Reversible Object-Oriented Interpreters

Henry Lieberman

Artificial Intelligence Laboratory, Massachusetts Institute of Technology
Cambridge, Mass. 02139 USA
Electronic mail (Arpanet): Henry@AI . AI.MIT.Edu

Abstract

The "programs are data” philosophy of Lisp uses Lisp’s S-expressions to represent programs, and permits a
program written in Lisp itself to implement the interpreter for the language. Object-oriented languages can take
this one step further: we can use objects to represent programs, and an object-oriented interpreter takes the form
of responses to a protocol of messages for evaluating programs. Because objects are a richer data structure than
simple S-expressions, the representation of programs can have more built-in intelligence than was feasible using
simple list manipulation alone.

This paper surveys techniques and applications for object-oriented interpreters. We focus particularly on object-
oriented interpreters that are reversible, those that, unlike conventional interpreters, remember their history of
evaluation. We illustrate the techniques involved with two applications of reversible object-oriented interpreters:
a reversible stepper for Lisp, and a programming environment which constructs Lisp programs from examples.

1. Representing programs as active objects is a key to increased power in programming
environments

As we strive to embed more intelligence in the programming environment, it is inevitable that we must change the
way we think about programs. If the machine is to be more helpful in the design, coding, debugging, maintenance
and documentation of programs, it must move beyond considering a program as simply a text string, denoting
constructs in a programming language. The obvious place to locate the more sophisticated knowledge and
behavior we will require of our programs is to distribute it in active objects representing the compenents of the
programming language itself. The responses to messages received by objects representing programs will
constitute a new generation of interpreters, some of which will exhibit novel properties.

To illustrate some techniques for exploiting object-oriented representations for programs, we will discuss
interpreters that are reversible, those that maintain a history of the computation as they interpret programs. These
interpreters, in addition to conventional program execution, also make it possible to run programs backwards, and
provide new power for incremental program construction and debugging.

2. Representing programs as objects: the basics

To convey the flavor of the technique, we start by describing the structure of a relatively conventional interpreter
for a Lisp-like language, then move on to consider more radical departures. We will show the structure of a
simple interpreter based on responses of programming language objects to EVAL messages, which ask the objects
to evaluate themselves. Whereas the Lisp interpreter is a monolithic function, the object-oriented interpreter is
distributed by the response of the various objects to messages like EVAL or APPLY. Altemative interpreters can
co-exist with the standard one, based on introducing messages other than EVAL. They may make use of the
behavior provided by EVAL if they wish.

A major advantage of using an object-based representation for programs over Lisp lists is that behavior-sharing
mechanisms such as inheritance can be used to capture commonalities between programming constructs. New

12

kinds of program objects can be defined to inherit the behavior of previously existing objects, and add new
behavior for EVAL or other messages.

The root of the hierarchy for all objects representing programs is an object called FORM [after the Lisp
terminology for an argument to the Lisp EVAL function]. For many interpreters, this object may not have much
interesting behavior by itself, but at least serves to identify those objects which have procedural semantics from
those that do not. Built directly upon FORM are the "atomic" constructs of the language. Numbers, text strings,
and "self-evaluating constants" are all instances of the object CONSTANT. When a CONSTANT receives an EVAL
message, it returns itself,

A VARIABLE is an object that has one [instance] variable, its NAME, a symbol or text string. [Note that we don’t
include the value of the variable, since we're talking about unevaluated variables]. The argument to the EVAL
message is an ENVIRONMENT object, an object that accepts LOOKUP messages to retrieve the value of a
VARIABLE. When a VARIABLE receives an EVAL message, it sends a LOOKUP method to the ENVIRONMENT.

Composite program objects are either FUNCTION-CALLs, SENDs, [if these differ in syntax], or
SPECIAL-FORMS which represent other syntactic constructs. Each of these contains a list of ARGUMENTS, each
of which is another FORM object.

