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Abstract

This paper discusses knowledge sharing (inheritance) mechanisms for Object-Oriented Programming
(OOP) in the context of concurrent (distributed) languages. We review three different schemes: inheritance,
delegation and copy. A fourth model, called recipe-query, is presented and all are compared and criticized.
Techniques relying on the shared memory assumption are rejected. We point out the conflict between
distributing knowledge among objects and the synchronization of concurrent objects.
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1 Introduction

1.1 Knowledge Sharing for Modularity and Classification

Knowledge sharing (or inheritance) is a mechanism intensively used in OOP. Its basic idea is the reuse of
object descriptions. After defining an object, we would often like to refine it into a more specialized one.
Rather than defining a new object from scratch, we could define it by inheriting the specification of the
previous one.

The first main advantage of knowledge sharing is the increase of modularity it brings to OOP rather than
duplicating similar knowledge. The second advantage is the introduction of classification among objects. It
is used to hierarchically (or almost hierarchically) structuring knowledge, and it makes knowledge searching
more efficient [Touretzky 86].

From an implementation point of view, knowledge sharing is also a very good means to share code
efficiently. However, code sharing is only one of the implementation model [Borning 86). We will also
present other strategies based on a copy approach.

1.2 Strategies, Assumptions and Compromises

The Smalltalk inheritance scheme is just one of the strategies to specify and implement knowledge sharing.
But the preeminence of inheritance among the majority of OOP languages gave this term a generic meaning.
Delegation [Lieberman 86b] is another strategy we discuss as well. Delegation is discussed in the framework
of the Actor model of computation [Hewitt 76,Lieberman 81]. Other models presenting various knowledge
sharing and classification mechanisms include frames languages (e.g., FRL [Roberts & Goldstein 77] and
KRL [Bobrow & Winograd 77]) and (parallel) semantic network languages (e.g., NETL [Fahlman 79]).

We note that there are many different description and implementation strategies for knowledge sharing,
but usually they are compromises between full dynamicity and full recopy. Also many systems rely on strong
assumptions. The most usual assumption is the existence of shared memory. This allows to gain efficiency
by following the inheritance links which are implemented by simple pointers. In contrast, we like to explore

*also LITP, University Paris VI, 4 place Jussieu, 75005 Paris, France



33

the strategies of inheritance in more general memory models, i.e., general distributed models, because we
are concerned with concurrency and flexibility. (America’s paper [America 87] on the same topic emphasizes
reliability issues through the separation of inheritance from subtyping.)

1.3 Plan of the Paper

As the background of our discussion, we will first review the two main schemes used in object-oriented
systems, namely inheritance and delegation, in Section 2 and Section 3 respectively. We will compare them,
following [Briot 84] and [Lieberman 86a]. Only the delegation scheme is flexible enough to be free from
the shared memory assumption, so we will examine and criticize it in the distributed memory context.
We will show in section 4 that delegation can conflict with synchronization. Section 5 will then present
an alternative to delegation based on a synchronous approach, but unfortunately this scheme (called the
recipe-query scheme) also suffers from some deficiencies. The last scheme we will discuss in Section 6 is a
copy approach. We will discuss the tradeoff between flexibility and efficiency in this approach and present
some techniques to increase flexibility.

2 The Smalltalk Inheritance Scheme

The Smalltalk inheritance scheme (also often called subclassing and pioneered in Simula-67 [Dahl et al. 70])
was proposed in Smalltalk-76. This scheme has been followed by most OOP languages.

In this scheme, knowledge is shared among classes. A class can be declared as a subclass of another
class, called the superclass. The subclass will then inherit the structure and properties of its superclass.
This subclass/superclass hierarchy is usually represented as a tree, which is called the inkeritance tree. (It
could be a more general graph in case of multiple inheritance. We won’t discuss it here.)

2.1 Variables and Methods

This inheritance scheme is strongly related to the class notion of Smalltalk and its implementation decisions.
The designer of Smalltalk has separated the inheritance of the data-base of an object, called the variable
dictionary, from that of its method-base, called the method dictionary. The first one is of the static nature
whereas the second one of the dynamic nature.

The variable dictionary of an object is split in two parts. The class owns the ordered set of variables (or
the index to them), while every instance of the class owns its corresponding values. The class code is shared
by all its instances, thus an instance needs a link to its class and the isomorphism between variables and
values must be maintained. As a consequence, the set of variables owned by the class should not vary over
time and is determined at the time of defining the class. The inheritance of variables of a class is static and
performed only once when the class is created. (The list of variables of a class inheriting from its superclass
is set by concatenating the list of variables of the superclass before the variables of the class.)

