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Abstract

Object oriented programming environments frequently suffer serious performance degradation because of
a high level of paging activity when implemented using a conventional virtual memory system. Although
the fine-grained, persistent nature of objects in such environments is not conducive to efficient paging, the
performance degradation can be limited by careful grouping of objects within pages. Such object placement
schemes can be classified into four categories — the grouping mechanism may be either static or dynamic and
may use information acquired from static or dynamic properties. This paper investigates the effectiveness
of a simple dynamic grouping strategy based on dynamic behaviour and compares it with a static grouping
scheme based on static properties. These schemes are also compared with near-optimal and random cases.

1 Introduction

Virtual memory enables programs much larger than primary memory to be implemented without the need
for explicit management of primary memory by the user program. Virtual addresses are usually mapped
onto a two-level hierarchy of memory devices consisting of primary random access memory and secondary
disk memory. Contiguous portions of virtual memory (termed ‘pages’) are swapped between primary and
secondary memory as required by the program. Pages are typically several thousand bytes long and page
sizes are carefully chosen to minimise the amount of paging. When programs occupy contiguous sections of
store large in comparison with page sizes, the virtual memory system performs well. However, in Smalitalk-
80' [GR83] the unit of locality is a fine-grain object (50 bytes on average [Ung84]) small in comparison
to page size. Consequently Smalltalk-80 suffers serious performance degradation on conventional paging
systems.

Applications are often developed by incrementally grafting new objects into a persistent environment,
so that the static locality inherent in conventional programs is lost. The re-use of code is encouraged by the
inheritance mechanism, which enables an application to use any portion of a large persistent environment.
In contrast, conventional programs are limited to the code that represents the program text (with the
exception of library routines and the operating system). In addition, conventional programs have statically
bound procedure calls, whilst in Smnalltalk-80 binding is performed at run time.

The cumulative effect of such properties of object oriented systems is poor paging performance on con-
ventional paging systems. To reduce the inefficiencies, various object grouping strategies may be employed.
In general, several related objects are placed together on a page; the fundamental aim of this process is to
maximise the useful content of a page when it is brought in from secondary storage. Ideally, when a page
is brought in from secondary memory, it should be full of objects that will be required in the near future
which are not already in primary memory. Similarly, a page to be swapped out to secondary memory should
contain objects that will not be required for some time. In swapping out a page, any object in primary
memory can be selected and included on the page to be transferred into secondary memory. However, when
a page is brought in from secondary memory, it is much more efficient if objects contained within the page
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reside on adjacent disk blocks. Therefore it is impractical to satisfy the ideal grouping for both fetching and
ejecting a group of objects from primary memory.

2 The Experiment

The purpose of this experiment was to investigate the effectiveness of two different grouping schemes. A
static grouping scheme based on static information was compared with 2 dynamic grouping scheme based
on dynamic behaviour. The comparison was performed by simulating the respective memory models and
animating the simulations with long memory reference traces gathered on a Smalltalk-80 system. These
memory reference traces were obtained by modifying the Smalltalk-80 virtual machine emulator to write
all object memory accesses, object creation and garbage collection information onto a file. The trace file
was then read by the memory model simulation which provided statistics to evaluate the effectiveness of the
model. No compression of memory traces was necessary, as sufficient memory space and processor power
was available to perform a realistic simulation.

The memory traces used to exercise the memory model simulation were derived from typical interactive
sessions using Smalltalk-80. There were four traces, each representing approximately 4000000 bytecodes
of activity. Trace 1 to trace 3 were 4M, 3.5M and 5.5M bytecodes in length respectively and consisted of
compiling, browsing and editing activity and execution of some examples. Trace 4 was derived from a 19M
bytecode session which involved the filing in and compilation of a 24Kbyte source file and the re-compilation
of the hierarchy rooted at StandardSystemView.

In order to ease the capture of long traces, the virtual machine executing the sample sessions wrote event
information onto a file. Another virtual machine implementation was then driven by these event traces and
generated the memory reference traces. If the virtual machine used in executing the sample sessions traced
all memory accesses, the reduction in performance would limit the length of obtainable traces. Since large
and representative traces were required to provide an accurate simulation, this indirect method of generating
memory reference traces was used.

3 Grouping Categories

In a static grouping scheme, objects are re-grouped whilst the system is in a ‘frozen’ state; this is done by
creating an ‘initial placement’ that locates objects related in some way close to each other in memory. For
example, Smalltalk-80 has a facility whereby a ‘snapshot’ of the whole state of the system is taken and an
‘image’ created. The Smalitalk-80 virtual machine can load the image into its memory and re-create a state
identical to the state of the environment when the image was created. When the virtual machine loads the
image it may arrange the objects in memory such that related objects are close together, thereby statically
grouping objects.