The response of a FUNCTION-CALL object to an EVAL message is the guts of the interpreter. Its responsibility
is to send EVAL messageso each FORM object in its list of arguments. They ultimately send an APPLY message
to an object representing the DEFINITION of the function, as a LAMBDA object which sends EXTEND messages
to the ENVIRONMENT to bind variables, and evaluates its BODY. Message SENDs work analogously, with
MESSAGE objects, and METHODS.

Each of the special forms needs to have its own kind of object. Conditionals evaluate their TESTS, then evaluate
their THEN or ELSE parts depending on the outcome of the test. Macros invoke their definitions and initiate
another round of evaluation.

Function-Call

(send) (Conditiona)

/ Target Test

Mossage Ther
A

T Else
unction R

Arguments Special-Form
\‘\A Definition

Varlable —

Arguments
nstan Body

Figure 2-1: The object hierarchy for programs

The object protocol is transparent to control structure decisions in the interpreter. The object interpreter could
rely on the stack of the host language, or explicitly create objects for continuations or activation records.

13

3. FORM objects respond to interpreters other than EVAL

Once we have a suitable object representation for programs, interpreters driven by messages other than EVAL play
an important role. They can mediate between the object representation and other representations. Chief among
them are the interpreters that correspond to the functions of READ and PRINT. These perform coercions in both
directions between the object representation and either text strings or conventional Lisp S-expressions, in a
distributed fashion. Each FORM object responds to messages asking it to convert a text string or S-expression to a
program object, or to deliver a string or S-expression representation of itself.

These coercions are important, as they allow nonstandard object-oriented interpreters to coexist in a programming
environment with more conventional interpreters. An object-oriented interpreter such as is described above may
perhaps be slower than a conventional Lisp interpreter by factors of hundreds. But the ability to dynamically and
incrementally convert between program representations means that at any point we can "boil away" object
representation to produce a representation acceptable to conventional interpreters and compilers. This means that
we needn’t pay a permanent efficiency penalty for the use of object-oriented interpreters to enhance interactive
programming environments.

4. Applications of object-oriented interpreters: A reversible object-oriented stepper

ZStep [Zstep] is a stepping debugger for Lisp designed to provide explicit support for the task of localizing bugs
which appear in a large body of code, especially in cases where the investigator cannot make good guesses as to
where the bug might be. ZStep's goals contrast with traditional debugging tools such as tracing and breakpoints,
which are oriented toward the instrumentation of suspect pieces of code.

ZStep presents evaluation of a Lisp expression by visually replacing the expression by its value, conforming to an
intuitive model of evaluation as a substitution process. The control structure of ZStep allows a user to "zoom in"
on a bug, examining the program first at a very coarse level of detail, then at increasingly finer levels until the bug
is located. ZStep keeps a history of evaluations, and can be run either forward or backward.

14

& File Edit Font Size Lisp Env Help Windows ?
'Stepper Code tstack
(DEFUN FACT (N)) 3
(IF {TEROF K) FACT
/
(* #(FACT (~ N 1IN)))
o
<3| [©
'Stepper Result
(DEFUN FRACT (3) O

(IF #/L

/
(x 7 (FACT)

<l
2 FACT

? (step '(fact 3))
NIL =

[JE Stepper =

? ‘ (up_)(Leap
Creep

Figure 4-1: A reversible stepper displaying evaluation as substitution

When ZStep presents an expression for evaluation, the user is given a choice about whether 10 next view the
details of evaluation [the creep command], or simply see the result of evaluation [the leap command]. Successive
creep commands create a linear structure of incrementally generated evaluation events, whereas the leap
commands induce a tree structure on the history of evaluations.

Either command can be invoked either in the forward or reverse direction at any point, Thus, the interpreter that
generates the successive displays as the program is executed must be a reversible interpreter. We will show how
the technique of object-oriented interpreters makes this easy to implement an interpreter that runs in parallel with
Lisp’s, and provides the necessary reversibility property.

