , B

p
j ), we have an associated dRMS error (4.10) and a region dissimilarity

measure (4.6). The thresholds in branching, "dRMS and "Ds, play an important roles in the

performance of our pairwise matching procedure. If they are too large, then the effect of corre-

spondence pruning is not sufficiently strong. Oppositely, if they are too small, we may discard

too many correct region correspondences such that there are not enough regions for the match-

ing. A similar thresholding strategy is adopted by feature-based global registration algorithms

[SMS+04, GMGP05, HP05], and, all of them consider the theshold value as an user-defined

parameter.

The elements of {(Ai, B
o
i ), (Aj , B

p
j )} are taken as nodes in the decision tree. We construct

this tree by connecting the nodes, where each connection gives a possible correspondence set.

Given the initial potential correspondence set {(Ai, Aj), (B
o
i , B

p
j )} we traverse this set to find
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a third correspondence, (Ak, B
q
k) for each pair {(Ai, B

o
i ), (Aj , B

p
j )}. This third correspondence

must verify the following:

∙ The correspondence pairs
(

(Ai, Ak), (B
o
i , B

q
k)
)

and
(

(Ak, Aj), (B
q
k, B

p
j )
)

are potential cor-

respondences.

∙ And Ai ∕= Ak, Aj ∕= Ak, B
o
i ∕= Bq

k and Bp
j ∕= Bq

k.

If these properties are verified, then their respective nodes in the decision tree are connected.

This procedure limitates the potential correspondences to the set of nodes connected in the

decision tree. After this bounding, we obtain the set of potential triplets of corresponding

regions. Associated to every triplet we have the dRMS error (4.10) and the region dissimilarity

measure (4.6). This list of potential correspondences is typically smaller than the preceding

set. To decrease even more the number of potential correspondence, we sort this set in order

of increasing dRMS cost following by a pruning process and repeat the same procedure using

the region dissimilarity measure. At this point, the set of potential correspondences is smaller

and consistent, compared to the preceding stages. We can then afford to use a more expensive

procedure to find the best correspondence triplet.

Once we have a small but consistent set of potential triplet correspondences, we need to

find the triplet that minimizes the distance between the scans after the initial alignment. This

is done by evaluating the cRMS error after the initial alignment. Given a potential triplet

correspondence
(

(Ai, Aj , Ak), (B
o
i , B

p
j , B

q
k)
)

, we take the corresponding points (c(Ai), c(B
o
i )),

(c(Aj), c(B
p
j )) and (c(Ak), c(B

q
k)) to estimate the coarse alignment transformation. We refine

this estimate by applying two iterations of the original ICP algorithm [Zha94] on the entire

dataset. We run ICP algorihtm to the entire dataset and it gives the registration error, cRMS,

of the alignment. Only a small number of iterations is necessary, once the global registration

estimates only the rough scans alignment. Finally, the rigid transformation that gives the

smallest cRMS error is taken as the solution of the global registration problem.

Generally, our global registration algorithm proceeds as follow:

1. Build the initial set of potential correspondences: For each region Ai, we will

designate the j-th member of the potential correspondence set C(Ai) asB
o
i , ifDs(Ai, B

o
i ) <

"Ds.

2. Form region pairs: For each region pair (Ai, Aj) ∈ PSA
, it is taken the set of corre-

sponding pairs (Bo
i , B

p
j ) ∈ PSB

, where Bo
i ∈ C(Ai) and Bp

j ∈ C(Aj), characterized by a

dRMS (4.10) less equal than a given threshold "dRMS . It leads to a set of potential initial

correspondences. We sort this set in order of increasing distance discrepancy.

3. Add a region to form triplets: From the set of potential corresponding region pairs,

we traverse the search space looking for a third correspondence, (Ak, B
q
k). If we do not find

a third potential correspondence, we remove the correspondence pair from the potential

pair. Otherwise, we find the region pair (Ak, B
q
k) that minimizes the dRMS function.
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4. Prune region triplets: At the end of step 3, we obtain a set of potential triplets char-

acterized both by a minimum dissimilarity (4.6) and a minimum dRMS error (4.10). A

prune process is performed in order to retain triplets that minimize both distance func-

tions. We sort this set in order of increasing dRMS distance discrepancy, followed by a

pruning. We repeat the same procedure using the region dissimilarity cost.

5. Registration test: After pruning, we apply the alignment transformation and take the

triplet corresponding regions with the minimum cRMS associated.

The overall structure of the correspondence search is similar to other global registration algo-

rithms. The basic idea is, at each step of the algorithm, to narrow the set of potential correspon-

dences and to increase the complexity of the operations performed. This is a greedy approach,

and, at each step, the set of correspondences decreases, but it strengthens the equivalence con-

dition of resulting potential correspondences. The aligning transformation, the opperation with

the biggest cost, is only computed in the last stage. The advantage of this search algorithm is

that it explores all possible assignments between regions in both source and data. In the next

section, we will show some experimental results to both illustrate and evaluate the algorithm.