Conversely, dynamic grouping is performed while the system is running and is inherently more com-
plex because of the need to maintain memory integrity. In the incremental copying garbage collectors
[Ste75,LH83] for example, objects are copied from one area in memory to another whilst the system is
running. The principal aim is to identify unreferenced objects, but by incrementally copying related objects
into a new area of memory dynamic grouping is performed.

Grouping strategies can be further categorised by the nature of the information used to group objects.
Information from static relationships, such as from the graph formed by pointers from objects, may be used
with either static or dynamic grouping. For example, these pointers may be followed in either a ‘depth-first’
or ‘breadth-first’ manner. Similarly, grouping based on dynamic behaviour can also be used — for example,
a ‘least recently accessed’ mechanism. This gives a total of four categories for classifying grouping strategies.

4 Static Grouping

Static grouping involves the generation of an initial placement of objects within virtual memory. The
initial placement may be determined by a wide variety of factors leading to many different initial placement
schemes. However, a previous study of static grouping schemes [Sta84] showed that there is no appreciable
difference between different object groupings. In the study, several static grouping schemes were compared
and the results did not indicate a scheme which performed convincingly better than others. Thus it appears
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that the choice of static grouping strategy is not critical; hence a simple depth-first ordering is considered
here.

The model used to simulate a conventional paged memory system is specified formally in Appendix A.
Note that the assignment of objects to virtual addresses does not change after the initial placement. Except
for objects created or deleted during the simulation run, a page will always contain the same set of objects.
When an object not in primary memory is accessed, the page on disk containing the object is brought into
primary memory. If primary memory is full, a page must be purged to create space for the required page. In
the model, page replacement is achieved by a true ‘least recently used’ (LRU) purging policy; this approach
is considered reasonable as most conventional paging systems use an LRU approximation.

When an object is created, a best fit algorithm is employed to allocate a free space to the object. A list
is maintained of the free spaces in memory and new objects are allocated into the smallest contiguous space
that will contain them. If no free space is available then an existing page must be purged from primary
memory. Additionally, for the purposes of simulation, the memory within a page is effectively compacted
after an object is deleted from that page; fragmentation within a page is not modelled. Deleting objects by
request from the reference counting garbage collector is immediate and the freed space is added to the free
list.

5 Dynamic Grouping

As mentioned earlier, an effective grouping of objects to be purged is not necessarily the best grouping for
objects to be fetched from secondary memory. Identifying the group of objects not in primary memory that
are to be accessed in the immediate future is clearly impossible; in general, it is also difficult to find an
adequate approximation. In contrast to this, assessing which objects are least likely to be used in the future
is equally impossible but has a more readily realisable approximation in the form of a ‘least recently used’
heuristic. Consequently, the dynamic grouping scheme based on dynamic information modelled here will be
in the form of a ‘least recently used’ (LRU) purging algorithm.

5.1 Least Recently Used Grouping

For an efficient implementation, a dynamic grouping scheme requires pointer-offset object addressing. In
many Smalltalk-80 implementations, virtual addresses are used to directly access objects [UP83] thus sav-
ing an object table indirection. However, when objects are dynamically relocated in memory, the object
table indirection is clearly invaluable. There are two possible levels of implementation for the abject table
indirections. First, the object table may translate pointers into virtual addresses for the underlying machine
or alternatively, the pointers may be translated into real primary or secondary memory addresses. This
experiment assumes that the object table translates onto real addresses.

Accessing an object not in primary memory causes the secondary memory page containing the object to
be fetched. Purging primary memory is achieved by swapping out pages of objects into secondary memory.
Grouping objects onto the page to be ejected is achieved by constructing a collection of least recently used
objects whose cumulative size is not greater than the page size. When objects are created during the
simulation run, space is reclaimed in primary memory by ejecting objects into secondary memory. Also, the
garbage collector reclaims space occupied by an object by marking the object as garbage and adding it to
the free list.

5.2 Random Grouping

To give some indication of the effectiveness of the LRU dynamic grouping scheme, a random dynamic
grouping scheme is also simulated. Purging involves identifying a random group of.objects to be swapped
into secondary memory. This is achieved by pseudo-random probing into the object table until sufficient
objects have been collected to fill a page.

