Object Representation of Scope During Translation

S. C. Dewhurst
AT&T, Summit, New Jersey 07901, USA

ABSTRACT

Languages, such as C++, that combine static type checking with inheritance
pose a challenge to the compiler writer: the flexibility of the type and scope sys-
tem implies that a compiler must be able to cope with data structures of a com-
plexity far exceeding what is needed for traditional languages. Fortunately, they
also supply the means for coping with this complexity. This paper describes the
strategies devised for representing and manipulating C++ scopes and the storage
management techniques employed to make these representations efficient. The
techniques have been used to implement a CH- compiler in C++.

1 Introduction

Scope is typically represented at translation time exclusively as an attribute of a name, either
explicitly as a field within the name or implicitly by the presence of the name in a data structure
that implements the compile-time semantics of scope. The data structures that maintain the
relationship between name and scope are traditionally monolithic; that is, all scope information is
contained within a single structure. This structure is modified as the program is translated to
reflect the changing scope.

This organization is well-suited to the translation of traditional block-structured languages in
which the "current” scope changes rather slowly as the program text is analysed. Since scope
changes slowly, the modifications of the data structure used to represent it are relatively res-
trained. However in CH+ and a number of other modern languages the combination of static
type checking and inheritance produce a scope structure too complex and volatile to be easily and
efficiently represented with traditional compiler symbol table structures. The solution developed
for the C++ compiler represents scope as an object and the dynamic nature of scope during
translation as a dynamic graph of these scope objects. In addition to simplifying the task of
maintaining scope information, this approach permits efficient translation-time storage manage-
ment and provides opportunity to interface to environment tools to save and restore compilation
states, and to avoid recompilation of commeon program pieces.

Section 2 shows how language features affect the structure of scope during translation, section
3 describes the implementation of the object-oriented solution, section 4 shows how this approach
allows for efficient translation-time memory management, and section 5 describes some applica-
tions this style of memory management makes practicable. Because these techniques were
developed for a C++ compiler they are motivated by examples from the C+ language. How-
ever, the examples are of minimal complexity and should not require prior knowledge of C++.

2 Effect of Language Features on Scope Structure

For the purposes of the present discussion, a class in C++ can be considered to be simply a
record type containing both data and function members. The body of a member function occurs
in the scope of the class of which it is a member. Figure 1 has an example of a member func-
tion:



72

int i
class B {
int 1i;
void £();
b
void B::f() { ... =1i; }

Figure 1

The syntax B::f uses the scope operator :: to indicate that £ is a member of class B. The i
referenced in the function body of £ refers to the member i, not the global one. Functions can
also be defined within a class body:

int 1i;
class B {

int i;

void £() { ... = i; }

friend void £() { ... = 1i; }
}s

Figure 2

In Figure 2, class B has two members: the integer i and the function £. The friend desig-
nation of the non-member function £ is related to the data hiding features provided by C++ and
is beyond the scope of this paper. It is sufficient to note that the friend function is not a member
of class B, and so the reference to i in its body is a reference to the global i. Note also that
both functions may be referred to through the same identifier because they are defined in dif-
ferent scopes; the member function is in the scope of class B, while the non-member function is
at global scope. The semantics of the member function £ in Figure 2 are identical to those of
the member function in Figure 1. These examples show that lexical and semantic scope are
separate in Ct++; that is, lexical nesting does not imply semantic nesting.

C++ accomplishes type inheritance through the mechanism of class derivation. The derived
class inherits the members of its base class in addition to its own members. However, a member
of the base class is hidden in the scope of the derived class if its identifier has been reused in the
derived class.

class B {
public:
int i, 3;
}s

class D : B {
int i;
void £() { i = j; }
}s;
Figure 3

In Figure 3, class D is derived from class B. The keyword public, like friend, is related to
the data hiding features of the language. The body of member function £ assigns the value of
the base class member 3j to the derived class member i. A derived class occurs in the scope of
its base class. Note that this "enclosing" scope is unaffected by the scope in which the individual
classes are defined:



73

class B { ... };

void g() {
class D2 : B { ... };
}

Figure 4

The enclosing scope of class D2 is still that of B even though D2 is defined in the scope of the
function g. These examples show that in Ct+ there is not necessarily a relationship between
enclosing scope and scope of definition of a name, except, of course, that the lifetime of the
enclosing scope must at least include that of the scope of definition. This is always the case.

The practical effect of class derivation (type inheritance) on scope is the production of a very
complex scope structure and a very volatile notion of the "current” scope. The following example
combines the concepts outlined above and will serve to motivate the approaches discussed in the
following section:

class B {
int m1();
}s
class D1 : B {
int m2();
}s
int £1() {
class D2 : B {
friend int £2() { ... }
int m3() { ... }
};
}
int D1::m2() { ... }
Figure 5

3 Object Representation of Scope

Fortunately, while the features of languages like C++ produce these translation difficulties
they also provide the means to solve them through support for the object-oriented programming
paradigm. The strategy employed by the C+ compiler is to define a general "scope object” class
which contains references to the objects that represent its enclosing scope and routines that
implement the semantics of the scope (such as lookup and insertion).