4.4 Experimental results

To evaluate the efficiency of our approach, there are two qestions that we need to consider. First,

how efficient is our method in practice? And second, how good is the obtained alignment? In

this section we present the results of experiments designed to address these two.

We tested our region-based global registration algorithm on a variety of input data with

varying amount of noise, outliers, and extent of overlap. We now report performance regarding

the robustness to noise and to partial region overlapping. Figure 4.3 shows the main steps of

the algorithm and the resulting transform when our algorithm is applied on the Stanford Bunny

scans dataset. Although in the example the source and target point clouds are shown in similar

positions, we stress out that algorithm does not depend on any assumptions about the initial

positions of the input point clouds.

Figure 4.6 shows the robustness of the region-based global registration algorithm under a

zero-mean Gaussian noise without any ICP refinement. We align the Stanford Dragon model

to a copy of itself corrupted by zero-mean Gaussian noise. Figure 4.6 (a) shows the principal

curvature colormap, and it illustrates how noise affects the estimation of geometric descriptors.

We set the segmentation partition threshold as K = 30% for both source and target. Figure

4.6 (b) shows the resulting regions after segmentation, where the criterion to be optimized in

the segmentation was the angle between normals. Despite the noise affects geometric descriptor

values, the regions of both source and target were exactly the same. It shows the repeatability of

the segmentation [ADC07a] under noise. In this scenario, each region in both point clouds has

the same barycenter, but different histograms. The histogram represented the Gaussian curvate

p.d.f. over the region. The initial potential correspondence set was built using "Ds = 0.5. Our

alignment brings the source (noisy) point cloud into exact alignment to the target (smooth)

point cloud (fig. 4.6 (c)).
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(a)

(b) (c)

Figure 4.6: Dragon example. (a) Input to the region-based global registration algorithm: raw point cloud
(the source) and the noisy dragon (the target) with the curvature colormap. (b) Regions obtained after
segmentation. (c) Registration after applying our algorithm.

Figure 4.7 shows the robustness of the region-based global registration algorithm under

different segmentations. We align two raw point clouds of the Stanford Happy Buddha model.

The magnitude of the segmentation partition � is varied in a scale where K = 30% was taken

as one unit. Figure 4.5 shows the initial potential correspondence set for K = 30% .The pose

computed by our algorithm is refined by running two iterations of ICP and the alignment

error is computed using the cRMS point-point error metric [Zha94]. The results are showed in

Figure 4.7(b). For all segmentations, our region-based global registration converges to a correct

alignment.

When � < 1%, the point clouds segmentation is too fine. Thus, the number of regions per

point cloud is larger, and, consequently, the solution space of possible region correspondences.

The alignment error for over-segmented regions is similar to the error of a correct segmentation.

The algorithm robustness to over-segmentation is thanks to the three region correspondence

hypothesis. As the regions get small, region histogram descriptor is not enough discriminant and

the alignment rely mostly on the geometric constraint. Notice how the alignment error increases

when the input point clouds are under-segmented. This is because there are less regions and a

smaller solution space of possible correspondences. In this condition, the algorithm only finds

the correct alignment because both point clouds have a large overlapping area.
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Figure 4.7: Evaluation of the initial alignment quality under segmentation variation. (a) Initial align-
ment when � = 1. Detail shows the error in the alignment. (b) Graph of cRMS error as the function of
the segmentation partition threshold �.

4.5 Conclusions

In this Chapter, we have presented an algorithm that solves the alignment problem using regions

correspondence for two scans without any assumption about their initial position. The main

contribution of the work is to formulate the global registration under a different perspective,

considering region, instead of feature points, as the point cloud representation. We match regions

according to their descriptors signatures, so the cost to establish these matches is much cheaper

than feature strategies [PMW05], which require feature robust estimation (usually in several

scales) and selection.

Experimental results on raw point clouds have illustrated some properties of the proposed

global registration scheme. The algorihtm estimated correctly the coarse alignment for scans

with large overlapping area, which the hypothesis of three equivalent regions was verified. Be-

sides, it is robust to noise.

We believe that the main weakness of our approach is that it makes the strong assumption

that at least three one-to-one region equivalence is present in the overlapping area. Although

this assumption holds true for many examples, the algorithm failed to converge toward a correct

alignment when only partial region matching was present in the overlapping area and, in practice,

the power of a single region descriptor is limited. One improvement to solve this problem would

be to consider the problem of matching regions under unstable segmentations. It would not only

improve the robustness of the algorithm to too fine and too coarse segmentation, but it would

also make it.
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Chapter 5

Conclusions and future directions

”The visions we offer our children shape the future. It matters what those visions

are. Often they become selfulfilling prophecies. Dreams are maps.”