An important property of a debugger like ZStep is that the control structure of the stepper must be decoupled from
the control structure of the program being debugged. The traditional technique for implementing steppers is t©
piggyback the stepper’s control structure onto the control structure of the program, using hooks into the
interpreter provided by the EVALHOOK feature of Common Lisp [CommonLisp]. This won't work for a debugger
like ZStep, where the control structure of the program atways runs "forward", recursively, despite the fact that the
debugger may run, iteratively, in either direction.

5. EVENT:S provide a reversible representation of evaluation steps

The basic kind of object manipulated by ZStep is called an EVENT. Different kinds of EVENT objects represent
different states the interpreter can be in. An EVAL-EVENT is produced when the interprcier is just about to

15

evaluate a form, while a RESULT-EVENT says the interpreter is just about to return a value for a form. Similar
objects exist for APPLY.

Events are linked in four ways: First, every event is doubly linked to its "leap” event, EVAL-EVENTS 10
EVAL-RESULT~EVENTs and vice versa. Every form thus knows its value and every value knows what form
produced it. Every EVENT is linked to its UP~EVENT, the one for which it is evaluating a form, or to which it is
returning a value. The chain of UP-EVENTs thus constitutes the "stack”.

Each event is linked to its CREEP and PREVIOUS events, strictly in the order of "single-stepping” evaluation.
The CREEP events are computed lazily; The first time an event receives a CREEP message, it computes the next
step of the interpreter, then stores it to answer future CREEP queries.

Eval-Event
Funtion
Arguments Apply-Even

Environment

Creep (Apply-Result-EvenD
Previous

e <"
Eval-R -E
Yo Result-Event)—> \EvalResult-Event

[l ™ Goroven)

Figure 5-1: The hierarchy of events

The ZStep object-oriented interpreter is a distributed one, working by responses of each FORM object to a
SINGLE-STEP message. It takes an event as argument, and returns the next event in the sequence of evaluation,
if it has not already been computed. This becomes the next event accessed by the creep command, and
initialization of the event object automatically links the event objects in both directions.

To illustrate the flavor of the interpreter code, we present the response of a FUNCTION-CALL object to a
SINGLE-STEP message.

16

If I'm a FUNCTION-CALL object, and I get a SINGLE-STEP message,
with an EVENT, asking me to produce the next EVENT:
If I don‘t have any ARGUMENTS,
I return a new APPLY-EVENT
whose FUNCTION and ARGUMENTS are copied from mine.
Otherwise, I return a new EVAL-EVENT
evaluating the first element of my ARGUMENTS list,
with an ARGUMENT-EVALUATION object
that will eventually evaluate
all the other ARGUMENTs and apply the FUNCTION.
I copy the ENVIRONMENT and APPLY-EVENT for the new event
from the old EVENT,
and the UP-EVENT for the new event is the old EVENT.

Figure 5-2: Part of a reversible single-stepper

Argument evaluation objects are like continuations, in that they receive control after values are returned, and
initiate the remainder of the computation. They carry any state that must be preserved over the recursive
evaluation of argument expressions.

6. Objects representing errors are another example of unconventional interpretation
techniques

When evaluating some code with ZStep, if the code causes an error, instead of substituting the value for the code
in the result window, ZStep substitutes the error message for the code which caused the error. This is important
because it makes visually clear the context in which the error happened. The user can use the commands which
browse the event structure to discover the cause of the error.

Obviously, if an error occurs in the program being debugged, we don’t want a corresponding error to happen in
the debugger! This is a grave problem for traditional debuggers that couple the control structure of the debugger
to that of the target program. To deal with this, we introduce objects explicitly representing errors into the
language.

ERROR-EVENTS are similar to RESULT-EVENTSs, except that they hold an error message instead of a returned
value. They also must be linked to their corresponding EVAL-EVENTs. The rule for propagation of error events
says that if any expression contains an error event, that expression must itself yield an error event, including the
back pointers that maintain the reversibility of all ZStep events. Error events linked by the UP-EVENT link
preserve the "stack” at the time of the error, leaving the potential for fixing and resuming the computation at any
point.