Ou the other hand, the inheritance of the method dictionary is dynamic. When one activates a method
which is not explicitly specified in the definition of the class, the lookup process for the method begins in
the method dictionary of the class the object belongs to. Then it propagates along the subclass/superclass
hierarchy until the method is found.

2.2 Flexibility versus Efficiency

This is one of the main tradeoffs in knowledge sharing. The Smalltalk inheritance scheme is a good tradeoff.
The inheritance of the variable dictionary is static thus efficient, but the changes in the subclassing rela-
tions won’t propagate unless there is an automatic updating mechanism. The link between a class and its
superclass is “hard-wired,” which is usually implemented as pointers for the efficiency purpose in the same
way as the link between an object and its class. The inheritance of the method dictionary is dynamically
performed at run time, which often slows down system performance. But this dynamicity gives us a greater
degree of flexibility. Our main comment is that this inheritance scheme using hard-wired links is not suitable
for distributed memory models.
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3 Delegation

The delegation scheme has been proposed in the Act-1 language [Lieberman 81]. An object (called an actor
in this computation model {Hewitt 76] where the class concept is absent) knows about another object called
a prozy. The object will (at runtime) delegate to its proxy the messages that it cannot recognize. This
proxy can in turn delegate the message to its own proxy. The proxy will handle the message in place of
the initial receiver of the message. The intuitive account might be: “I don’t know how to respond to this
message, can you respond for me?” [Lieberman 81].

3.1 Delegation versus Inheritance

In contrast to the Smalltalk inheritance scheme, in the delegation scheme the inheritance of the variable
dictionary is dynamic. In fact, accessing (read or write) a variable in the variable dictionary is like invoking
an accessing method associated with this variable. There is no merging of the data-bases as in the Smalltalk
scheme. The delegation scheme enjoys the uniformity of the communication protocol: the delegation to
the proxy of an object is performed by message passing, not by a system primitive through the hard-wired
physical link (pointer). Thus delegation can be fully designed at the user-language level and it can be
locally customized by the user easily. This scheme is independent of the assumption of shared memory and
is perfectly suitable for distributed (memory and computation) models. It also allows full dynamicity and
modularity.

In examining this scheme, two issues, namely efficiency and synchronization, must be addressed. Effi-
ciency can be gained by interpreter optimization such as caching [Deutsch & Schiffman 84,Lieberman 86b].
But as we will see in Section 4, synchronization can conflict with recursion and the problem is not simple.
There seems to be a tradeoff between distributing knowledge and synchronizing its access in concurrent
models.

3.2 Access to Variables through Message Passing

In the delegation scheme, variable consultation as well as method activation should be performed through
message passing because both can be delegated to another object (the proxy). Thus there is no direct
variable reference, but an indirect access through message passing in order to be independent of variable
location. Accessing to a variable in an object corresponds to a message sent to the object itself. The simplest
and most natural way is to identify the name of the variable with the pattern (selector) of the message to
access it.

3.3 From a Serial to a Parallel World

In order to present the delegation scheme, we will first restrict it to a functional and serial world. We
will then move to a parallel world and point out the difficulty of synchronization which emerges. A simple
example will help us to illustrate this point.

Thus we first identify message passing with function call as in most of OOP extensions of Lisp. Let ask
denote the primitive to send a message and return the evaluation of the method activated. Then to consult
the variable x is equivalent to perform a function call: (ask self *x ’get). To update the value of x is
equivalent to: (ask self ’x ’set new-value).

3.4 Implementation of Variables

There are several strategies to implement variables. We will present two such strategies, with different level
of object granularity, i.e., size of objects.

3.4.1 Variables as Methods

The first strategy considers each variable as a method (with the same name as the variable) with an optional
argument. This optional argument represents the new value in case of updating. Each variable-method is
implemented by a closure to store and protect its value. The distinction between copsulting and updating
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the variable can be made through the test of this optional argument. However we chose to explicitly specify
the operation name (get or set) in the message for the readability purpose.
In CommonLisp, such variables could be defined with:

(defun make-variable-method (value)
#’ (lambda (operation &optional new-value)
(if (eq operation ’set) (setq value new-value) value)))

In this implementation model, variables are directly invoked through method calls.