- Carl Sagan (Pale Blue Dot)

In this dissertation, we have presented some fundamental building blocks for processing shape

information represented as unstructured point clouds, and demonstrated the utility of reducing

the data volume through segmentation in a region-based global registration scheme. We con-

clude with a discussion of some key points developed in this thesis and some extensions and

improvements to the algorithms proposed in this thesis to serve as a potential starting point for

future work in this area.

We propose the use of raw point cloud as a unified modelling primitive for acquisition,

registration, integration and rendering of 3D objects. In the context of processing the scans in

a modelling from reality pipeline, the main contributions of this thesis are:

∙ Algorithms for estimating the curvature at each point directly on raw point clouds.

∙ A graph-based segmentation algorithm designed to partition large, dense, probably with

holes, raw point clouds.

∙ A mathematical formulation for the MST -based segmentation algorithm.

∙ A mathematical formulation of the regions obtained from the segmentation.

∙ A taxonomy of 3D segmentation algorithms according to the criterion function they aim

at minimizing and to the optimization technique used to perform such minimization.

∙ An algorithm to search for region triplets correspondence, in the context of global regis-

tration.

125
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∙ Evaluation of the proposed algorithms in both synthetic and raw point clouds to validate

and outline the properties of each approach.

∙ Experimental comparison, when possible, of our algorithms with some of the state of arts

approaches.

We have showed that with careful application, point cloud segmentation can be an effective

mechanism for reducing the data volume. In fact, the lessons learned from the segmentation

experiments motivated us to represent the raw point cloud as a set of regions, and use this

feature space to perform registration on large datasets. In the following sections, we will present

the main conclusions of each problem dealt in this thesis, and some thoughts about extensions

of this work and future research.

5.1 Local shape descriptors estimation

We began by asking whether local shape descriptors could be used to characterize a raw point

cloud. To answer that question, we extended two state-of-the-art curvature estimation methods

to work directly on raw point clouds. We proved that both approaches have equivalent direction

curvature formulation but different discrete approximation to the principal curvatures. We use

a geometric graph, called neighborhood graph, to structure the dataset. Our experiment results

showed that the curvature estimation using these approaches is highly sensitive to noise, even for

a small noise magnitude. It provided accurate estimation only for uniform sampling, noiseless,

and low curvature point clouds.

Recently, new local shape descriptors have been proposed. For example, the integral in-

variant [PWHY09], is a low dimensional descriptor that embeds curvature information and is

estimated though an integral approach, instead of differential. Although it leads to more stable

estimation, this method is only robust to low level noise, uniform sampling, and all applications

using this descriptor perform data smoothing and resampling before estimating local shape de-

scriptors. Shape descriptors that are robust to non-uniform sampling and noise, are usually

high dimensional, and thus, impossible to be used to describe large datasets. We then conclude

that none of these local shape descriptors are enough robust to be used to raw point cloud

representation and we believe that the problem of estimating robustly local shape descriptors of

large raw point clouds is still an unsolved problem and it deserves a deeper study.

We have also examine the normal estimation algorithm proposed by Hoppe in [HDD+92].

We have found that the normal estimation using this plane fitting approach provides an efficient,

and robust, raw point cloud normal estimation. The accuracy of the estimation is dependent on

the neighborhood size considered. An adaptive neighborhood, that estimates the optimal neigh-

borhood according to local noise, curvature, and density, provides a more accurate estimation

than a unique global neighborhood size. However, since the use of a unique neighborhood size

still provides acceptable results, for a large range of neighborhood sizes, we highly recommend

the use of this last approach to estimate the normals of raw point clouds, due to its efficiency.

The problem that remains unsolved is the global orientation of normals, when the scan is rep-

resented by disjoint regions. An approach that uses a global function, such as the ones used in
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[LB07, ACSTD07], to evaluate the global orientation consistency should be used to orient these

normals.

We have showed that the estimation normals at a point are more accurate and more robust

than the curvature descriptors. This fact has motivated the use of normals, or normal based

descriptors, in the following stages of the modelling from reality pipeline. The precaution that

must be taken is that in some stages of the pipeline the local descriptor must be invariant under

rigid transformation, and the direct use of the normals is prohibitive. In these cases, we use the

normal cone as our local shape descriptor.

5.2 Raw point cloud segmentation

Region obtained from segmentation is one possible data-driven mechanism for grouping points.