As each scope is entered, a corresponding object is created and its enclosing scope references
set to the objects that represent its enclosing scope. When the scope is no longer accessible its
scope object is deleted. In this way, as scopes are entered and deleted the compiler maintains a
graph of scope objects that reflects the scope structure of the program being translated.t Figure
6 shows the graph that is produced by the example in Figure 5 at the point during which the
body of function m3 is being translated.

+ In the absence of multiple inberitance, each scope object will contain at most one reference to an enclosing scope
object and the graph will always be a tree.



74

Figure 6
Figure 7 is a finer-detailed view of the structure in Figure 6. It shows the separation of scope of
definition and enclosing scope. Names are represented as labeled boxes and scope objects as
ellipses. The scope object that is an attribute of a given name is indicated by a solid arrow from
the name to the scope abject. The dashed arrows show the scope hierarchy illustrated in Figure
6.

current
scope

Figure 7
In effect this scheme uses the complexity of the program under translation to build and main-
tain the scope graph. Thus the burden of complexity is abstracted from the program and the
compiler needn’t anticipate all the combinations of scoping situations that could arise. For exam-
ple consider Figure 5 above. Although the scope of definition of D2 is the scope of £1 (that is,
the name of D2 is entered in £1’s scope) the scope of £1 is not interposed within the scope



75

hierarchy formed by D2 and B. Because all scope information about £1 is represented in a sin-
gle object, the separation of lexical and semantic scope is accomplished simply by positioning
£ 1’s scope object in the correct position in the graph. No complex algorithm is needed to bypass
the scope of £1 when referencing a name in the scope of D2.

The current scope is represented at any given time by a single node in the scope graph. The
current scope is the set of graph nodes reachable from the current node.tf For example, the scope
current while translating the body of function m3 in Figure 5 is represented in Figure 6 by the
list of scope nodes labeled "m3", "D2", "B" and "global". Because the current scope is represented
by a single node in the scope graph, the volatile nature of current scope can be handled easily
and efficiently by stacking references to nodes. For example, referring again to Figure 5, when
the friend function £2 is encountered, the current scope (labeled D2) is pushed on a "lexical
scope” stack, and the current scope is set to a new scope node for £2, with global enclosing
scope. At the end of translation of £2, the stack is popped to restore the old scope. The defini-
tion of the member function m2 at the end of the figure is handled in a similar way; the current
{global) scope is pushed and the new current scope is set to a new node for m2, with the parent
as D1.

The CH compiler partitions scopes into three categories: global, class and function. Each
category is represented by a class derived from the general scope class, and is tailored to suit the
characteristics of the scope in question. The global and class scope types both implement "flat”
scopes,T but the global scope type is optimized to handle a larger number of names than the class
scope type. The function scope type implements a block-structured scope. Additionally, each
type implements a number of scope-specific operations that are not present in the others. The
conventional implementation of scope as a monolithic data structure with complex access and
insertion rules is replaced by a coliection of simpler objects that need concern themselves only
with their own structure and the locations of their enclosing scope. This simplicity is a typical
advantage of an object-oriented solution.

The decision as to what constitutes a scope is as flexible as the translation task requires. For
instance, the C4++ compiler does not consider a block within a function as creating a scope;
rather, block structure is an attribute of function scope. The rationale for this is that the flexi-
bility of the object approach is not required within a function, where conventional techniques for
maintaining block structure are clear and efficient. Additionally, certain translation information,
such as activation record layout, is naturally associated with an object that represents an entire
function, rather than a collection of block objects.

Another advantage of the object-oriented approach is that of being robust in the face of
change. The Ci++ language is still evolving, and the localization of semantic routines to indivi-
dual object types allows new semantics to be added without incident. Likely additions to the
language, such as multiple inheritance, can be accommodated without significant disruption of
the structure of the current compiler.

4 Efficient Translation-Time Memory Management

The logical locality implied by an object also permits an easy implementation of physical
locality, either as contiguous memory or in easily accessible locations. That is, if every language
feature is associated with a given scope, then the compiler data structure used to translate an
instance of that feature can be associated with a given scope object. The lifetime of the data
structure should be identical to that of the scope object, just as the lifetime of the feature
instance is no greater than that of the scope in which it appears. As an example consider a func-
tion definition at global scope. At the exit of the function scope, the scope object of the function
may be freed. Note that because the name of the function is not in the function scope, this
action will not remove information required for translation to continue. If all the data structures

+ In the absence of multiple inheritance the scope is represented by a simple list of nodes.
+ That is, a scope in which an identifier always refers to exactly one name.



76

associated with the function scope object are removed along with it, then the remaining data
structures will be left in a consistent state, and translation can continue.