3.4.2 Variables as Objects

Another strategy, proposed by Henry Lieberman [Lieberman 86a), represents each variable by an object.
Each such variable-object owns the two methods that handle two kinds of messages: one to consult the
variable (get), and the other to update it (set). In contrast to the previous strategy, we need to explicitly
redirect the access message to the variable-object. Now the script of any object (i.e., the behavior of the
object when it receives a message) needs to distinguish a method invocation from a variable access. If no
method is applicable, the script checks the existence of a variable with same name in order to redirect the
accessing message to it, otherwise the unrecognized message is delegated to the proxy.

Table 1 shows in column 2 how to access a variable of an object through message passing to the object.
This is common to both strategies. On the other hand, column 3 (message passing to the variable-object)
is specific to this second strategy. All the discussion in the rest of the paper is independent of the strategy
choice.

variable reference message to the object message to the variable

read x (ask self ’x ’get) (ask x ’get)
update x with new-value (ask self ’x ’set new-value) (ask x ’set new-value)

Table 1. Variable accessing through message passing.

(Remark that we omit here the description and the solution to the self problem, i.e., how to handle
correct recursion, which is described in [Lieberman 86b).)

4 Delegation and Synchronization

4.1 Variable Access and Atomicity

The delegation scheme relies on message passing to access variables, as previously shown. The ask primitive
using a function call model synchronizes such accesses. However in some concurrent models such as the
Actor model, message passing is asynchronous and unidirectional. There is no implicit synchronization. As
a consequence, variable access is no more atomic and could be mishandled.

To present this problem, we now consider the delegation scheme in a parallel world. The functional
call (synchronous) ask primitive is replaced by the asynchronous send primitive. The optional :reply-to
keyword allows the specification of a continuation or customer®.

A simple example will illustrate a synchronization problem when accessing a variable. This example
doesn’t involve delegation but it shows that the requirement of the delegation scheme, namely accessing to
variables through message passing, conflicts with an atomic access to variables.

1A customer is an object which encodes all the behavior necessary to resume a computation after reception of an answer to
a question [Hewitt 76,Lieberman 81].
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4.2 The Counter Example

Suppose that we define a simple object, named counter, which owns only one variable, named contents.
We now explain how counter will increment its contents.

When counter is requested to increment, the first thing to do is the reading of its contents variable.
Because message passing is unidirectional, we need to explicitly specify an object which will receive the value
of contents and increment it. We dynamically create a customer object called incrementor dedicated to
the incrementation. (Such a customer could also be automatically created by a compiler such as Scripter
[Lieberman 83].) The incrementor object will receive the value of contents, add 1 to it, and then send a
message to counter to update contents with that new value. Figure 1 shows the counter and incrementor
objects, and their message exchanges.

incrementor

contents set 1

contents get
:reply-to incrementor

Figure 1. Incrementation of counter.

Table 2 shows the computation of the incr method. Four message passings are performed and they are
ordered from (A) to (D) by their causality. (A) is the initial increment message (incr) sent to counter. We
assume the value of contents is initially 0.

(A) (send counter ’incr) from top-level
(B) (send counter ’contents ’get :reply-to incrementor) from counter
(C) (send incrementor ’reply 0) from counter
(D) (send counter ’contents ’set 1) from incrementor

Table 2. Incrementation of counter: causality of messages.

4.3 Message Ordering Issue

Suppose that we send consecutively two incr messages to counter. We cannot ensure that the value of
contents will be 2, because the incr method is not atomic. Messages can interfere during the processing
of the incr method, because this method reduces to several message passings. As a consec}uence, the two
incr computations may overlap and the first assignment may be shadowed by the second cne. The second
incr message (A’) will create three new message transmissions (B’) to (D). If the second message (B’)
consulting the contents variable happens to reach counter before the first assignment message (D) caused
by the first incr message, the first incrementation will be shadowed by the second one. Then the value of
contents becomes 1. The problem is the ordering of messages which cannot be predicted.

4.4 Fairness and Recursion

In an asynchronous message passing model, the messages sent to an object O are ordered (in a queue)
following the ordering of their arrivals to O. It is assumed that two messages cannot arrive at the same time.
An arbiter orders them. This arbiter must be fair [Clinger 81]. As a consequence, in case of recursion (the
object O sends a message to itself), the ordering of this recursive message and another message sent to O
cannot be predicted. Meanwhile we would like to handle recursive messages at first to regain the atomicity
for variable access, but then it would conflict with fairness.
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We may lock counter to avoid it to process some other messages before the end of the incr method
computation. But the problem is not simple because, on the other hand, counter needs to accept the
recursive messages (sent by itself) and even messages sent by local customers such as incrementor, while
temporarily rejecting other incoming ones. It is possible to implement such a mechanism but the scheme
becomes very complicated, which is opposed to its intuitive foundation.