In this thesis, we have examined the issues related to point cloud segmentation. The first

conclusion is that data-driven segmentation rarely produces regions that agree with the human

perception of the scene. Thus, we evaluated the segmentation according to the invariability of

the result, when a variation is observer either in the input parameters, either in the sampling

density, either in the magnitude of the noise. These criteria guide a qualitative evaluation of

the segmentation algorithm, but there is still little formal understanding of how they influence

the final segmentation. It limits a quantitive comparison between different algorithm and the

use of data-driven segmentation results into a higher level application.

We present a mathematical formulation to the MST -based segmentation and to the regions

obtained from segmentation. This formulation helps to the evaluation of the algorithm, to find

the limitation of the approach, and it guides potential improvements.

We also proposed a taxonomy for 3D segmentation algorithms that classify an algorithm

according to the criterion function it aims at minimizing and the optimization technique used.

However, there are no established benchmarks for data-driven, 3D segmentation algorithms and

the comparison between methods in the same category is still done visually. An extension of the

segmentation evaluation algorithm [UPH07] to 3D, data-driven, segmentation algorithms, would

allow an objective comparison between methods, outline the main advantages and limitation of

each methods, and it would guide on the choice of the best segmentation algorithm for a given

application.

Another conclusion which arose from the evaluation of our segmentation algorithm was

that segmentation is sensitive to the parameters used. Our segmentation algorithm produced

segmentations of vastly different qualities depending on the parameters used. In addition, the

same parameter choice did not produce segmentations of equal quality on all of point clouds. An

improvement to the algorithm would be an automatic parameters tuning. It would be consist

in finding the parameters zone where the segmentation is stable. However, such an approach

would considerably increase the complexity of the segmentation algorithm, and, depending on

the application, such an approach is not necessary. An obvious extension of this work is to use

our graph-based segmentation algorithm to partition medical volumetric datasets.
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5.3 Global registration based on region correspondence

In Chapter 4 we integrate the regions obtained from the point cloud segmentation into a global

registration algorithm. Region correspondence is established through histogram similarity be-

tween regions in two scans and the verification of the geometric consistency between a set of

corresponding regions. The algorithm exploits directly the segmentation results. It finds the

correct alignment between scans when the overlapping area is large, when it is observed more

than three regions in correspondence. However, the algorithm performs poorly, converging to a

local minima or diverging, when partial matching and small overlapping occurs. A better under-

standing of shape similarity and formalizing the concept of a distance metric for shapes will help

us to better understand the shape space. An improvement would be to make the hypothesis of

partial region matching, and use more robust region descriptors and similarity function. Partial

region matching has already been considered in the literature for 2D images [VH08], and in

3D point clouds [WWJ+07] and the integration of this concept would improve considerably the

robustness of the global registration algorithm. Further research needs to be conducted in this

area with rigorous testing on scans of various quality and resolution to evaluate the benefits of

such methods.

In our global registration algorithm, the choice of the target and the source scan plays an

important role, since the correspondence is not reflexive. Intuitively, the most appropriated

source would be the one with a larger number of discriminative regions. One way to analyse if a

region is discriminative is through the Principal Component Analysis of the region dissimilarity

matrix (4.6). We use the Principal Component Analysis (PCA) to estimate the projection that

best represents the dissimilarity matrix in a least-squares sense [DHS00]. PCA seeks directions

that are efficient for discrimination. Given the dissimilarity matrix, we compute the PCA and

we look at the eigenvalues. The eigenvalue amplitude indicates data variation on the direction

of the eigenvector. For large eigenvalues, we have a larger disparity of data on the direction of

the associated eigenvector, the opposite is verified to small eigenvalues.

Intuitively, if the eigenvalues have similar values, the data distribution is homeomorphic to

an hypersphere. It means that regions are not enough discriminant and the initial potential cor-

respondence set does not give enough constraints to guarantee the convergence of the algorithm

towards a correct result. The idea is then to choose as the data the point cloud with the most

discriminant matrix.

Another possible improvement would be to relax the hypothesis of minimum three region

pairs correspondence and formulate the global registration as the problem of finding the complete

overlapping area between two scans. One solution is to consider this correspondence problem

an energy minimization solved through partition and use a graph based optimization technique,

such as the a global minimization via graph cut [BK04], or using Region Adjacency Graphs to

perform a graph matching.
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(a)

Figure 5.1: Another example of the ICP fine registration alignment when only boundary points are used.

5.4 Region-based point sampling for registration

The regions obtained from segmentation can be integrated to other higher level applications.

Here, we will show briefly how regions can be used to improve local registration convergence

rate.

The ICP is a non-linear local search algorithm, and it suffers from many problems commonly

associated with local searches, such as slow convergence and the tendency to fall into local

minima. The point selection strategy and the choice of error metric to be minimized play

a large role in both the rate of convergence and the accuracy of the resulting pose. Sampling

algorithms [GIRL03, RL01] have showed that discriminant features constraint mainly translation

while non discriminant feature constraints mainly rotation.