Tinker, the example oriented programming system described below, also makes use of emror objects, albeit
somewhat differently, to implement non-standard semantics for error situations.

7. A reversible object-oriented interpreter provides the means for implementing
example-based programming

Tinker [Seeing], [Aisbed] is a novel programming environment which synthesizes Lisp programs from examples.
To write a program with Tinker, a user presents an example of data the program is to operate on, and
demonstrates the steps of the computation on the example data. As each step is performed, the results in the

17

concrete example are displayed, and the step is also remembered to become part of the final program. By
indicating which objects represent arguments to the procedure to be constructed, the user informs Tinker what
generalizations to make. A "teaching sequence" of examples may be presented, each building upon the partial
definition constructed from previous examples. When several examples are presented, Tinker asks the user to
provide criteria for distinguishing between them, resulting in procedures containing conditionals. Tinker has a
menu-based graphical interface, as shown below.

Tinker EOIT menu 1
TYPEIN and EVAL DEFUM STACK-BLOCKS (FROM TO |
TYPEIN, but DON'T EVAL
Lusw EXAMPLE for function] ~ (MOVE-BLOCK FROA 10}}
Give something a NAME !{perIne-ExAnPLES
Fill in an ARGUMENT * (STRCK-BLDCKS (A BLOCK
EVALUATE something {BRNE A)) S—
Make o CONDITIONAL | ,,(f BLOCK (RARE 1)) x
Edit TEXT -
Edit DEFINITION
Step BACK Y 2
UNFOLD something L Table |
COPY something
DELETE something
UNDELETE thing deleted
UNDO the last command
LEAVE Tinker P! ev tleciric
X achias
[Defining (STACK -BLOCKS (A BLOCK [NAME X 1) (A BLOCK (NAME Y 11):
Result: # (A BLOCK (NANE X)), Code: FROM
Result: #,(A BLOCK (NAME Y)), Code: TO

Result: “Z on TABLE™, Code: (STACK-3LOCKS (BLOCK-ABOVE SLOCK-X) THE-TABLE)
Result: "X on Y, Code: (MOVE-BLOCK FROM T0)

Type something to eveluste:
(MOVE-BLOCK FROM TD)

MACS (CISP Abbrev Eleciric Shifi-Tock) Wistory Font: A (FEDFRE] »
LOCK-RBOVE : (BLOCK)

Figure 7-1: Writing a blocks world program by example with Tinker

The heart of Tinker, like ZStep, is a reversible object-oriented interpreter. While ZStep's interpreter starts by
running forward, beginning with Lisp code and unfolding the sequence of events that take place for a particular
computation, Tinker's normally runs backward. Starting with an example computation, Tinker’s interpreter
eventually generates Lisp code that corresponds to the user’s intended program.

Values are input to Tinker in one of two ways: either by evaluating typed Lisp expressions, or as the result of
demonstrative actions like menu selections. In any case, Tinker converts the expression to a FORM object. The
evaluation of this FORM object via EVAL messages produces what Tinker calls a RESULT object. This object
contains both the value, and the original FORM that produced it. Both the value and code are displayed for each
such object, appearing in the center window of the Tinker screen.

More complex expressions are built out of simple ones by utilizing the RESULT objects as arguments in further
computation. The user can point to an already-computed value, and pass it as an argument to some other
function, using the menu operation Fill in an argument. The function will be executed using the indicated value,
but the RESULT object produced will contain the code that created the value instead of the value itself. Thus
every Tinker computation represented by a RESULT object records a complete history of its computation, which
is finally read out in the opposite direction when Tinker constructs the final program. While conventional

18

interpreters analyze expressions from the outside in, Tinker builds up an expression "inside out".