A way is to use a waiting mode or/and a synchronous message passing type, such as the now type of
the ABCL model [Yonezawa et al. 86]. In this model, the order of message transmission from one object
to another object is preserved in the message arrival order. We may also simulate a waiting mode with
insensitive actors [Agha 84] in the new Actor model. However, in any case we cannot rely on synchronous
calls in case of recursion, because we get a deadlock. If we use a synchronous approach, the delegation model
should be replaced by another scheme, the recipe-guery scheme, we present in Section 5.

4.5 The Replacement Actor Scheme

We notice that the latest Actor model [Agha 85) relies on atomic objects. In this model, there is no side
effect. In order to allow changing states, an actor must specify its replacement actor which could have a
different state. As soon as this replacement takes place (using the primitive become), the replacement actor
begins to process the next message in the mail queue, thus allowing a pipelining of incoming messages. There
is no delegation proposed in the Actor model of [Agha 85]. It seems complicate to combine this replacement
scheme with delegation scheme because the replacement action should be delegated to proxies, but the state
changing of an object and that of its proxies must be synchronized (through transition to insensitive actors)
in a proper manner. The next section will show another strategy to synchronize delegation messages by
explicitly ordering the messages through a manipulation of communication channels (streams).

4.6 Synchronization through Stream Manipulation

In the Vulcan language [Kahn et al. 86, the basic computation model is similar to the replacement Ac-
tor model of Agha. A “perpetual” object is implemented in a Concurrent Logic Programming Language
[Shapiro & Takeuchi 83] as the illusion of a perpetual process, i.e., an ephemeral process that continually
reincarnates itself in another process with the same functor and consuming the remainder of the message
stream. A state change is represented by a new incarnation of the object replacing the old one. The new
process owns a new state instead of the old one. The stream (used as a communication channel) is passed
along from process to process in order to provide a perpetual identity to the object.

A delegation scheme is proposed? in Vulcan. The explicit manipulation of the communication stream
avoids the serialization problem we pointed out above. Recursion will operate on self so that any message
sent to self during the delegation will arrive before those sent externally. This technique allows a good
handling of recursion and delegation, because the communication channel is unique and explicitly declared.
But the issue of ordering preservation in case of stream merging is not addressed. In case of a fair merge of
streams, any kind of insertion could occur, so the problems of overlapping we pointed out could reemerge.

The delegation scheme is conceptually natural and flexible. However, the synchronization issue must be
carefully taken care of because accessing variables is performed through message passing.

5 An Alternative Scheme to Delegation

We now present another scheme, which we will call the recipe-query or “reverse” scheme, because it intuitively
works in the reverse way of the delegation scheme.

5.1 Recipe-Query Scheme

Rather than delegating an unrecognizable message, the receiver object will ask another object (proxy) for
the “recipe,” i.e., the method of how to answer to the message. In that case, the receiver object waits for the

3In Vulcan, a class model is adopted. An inheritance mechanism is implemented by a recopy of the inherited cofle. A
delegation mechanism is also proposed in order to define delegation from an object to its components (parts). This was
previously introduced in [Shapiro & Takeuchi 83] and [Yonezawa 83].
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proxy to send back the method associated to the message. Then using that method, the original message
will be processed. Figure 2 compares delegation and recipe-query schemes.

recipe-query

delegate
message

~ method

(recursive messages)

message

Figure 2. Delegation vs. Recipe-Query.

This scheme relies on some assumptions. Every object should understand the message: “What is your
recipe for that message?”. This pattern must be primitive and default to the set of methods of any object.
We could also introduce a special type of message to get a method’s body. In both cases it decreases the
uniformity.

The second assumption is concerned with how to send back the recipe method to the initial receiver.
Without the shared memory assumption, we cannot just send the address of the code. A solution to this
problem is to copy the code body of the recipe method and to send it back. Then the body is executed.
This operation might be rather expensive in terms of memory allocation. Another solution assumes that
methods are themselves objects. Then the address (or name) of the selected recipe object can be sent back.
The initial receiver object will then send an “eval” request to this method and wait for acknowledgment of
its termination. Unfortunately, the method object may need to access a variable in the receiver object by
sending a message to the receiver object which has been already locked. Once again it is difficult to avoid
deadlock. This scheme, as delegation, does not fully satisfy our needs.