Based on these considerations we can use segmentation results to guide a point sampling

algorithm. The region-based point sampling algorithm reduces the data volume at the same

time choose feature points to perform the local registration ICP. Point sampling determines

the registration quality and it is crucial to large datasets registration. Point sampling has been

addressed from the perspective of convergence rate and stability of local registration in [GIRL03,

RL01]. We present an alternative point sampling using regions and boundary properties to select

points that best constraint the estimation of the rigid transformation parameters. Figure 5.2

illustrate the principle of this point sampling algorithm. Given a region set, obtained from

segmentation, we select all points belonging to the cuts and we randomly pick some amount of

region points. An example of a reduced point cloud is showed in Figure 5.2(a), and it consists

of 15% of the input data. The ICP local registration is applied to the reduced dataset. In these

first experiments, we observed that the convergence is faster with the reduced data and the final

ICP error is equivalent. This is an example of a potential application where the regions obtained

from segmentation can be used in a higher level application.



130 Chapter 5. Conclusions and future directions

(a) (b) (c)

Figure 5.2: Fine registration example. Points from the boundary and random region points are taken
as a reduced representation for the point clouds (a). The ICP performs the local registration on these
reduced datasets (b) and the final alignment is showed in (c).
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[CW00] Péter Csákány and Andrew M. Wallace. Computation of local differential pa-

rameters on irregular meshes. In Proceedings of the 9th IMA Conference on the

Mathematics of Surfaces, pages 19–33, London, UK, 2000. Springer-Verlag.
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Appendix A

Curvature estimation

In this section we will detail the methods presented in this thesis to estimate principal cur-

vatures. Taubin in [Tau95] proposed an algorithm to estimate the principal curvatures and

principal directions of triangle mesh surface representation. The algorithm expresses the second

fundamental tensor (2.29) at each point as an integral, constructed in time proportional to the

neighborhood size. The integral Mx is a matrix equivalent to the three dimension directional

curvature tensor (2.29) to non-tangent directions. It has the same eigenvectors of Π, and their

eigenvalues are related by a fixed homogeneous linear transformation.

Approach: The orthogonal basis of three-dimensional space for the directional curvature

(2.29) can be obtained by adding the normal vector n to the basis {t1, t2}. It extends the

directional curvature definition to non-tangent directions and it is given by

�x(t) =

⎛

⎜

⎝

n

t1

t2

⎞

⎟

⎠

t⎛

⎜

⎝

0 0 0

0 �1x 0

0 0 �2x

⎞

⎟

⎠

⎛

⎜

⎝

n

t1

t2

⎞

⎟

⎠
(A.1)

where t = nnx+ t1t1+ t2t2 is an arbitrary vector in which direction the curvature is estimated.

To compute the principal curvatures from (A.1) we need to first restrict the 3× 3 matrix to the

tangent plane to Σ at x. It means that the matrix (A.1) must have zeros at the entries of the

first column and first row. The eigenvalues and the eigenvectors of the resulting 2 × 2 matrix

give the principal curvatures and principal directions of (2.29).

Let t� = cos(�)t1 + sin(�)t2 be the unit length vector that gives the direction in which the

curvature is computed. This vector ¡svaries in the range −� ≤ � ≤ �. From equation (2.29), the

directional curvature can be written as

�x(t�) = �1x cos
2(�) + �2x sin

2(�) (A.2)

Taubin uses the symmetric matrix Mx, which is the directional curvature integral over all

possible directions �:

Mx =
1

2�

∫ +�

−�
�x(t�)t�t

t
�d� (A.3)
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Since the unit length normal vector nx to Σ at x is an eigenvector of Mx associated with

the eigenvalue zero, it follows that Mx can be factorized as follows

Mx = Tt
12

(

m11
x m12

x

m21
x m22

x

)

T12 (A.4)

where m12
x = m21

x = 0, T12 = [t1t2] concatenates the orthonormal basis of the tangent space,

and

�1x = 3m11
x −m22

x (A.5)

�2x = 3m22
x −m11

x (A.6)

Taubin proposes a discrete approximation of the integral matrix Mx (A.3). This matrix is

computed at each point, and the discrete matrix Mx is factorized into (A.4), in order to compute

the principal directions and principal curvatures, using (A.4) and (A.6). The factorization (A.4)

avoids the computation of the eigenvectors and eigenvalues of Mx.

Discrete approximation: Given a point xi and its neighbors Nri(xi), the matrix Mx (A.3)

can be approximated by a weighted sum over the neighborhood Nri(xi) as:

M̂xi
=

∑

xj∈Nri
(xi)

wij�ijtijt
t
ij (A.7)

where �ij is the directional curvature when the tangent vector tij is the unit length projection of

the vector xj−xi onto the tangent plane. The tangent plane is defined as the plane perpendicular

to the normal vector nxi
. The matrix M̂xi

is averaged by the weight wij , which, originally in

[Tau95], is proportional to the surface area of all triangles incident to both xj and xi.