Tinker has no need of the doubly-linked linear history of events produced by ZStep. But Tinker does have
another novel data structure for interpretation of programs, motivated by the need to handle multiple examples. A
RESULTS object is similar to the RESULT object introduced earlier, but records the commespondence between a
piece of code and its execution in more than one environment. As multiple examples are presented to Tinker for
the same function, a RESULTS object is sent a MERGE message to incorporate each successive example. The
RESULTS object contains a list of VALUES and ENVIRONMENTS, instead of just a single value and
environment. For subexpressions where the examples differ, Tinker assumes the user intended to generate a
conditional. The set of values and environments for that subexpression becomes split, with one subset following
the THEN part of the conditional, and the other subset following the ELSE part.

8. Object-oriented interpreters have application in language design

One reason object-oriented languages are popular among system developers is that they provide a good substrate
for further experimentation in developing new languages and systems. A major category of applications of
object-oriented interpretation techniques is in the implementation of new languages on top of existing object-
oriented ones. One can use an object-oriented representation of programs in the embedded language, and define
an interpreter which implements the semantics of the language by "unfolding" it into the implementation
language. This is another kind of reversibility that can appear in object-oriented interpreters. Scripter
{ApiarySimulator] and its successor Pract[Pract] interpret actor programs by transforming them from a
recursively nested expression form to unidirectional message passing using generated continuation objects.
Symbolic evaluators, "code walkers”, indexers, and partial evaluators are also examples of alternative evaluators
that can profit from implementation in an object-oriented fashion.

The idea of representing programs as objects, by itself, is not new. The most radical object-oriented languages,
such as the actor languages [Coop) and Smalltalk [SmalitalkLanguage] represent everything as objects, and so
have no choice if they wish to represent programs at all. The actor languages have long had object-oriented
interpreters written in the manner we describe. Smalltalk-80, a compiler-based system, lacks an interpreter, but
implements its compiler through compilation messages, though perhaps not as accessibly as one would like.

It has been pointed out that the denotational semantics technique for defining the meaning of programming
languages [DenSem) bears some conceptual similarity to object-oriented interpretation techniques. Syntactic
categories of language constructs are the "objects”, and equations involving them constitute the "interpreter”.
However, these formalisms are weak on dynamic representations, don’t explicitly consider reversibility, and have
litte 1 say about the consequences for programming environment issues such as incremental program
construction and debugging.

The examples presented here far from exhaust the uses of reversible object-oriented interpreters. We hope that
these examples give some indication of the power and utility of the techniques. Computer programs are complex
entities which can be viewed in many different ways, and object-oriented representation of programs provides a
convenient and effective means of realizing some of the possibilities.

9. Acknowledgments

Major support for this work was provided by by the System Development Foundation. Related work at the MIT
Al Lab was sponsored by DARPA under ONR contract N00014-80-C-0505.

19

References

1. Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. Addison-Wesley,
Reading, Mass., USA, 1983.

2. Henry Lieberman. An Object Oriented Simulator for the Apiary. AAAI-83, American Asociation for
Antificial Intelligence, Washington, D. C., USA, August, 1983.

3. Henry Lieberman. Steps Toward Better Debugging Tools for Lisp. Proceedings of the Fourth ACM
Conference on Lisp and Functional Programming, Austin, Texas, USA, August, 1984.

4. Henry Licberman. "Seeing What Your Programs Are Doing". International Journal of Man-Machine Studies
21, 4 (October 1984).

5. Henry Lieberman. "An Example Oriented Environment for Beginning Programmers”, Instructional Sciences
14 (1986), 277-292. i

6. Carl Manning. Traveler: the Apiary Observatory. ECOOP-87 [this volume], Paris, France, June, 1987.
7. Guy Steele, et. al.. Common Lisp: The Language. Digital Press, Maynard, Mass., USA, 1984.
8. Joseph Stoy. Denotational Semantics. MIT Press, Cambridge, Mass., USA, 1977.

9. A. Yonezawa and M. Tokoro, eds.. Concurrent Object Oriented Programming. MIT Press, Cambridge,
Mass., USA, 1987.