5.3 Near-Optimal Grouping

A near-optimal dynamic grouping strategy is also simulated to measure the effectiveness of the LRU dynamic
grouping scheme. An optimal scheme is not realisable in practice but, given a complete memory trace where
“future’ memory references may be analysed, it may be approximated with a reasonable amount of accuracy.
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In the ideal case, if a group of X objects are to be swapped into primary memory, the group would contain
the next X objects to be accessed that are currently not in primary memory. However, for the purpose of
simulation, X = 1 since it is assumed that the secondary memory has no latency. If all ob jects are the same
size and primary memory is full, fetching an object from secondary memory necessitates ejecting an object
from primary memory. The object to eject is obviously the one that is next needed furthest in the future.
This object can be identified by scanning the memory traces forward in time from the faulted reference until
references to N — 1 different objects in primary memory have been observed (where N is the number of

objects in primary memory). However, due to the varying sizes of objects, the Nth object is not necessarily
the optimal choice of object to purge.

6 Discussion

The four models are implemented in C and driven with the memory reference traces gathered from a
Smalltalk-80 system. Three models provide near-optimal, random and LRU dynamic grouping whilst a
fourth static grouping scheme is included for comparison. Near-optimal static grouping and random static
grouping are not included since they have no implication on the dynamic grouping scheme and have been cov-
ered in a previous study [Sta84]. An attempt has been made to keep the models simple without introducing
inaccuracies that may bias the results. However, there are several points which deserve mention:

¢ In the static grouping scheme on a conventional paging system, the model is generous in that it

assumes a true LRU page purging policy. However, studies have shown that LRU approximations are
sufficiently effective for this to be realistic [EF79].

¢ For the same amount of primary memory, it is more difficult to approximate LRU purging for objects
than for page purging. This is due to the smaller granularity of object-based LRU purging.

¢ In the dynamic grouping scheme, when a group of objects are brought in from secondary memory,
they are considered to be a group of ‘most recently used’ objects. Altering the position of the newly
fetched group in the LRU selection may improve the effectiveness of the dynamic grouping scheme.

Clearly, considering a newly fetched group of objects as least recently used may lead to their premature
ejection.

o All objects are smaller than the page size — large Smalitalk-80 objects which do not fit onto a page
are dealt with as special cases by the simulator. Objects do not cross page boundaries.



83

For simplicity, only one static grouping scheme is modelled. It is considered that previous studies of
static grouping schemes [Sta84] are conclusive in that there is no single scheme which is identifiably
more effective than any other.

o No ‘dirty bit’ is included in the conventional paging model. Thus, unchanged pages are purged in the
same way as modified pages. This is in accordance with the dynamic grouping scheme which does not
create space by deleting unmodified objects.

o The memory reference traces do not include accesses to bitmaps and accesses to class fields by the
somelnstance or nextlnstance primitives.

o The garbage collection scheme used conforms to the definition of the virtual machine {GR83] and is
the same for all memory traces.

7 Results

For the three main traces, each combination of grouping scheme and page size had 15 primary memory sizes.
Given that four page sizes were simulated for four grouping schemes, this gives a total of 720 points for
all three main traces. The traces represented approximately four million bytecodes and 40 million memory
references of Smalltalk-80 activity each, with a fourth, 19 million bytecode trace being run with much fewer
points. No statistical manipulation is attempted, relative comparisons are not made and the results are
presented in their absolute form. Results are only presented from trace 1. The graphs obtained from traces
2-4 were very similar to those from trace 1. The simulations predict how real implementations with similar
memory and image sizes behave with a reasonable amount of accuracy. However, it is unknown whether the
results scale to larger memory and image sizes.

7.1 Page Faults

The graph in Figure 1(a) shows the page faults obtained for trace 1 for 1Kbyte pages. Note that each
curve falls towards a constant level which represents the page activity caused by starting and terminating
the simulations with all objects on the disk. The random figures are an order of magnitude worse than
figures for static, dynamic and near-optimal grouping. Figure 1(b) shows the same graphs on a different
scale without the random curve. With 200 Kbytes of main memory the dynamic grouping scheme pages
45% as much as the static grouping scheme. At 56 Kbytes of main memory, dynamic grouping activity is
31.5% of static grouping. When paging occurs during Smallialk-80 activity (not including that caused by
startup or shutdown), the graph indicates that dynamic grouping is always better than static grouping —
the curves only meet when no paging is performed.

The graphs in Figure 1 show only 1Kbyte pages. Other graphs were plotted for different page sizes, and
Figure 2 shows curves for all the page sizes for static and dynamic grouping with trace 1. For the range of
page sizes simulated, all the dynamic grouping simulations performed better than the corresponding static
grouping simulations.