The estimated M̂xi
is a 3×3 matrix equivalent to (A.1). As a consequence, we have that the

eigenvector associated with the smallest eigenvalue is the normal vector nxi
. In order to compute

the principal curvatures from the matrix M̂xi
, this matrix must be restricted to the tangent

plane. To do so, the Householder transformation [BSM05] followed by a diagonalization brings

the matrix M̂xi
to the tangent plane. The Householder matrix, Qxi

is an orthogonal matrix and

has its first column equal to nxi
, or −nxi

. The two other columns define an orthogonal basis of

the tangent space, but not necessarily the principal directions. The factorization of M̂x

Qt
xi
M̂xi

Qxi
=

⎛

⎜

⎝

0 0 0

0 m̂x11

i
m̂x12

i

0 m̂x21

i
m̂x22

i

⎞

⎟

⎠
(A.8)

The non-zero entries of (A.8) are the discrete approximation for the 2 × 2 matrix in (A.4).

Therefore, the principal curvatures are estimated using (A.6).

An important observation is that at points where �1 = �2, the notion of principal direction

is not defined, since all vectors are eigenvectors [GI04]. Such a point is called an umbilical point

on the surface.
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Estimating tij and �ij: Note that, to compute the matrix M̂xi
(2.32), we need to estimate,

additionally, the tangent vector tij and the directional curvature �i,j for each pair (xi,xj). First,

the tangent vector tij can be computed simply as the projection of the vector (xj − xi) on the

tangent plane ⟨nxi
⟩⊥:

t̂ij = (xi − xj) + � ⋅ n̂xi
(A.9)

where the constant � is given as � = −n̂t
xi
(xi−xj) and the normal vector n̂xi

is estimated using

Hoppe’s technique [HDD+92]. The tangent vector tij can then be estimated as:

t̂ij =
(I− n̂xi

n̂t
xi
)(xi − xj)

∥(I− n̂xi
n̂t
xi
)(xi − xj)∥

(A.10)

The second variable that must be computed is the directional curvature, �ij . The directional

curvature is estimated from a parametric arc-length curve approximation. Given a normal

section defined by the tangent vector txi
and the the normal nx, the curve � parametrized by

arc length s (definition 2.28), such that:

�(0) = xi (A.11)

�′(0) = txi
(A.12)

�′′(0) = �xi
(txi

)nxi
(A.13)

The discrete approximation for the arc-length in Laurent series up to the second order gives:

�(s) = �(0) + �′(0)s+
1

2
�′′(0)s2 +O(s3)

= xi + txi
s+

1

2
�xi

(txi
)nxi

s2 +O(s3)
(A.14)

and we observe that

2nt
xi
(�(s)− xi) = �xi

(txi
)s2 +O(s3) (A.15)

and

∥�(s)− xi∥2 = s2 +O(s3) (A.16)

From the previous equations, it follows that the directional curvature is equal to the limit:

�xi
(txi

) = lim
s→0

2nt
xi
(�(s)− xi)

∥(�(s)− xi)∥2
(A.17)

If xj is close from xi, however different from it, we can approximate the directional curvature

as

�̂ij =
2n̂t

xi
(xj − xi)

∥(xj − xi)∥2
(A.18)

The complete principal curvatures estimation algorithm proposed by Taubin in [Tau95] and

adapted here to work on point clouds is summarized in table A.1.
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Algorithm: Estimation of principal curvatures using Taubin’s approach

Input: Unorganized point cloud X = {xi} ∈ ℝ3 with i = 1, ⋅ ⋅ ⋅ , n.

1. Construct the neighborhood graph GN , for a given sphere radius r (de-
fined through the sphere or k-nearest neighborhood system). This graph
embeds points spatial connectivity.

2. Estimate the oriented normal vector for each point xi ∈ X using Hoppe’s
technique [HDD+92] and Johnson orientation propagation algorithm
[Joh97]. Note that it is used a different neighborhood size, radius r,
to estimate such normals.

3. for xi ∈ X do

4. Initialize the matrix M̂xi
= 03×3.

5. for xj ∈ N(xi) do

6. Given xi, xj and n̂i, estimate the curvature �̂ij (2.39).

7. Estimate the tangent vector t̂ij

8. Compute wij using (2.40)

9. M̂xi
= M̂xi

+ wij �̂ij t̂ij t̂
t
ij (2.32).