If however, we are allowed to send the environment of the object with the “eval” request, variables could
be accessed directly, and no deadlock will occurs. Thus the above problem will be resolved. But the number
of message transmission will become very large (to get all the variables distributed along the proxies-chain),
which might not be appetizing to those who are seriously concerned with the current states of the art in
computer architecture. Note that the number of message transmission can be reduced if the inheritance of
variables is disallowed.

5.2 Object-Based Inheritance Scheme

We recently discovered the existence of a scheme which is very close to ours. The object-based inheritance
proposed by Hailpern and Nguyen {Hailpern 86,Nguyen & Hailpern 86] has some similarity with an “au-
toload” library concept. They comsider two kinds of methods: simple methods and inherited methods. A
simple method contains the actual code to be executed. An inherited method contains pointers (hard-wired
links) to other objects which would contain the code. Two types of messages are provided: the usual type is
called request, and the other is called inheritance which is used to access inherited methods. A copy of the
body of the inherited method is sent back and evaluated in the name-space of the initial receiver. Message
passing is synchronous, and messages are serialized to each object except for inheritances which could be
processed in parallel because memory is not affected. Memory allocation problem seems to be significant in
this scheme.

6 The Copy-Everything Scheme

In order to avoid the difficulties met with either delegation or recipe-query schemes, we can adopt a very
simple scheme in which both variable dictionaries and method dictionaries of inherited objects are all copied
and installed into the inheriting object when it is created or compiled. The advantages of this approach are
the efficiency of execution and the atomicity of processing a message, thus avoiding serialization problems.
This approach is usually chosen in static (compiled) OOP languages.

The two deficiencies associated with this approach should be pointed out. First, the code size becomes
very large because of all the recopies, specially in the case of very general objects being inherited by a large
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number of objects. The second deficiency is the staticity of inheritance, i.e., once copied, a change to the
initial object won’t affect the new ones. It is possible to use some techniques to reduce these two weaknesses.
We review them below.

6.1 Memory Occupation

In Janguages with inheritance, there is usually a class called Object. This usual default superclass represents
the most common (or default) behavior and is the root of the inheritance tree. As a consequence, every
object will recognize the methods specified by this root class, unless they are shadowed somewhere in the
hierarchy. We cannot use such a basic object in our copy scheme. If we do so, its code will be copied into
every object. To alleviate this problem, basic (default) methods should be declared as global (or at least
on each machine). Their activation will rely on a default mechanism, not on the usual inheritance scheme.
Then the uniformity of inheritance will be lost. One way is to store default knowledge about a message with
the message itself, as suggested in [Lieberman 86b]). Anyway the use of inheritance should be restricted to
objects which have a small number of light offsprings otherwise the copy-everything scheme is too heavy.

6.2 Updating Problem

An automatic updating mechanism can be easily added in order to remedy the second shortcoming, Such a
facility is used in the inheritance of the Flavors system [Moon & Weinreb 80]. We assume that objects won't
change too often, and again that their offsprings are not too many. (In the Flavors system, a change made
to the Vanilla flavor, the root of the hierarchy, will start a recompilation of the entire system!). [Borning 86)
proposes a definition of inheritance by augmenting a copy mechanism with a constraint mechanism to
support classification and updating, Unfortunately solving the updating problem doesn’t solve the memory
occupation problem.

7 Conclusion

In this paper, we have reviewed and discussed the main strategies proposed for inheritance (knowledge shar-
ing) in object-oriented concurrent programming {Yonezawa & Tokoro 87]. We remarked that the attempts
to increase the flexibility of inheritance by widely distributing functions and knowledge among objects com-
plicates the synchronization issues. The tradeoff between the distribution for the sake of flexibility and the
atomicity for the sake of synchronization appears to be fundamental in concurrent (distributed) computa-
tion. Alternatives based on synchronous communication tend to restrict the degree of concurrency that is
the primary concern in concurrent computation and increase the deadlock risks. More static approaches
based on the copy scheme solve these problems but inheritance should be restricted to avoid memory over-
loading. Delegation seems to be the most promising approach for knowledge sharing in distributed systems,
but we must be very careful in combining the requirements of the delegation approach with the necessity of
synchronization. We now need to find good compromises which are derived from both the characteristics of
application domains and the underlying architectural supports for object-oriented concurrent programming,.
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