The approach used in the C++ compiler is to associate a different memory space with each
active function scope and with the global scope. Class scope objects are allocated in the memory
space of the scope that is current at the time of their creation. When a function or global scope
object is created, a new memory space is set up and the scope object is allocated within it. All
subsequent compiler data structures within that scope are allocated in that memory space. At
the end of the function or global scope the memory for the scope is freed, removing the scope
object from the scope graph and leaving the compiler data structures in a consistent state. Fig-
ure 8 shows how the CH- compiler would segment memory for the program example of Figure 5,
during the translation of the friend function £2. Each dotted boundary encloses a separate
memory space associated with an active global or function scope.

current
scope

Figure 8

In addition to the efficiency gained by essentially constant time memory management, this
segmentation of memory by scope has the advantage of leaving the memory spaces of all active
scope objects available at all times. It was shown earlier that a friend function like £2 of Figure
5, although lexically within function £1, is actually defined in the global scope. Consider the
difficulties this would present to a stack allocation scheme. The memory associated with global
scope would be below that of the function £.1, and the name of the friend £2 would be allocated
within the memory associated with £1. Of course, the name of the friend function would still be
entered in the global scope, but on popping the function information off the allocation stack at
the end of f£1, the compiler data structures would be in error, as the friend name will have been
removed. More flexible methods of memory management with finer granularity of control can be
employed, but these typically have concomitant penalties in performance and complexity.

In associating patterns of memory management with the scope graph, memory management
inherits the scope scheme’s simplicity while allowing the program under translation to drive the
construction of the complex memory management. Each scope object has a memory descriptor.
The (unique) allocation routine uses the descriptor of the current scope object to determine the
memory space from which to allocate. In the example above, the current descriptor is set to the
global descriptor before £2 is translated and then restored to that of £1. In this way, the name
of the friend function £2 is allocated in the global memory space. After the translation of £2,
the current scope is reset to £1 and the current memory space is reset from f£ 1’s descriptor.



77

5 Applications of Scope-Segmented Memory Management

A side effect of this memory allocation scheme is the ability to process multiple program files
in sequence with little overhead. Many compilers (including early versions of the C++ compiler)
process only a single file per invocation because, due to the way memory is managed, cleanup
between files would be prohibitively expensive. The Ci++ compiler solves this problem by creat-
ing an object that represents the scope that exists before and between file compilations. Its
memory space contains invariant data that is created on compiler initialization (but no names).
At the end of each file the global scope object is deleted to re-initialize the compiler. In avoiding
Joading and initialization for each file, the compiler realizes significant gains in translation time
for compilations that comprise several files.

Other, as yet unimplemented, applications which could make use of this strong association
between memory space and scope are perhaps best viewed as compiler support for programming
environment tools. For example, this organization would simplify an implementation that minim-
izes recompilation of common file prefixes.

Consider the problem of compiling a sequence of files, each of which has a common initial
part. If no external effect is produced during the compilation of the common prefix (such as
code generation) then the effect of the translation to that point is to move the compiler from its
initial configuration to a given compilation state. If this state can be restored easily, the common
part need be compiled only once for the sequence of files.

In most compilers the state of compilation is represented entirely within the compiler’s data
structures. If the memory allocation scheme described above is used, these are contained within
the memory spaces of a collection of scope objects. Thus, just as earlier we were able to restore
the initial compiler state by deleting all scope objects but the initial "between file" object, it is
possible to restore any intermediate compilation state through judicious segmentation and dele-
tion of scope objects. (Note that there needn’t be a one-to-one relationship between scopes and
scope objects.) The ease with which this can be accomplished is highly language dependent. For
example, the C++ compiler could easily implement delayed code generation (expanding the class
of code prefixes it could handle) because much of that capability is required for inline function
expansion. On the other hand, in C++ the definition of a name may be begun at one point in the
compilation and added to at a remote point. (For example, a function prototype may add default
argument initializers.) In order to handle prefixes containing definitions of this kind it would be
necessary to record and undo effects of this sort that occur after the prefix.

Once the case of the single common prefix can be handled, a number of additional opportuni-
ties arise. Perhaps the most obvious of these is the stacking of compilation states. In this way
the prefix dependancies of a set of files to be compiled can be arranged into 2 DAG and the files
compiled in such an order that by pushing and popping the scope objects representing compila-
tion states minimal recompilation is performed. Additional gains can be obtained by the ability
to save an external representation of a compilation state in a program database.

6 Summary

The C++ compiler deals with the complex and volatile scope structures that arise during
translation by abstraction to a graph structure; a scope is represented as a node and an enclosing
scope relationship as an edge. The logical encapsulation of scope as object eases the task of
representing the complex nature of scope in languages like Ct++, and permits both reduction in
complexity and increased flexibility. In extending the logical encapsulation implied by an object
to physical encapsulation, the C+H compiler implements efficient and simple translation-time
memory management. In effect, the compiler uses the complexity of the program being
translated to guide the building and maintenance of a complex data structure composed of simple
components.

The simplicity of the resultant compilation structures permits further optimization of the
translation process, including multiple file compilation and intelligent interface to program
environment tools in order to avoid recompilation of common code pieces.



78

7 Acknowledgements

The author wishes to thank Bjarne Stroustrup for invaluable advice on organization and con-
tent of this paper, and Kathy Stark, Laura Eaves and Barbara Moo for many valuable discus-
sions and comments.

[11B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, Mas-
sachusetts, 1986.