10. end for

11. Let e1 = (1, 0, 0)t. Qxi
= I−wxi

wt
xi
, where wxi

=
e1 ± n̂xi

∥e1 ± n̂xi
∥ , with

a minus sign if ∥e1 − n̂xi
∥ > ∥e1 + n̂xi

∥ , and plus sign otherwise.

12. Compute Qxi
M̂xi

Qt
xi

to restrict M̂xi
to the tangent plane (A.8).

13. Compute the principal curvatures �1x and �2x .

14. end for

Table A.1: Estimation of principal curvatures using Taubin’s approach.
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A.0.1 A numerical approximation approach

Flynn et al. [FJ89] estimates the principal curvatures at a point xi by considering the normal

variation between xi and its neighbors. The strategy adopted is to estimate an approximate

of the directional curvature for each pair points xi and xj ∈ Nri(xi) and take the principal

curvatures as the maximum and minimum directional curvatures. It is assumed that the normal

vectors are oriented, consistent, and the origin of the reference frame is located at the point of

interest and the tangent plane is the one perpendicular to the normal vector.

Directional curvature approximation: From curvature definition (2.28), the directional

curvature at a point x in direction of �′(0) = t can be approximated by:

�x(t) = lim
s→0

∥�′(s)− �′(0)∥
∥�(s)− �(0)∥ (A.19)

where �(0) = x.

Given two close points xi and xj ∈ Nri(xi), the directional curvature (2.42) can be computed

as:

�̂ij =
∥tj − ti∥
∥xj − xi∥

(A.20)

where tj and ti are the tangent vectors at xi and xj , respectively, and they lie on the curve

�(s). Since both tangent vectors and normals have unit length, and tj is perpendicular to nj ,

such as ti to ni, we have that:

∥tj − ti∥ = ∥nj − ni∥ (A.21)

The directional curvature of xi in direction of a neighbor xj ∈ Nri(xi) is then given as a

discrete approximation to one-dimensional curvature along the hypothesized curve from xi to

xj [FJ89]:

�̂ij =

⎧









⎨









⎩

∥ni − nj∥
∥xi − xj∥

if ∥xi − xj∥ ≤ ∥(ni + xi)− (nj + xj)∥

−∥ni − nj∥
∥xi − xj∥

otherwise

(A.22)

where the directional curvature is positive for locally convex and negative for locally saddle

curves.

Principal curvatures appoximation: The algorithm proposed by Flynn does not estimate

the actual principal curvatures. Instead, the principal curvatures are taken as the maximum and

the minimum of (2.45) computed for all xj ∈ Nri(xi). This is a numerical approximation which

is accurate for noiseless, dense and uniformly distributed point clouds. The resulting algorithm is

linear, both in time and in space, as a function of the number of vertices and neighborhood size.
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Figure A.1: Second fundamental tensor over the tangent plane on a face. (u, v) are the directions of an
orthonormal coordinate system in the tangent frame and the second tensor is computed from [Rus04].

Since the method estimates the curvature from differential invariant properties of the surfaces,

it amplifies the noise effect. Flynn’s curvature estimation algorithm is summarized in table 2.3.

A.1 Curvature estimation on triangle meshes

We will present for completness Rusinkiewicz’s approach.

Rusinkiewicz’s approach first estimates the second fundamental tensor over the tangent plane

on a face as

Π = ( Du Dv ) =

⎛

⎜

⎝

∂nxi

∂u
⋅ u ∂nxi

∂v
⋅ u

∂nxi

∂u
⋅ v ∂nxi

∂v
⋅ v

⎞

⎟

⎠
(A.23)

where (u,v) is an orthogonal coordinate system in the tangent frame (fig. A.1). Multiplying

this tensor by any vector in the tangent plane gives the derivative of the normal in that direction

[Rus04]:

Πs = Dsnxi
(A.24)

The second fundamental matrix is estimated from (A.24) at each face, in least square sense,

using the relations showed in Figure A.1.

A coordinate system transformation is then performed to express this curvature tensor from

the face tangent plane into the vertex coordinate frame. It is computed then an scatter matrix,

where the curvature tensor of a vertex is an average of the curvature tensor from adjacent trian-

gles. The eigenvectors and the eigenvalues of this matrix is taken as the principal directions and

principal curvatures, respectively. The algorithm for per-vertex computation of the curvature

tensor presented in [Rus04] is showed in table A.3. We estimate the curvature using the software

trimesh [lib].
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Algorithm: Estimation of principal curvatures using Flynn’s curvature ap-
proximation

Input: Unorganized point cloud X = {xi} ∈ ℝ3 with i = 1, ⋅ ⋅ ⋅ , n.

1. Construct the neighborhood graph GN , for a given sphere radius r (de-
fined through the sphere or k-nearest neighborhood system). This graph
embeds spatial connectivity of points.

2. Estimate the oriented normal vector for each point xi ∈ X using Hoppe’s
technique [HDD+92] and Johnson orientation propagation algorithm
[Joh97]. Note that it is used a different neighborhood size, radius r,
to estimate such normals.

3. Initialize the principal curvatures, �1xi
= −∞ and �2xi

= ∞.

4. for xi ∈ X do

5. for xj ∈ Nri(xi) do

6. If ∠(nxi
,nxj

) < ℎ (2.41)

7. Given (xi,xj) and (n̂i, n̂j), compute �ij (2.45).

8. If (�ij > �1xi
)

9. then

10. �1xi
= �ij

11. If (�ij < �2xi
)

12. then

13. �2xi
= �ij

14. end if

15. end for

16. Assign to the point xi the principal curvatures, �1xi
and �2xi

.

17. end for

Table A.2: Estimation of principal curvatures using Flynn’s curvature approximation.



154 Chapter A. Curvature estimation

Algorithm: Estimation of principal curvatures using Rusinkiewicz’s ap-
proach

Input: Triangle mesh, with a list of vertices xi ∈ X and edges, E = {e} =
{(xi,xj)}, forming the faces, with a face given by 3 edges f = (e1, e2, e3).
Vertex coordinate and normal is also provided as input data.

1. for each face do

2. Compute edge vectors e and normal differences ∠(n′s) (Figure A.1).

3. Solve for Π using least squares.

4. for each vertex xi touching the face do

5. Re-express Π in terms xi tangent plane.

6. Add this tensor, weighted by wf,xi
, to vertex curvature. wf,xi

is
takes as the area of face f divided by the squares of the lengths of the
two edges that touch vertex xi.

7. end for

8. end for

9. for each vertex do

10. Divide the accumulated Π by the sum of the weights

11. The principal curvatures and directions are taken as the eigenvalues
and eigenvectors of Π.

12. end for

Table A.3: Curvature estimation using Rusinkiewicz’s approach.



Résumé: La géométrie 3D gagne en popularité en tant que nouvelle forme de contenu mul-

timédia numérique. Il y a un nombre croissant de projets qui ont pour objectif d’acquérir des

représentations 3D des objets du patrimoine culturel dans les musées et les fouilles archéologiques.

Lacquisition de modèles numériques 3D d’objets du patrimoine culturel permet d’améliorer la

conservation, l’archivage, la compréhension, la restauration et la diffusion de ces uvres d’art.

Pour atteindre ces objectifs, de nouveaux scanners ont été développés pour capter les détails les

plus fins des objets. Les informations fournies par ces systèmes d’acquisition sont constituées de

nuages de points bruités, non structurés et fournissant une approximation de la surface continue

de l’objet. Les masses de données traiter sont alors considérables. Dans cette thèse, nous pro-

posons de nouvelles méthodes pour représenter et traiter d’une faon efficace les nuages de points

bruités et non structurés. Les travaux réalisés concernent trois axes complémentaires : le traite-

ment des nuages de points pour lextraction de caractéristiques géomtriques (normale, courbure),

la segmentation de nuages de points et enfin le recalage basé régions de nuages de points. De

nombreuses expérimentations sur des données réelles dobjets dart sont aussi présentées.

Mots-clés: géométrie 3D, nuages de points, estimation de normale et courbure, segmentation

de nuages de points, recalage basé régions de nuages de points.

Abstract: 3D geometry has gained increasing popularity as the new form of digital media

content, it has seen an increasing number of projects to acquire detailed 3D representations of

cultural heritage objects at museums and archaeological excavations. The goals of acquiring 3D

digital models of cultural heritage objects are to improve preservation, archiving, understanding,

restoration, and dissemination these artworks. To accomplish these goals, new scanning devices

have been developed to capture fine details, irrespective of the size and number of objects, and

supplementary information, such as color and texture. The output of these acquisition systems

in most of the time is a raw point cloud, a noisy approximation to the continuous object surface,

consisting of a set of points coordinates.

The goal of this thesis is to understand and evaluate how large raw point clouds can be

efficiently represented and processed in the context of registration. As the volume of data

increases, the current registration techniques are not well adapted to treat this problem, and the

overload of pre-processing becomes enormous. A compact representation of this data becomes

an unavoidable and challenging task. This strategy is appealing because, by focusing attention

away from the entire input data to small regions, we place ourselves in a better position to

handle practical challenges arising from raw point clouds such as missing data, or occlusion,

noise, outliers, and other objects in the scene. We are particularly interested in the development

of a registration technique that works directly with the unstructured raw data and with its

compact representation, without any other pre-processing.

Keywords: discrete geometry, raw point cloud, normal and curvature estimation, raw point

cloud segmentation, graph-based segmentation, registration based on region correspondence.
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