7.2 Page Activity

Whilst graphs of the page fault totals are useful for comparing the effectiveness of various paging schemes,
it is interesting to observe the page fault activity in order to gain an insight into the effect of paging schemes
on interactive response. Figure 3(a) illustrates one of the activity traces taken for a 200 Kbyte main memory
with 1 Kbyte pages for trace 1. Many of the paging peaks for dynamic grouping are of similar magnitude,
but are generally shorter in duration compared with the static grouping trace. Relating the peaks of page
activity with new applications being run in the Smalltalk-80 image shows that the dynamic grouping scheme
changes the working set much more rapidly than static grouping. Figure 3(b) shows a section of the same
activity graph expanded.

8 Conclusion

Dynamic grouping works well for the given combinations of image and memory sizes. It is unknown whether
the results will scale to larger images and memory sizes, and it is not envisaged that any accurate predictions
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Figure 2: Page Faults for Different Page Sizes

may be made until large applications are available. Future research will concentrate on investigating practical
implementations of pointer-addressed dynamic grouping virtual memory and simulating such memories in
order to estimate and compare cost and performance with conventional paging hardware.
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Appendix A

This appendix contains formal specifications written in VDM [Jon86] of the models used to simulate both
static and dynamic grouping schemes. Two specifications are given of both models, the second specification
being a more detailed refinement of the first (the refinements have been proved to model the abstract
specifications, but the proofs are not included for brevity).

Conventional Paging

The simplest specification is that of the conventional paging system where the primary memory is modelled
as a set of pages. Pages are classed as being either in or out of primary memory. A reference to a page
in memory does not affect the state of the system, whilst a reference to a page not in memory causes the
required page to be included into primary memory. Clearly, if the primary memory is not full then no
purging is required.

Mem :: PS : setof Pg

where

inv-Mem(mk-Mem(ps)) 2 cardps < store_size.in_pages

REFCE (p: Pg)
extwr m : Mem
postif p € PS('m) then m = T else if card PS('W) = store.size.in_pages
then PS(m) — PS(m) = {p}
A card(PS(m) N PS(m)) = store_size_in_pages — 1
else PS(m) = PS(m)u {p}

Conventional Paging—LRU

By adding the concept of sequence to pages in real memory, least recently used purging can be specified.
The sequence of pages reflects the sequence of references — the head of the sequence contains the least
recently referenced page. If the referenced page is not in primary memory, the LRU page is ejected and the
required page fetched.

Memrgy 1+ PL : seqof Pg

where

inv-Mempgy(mk-Mempry(pl)) 2 lenpl < store_size_in.pages A card g pl = len pl

LRU.REFCE (p: Py)
ext wr m @ Memppy
post if p € mg PL(7R) then PL(m) = remove.pg(p, PL(T)) " [p]
else if len PL('m) = store.size_in_pages
then PL(m) = tl PL(m) " [p]
else PL(m) = PL(m) " [p]
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remove-pg : Pg X seq of Pg — seq of Pg

remove-pg(p,pl) 2 if pl =[] then {] elseif p = hd pl
then tl pl
else hd pl " remove.pg(p,ti pl)

Object Swapping

Object swapping groups objects to be purged onto a page to be ejected into secondary memory. In statically
grouped systems, the content of a page is the same in primary memory as in secondary memory. With
the dynamic grouping scheme, secondary memory is divided into pages whose contents are static. When
pages are brought from secondary memory, the objects they contain are scattered into free spaces in primary
memory. Similarly, pages being written to secondary memory are composed dynamically by selecting the
appropriate objects to purge from primary memory.

The existence of an auxiliary function, size: Obj — {1,...,pg-size}, is assumed. This gives the size (in

words) of a particular object.

i.e.

Obj_mem :: Disk : set of Pg
Mem : set of Obj
where

inv-Obj.mem(mk-Obj_mem(d, m)) &
is.disjoint(m, J{0S(p) | p € d})

A Y, size(obj) < store_size
obyeEm
A ts_prdisj(d)

Pg 2 OS : set of Obj

where

inv-Pg(mk-Pg(os)) 2 os# {}A size(obj) < pg-size
obje

bj€os

The following function states that an object may not be on more than one page in a given set of pages,
the sets which constitute each page are pairwise disjoint.

1. prdisj :setof Pg — B

is_prdisj(d) L& Vdi,d; € d- 05(dy) = 0S(dp) V is-disjoint( 0S(dy), 0S(d3))

REFCE (p: Obj)
ext wr disk : set of Pg
wr mem : set of Obj

pre p € mem U |J{OS(p) | p € disk}
post if p € mem
then mem = mem A disk = disk
else dpg.in € ?i'mc.,objs_out C mem, pgs.out € set of Pg -
» € 0S(pg-in)
A mem = mem U O5(pg-in) — objs.out
A objs.out = U{OS(p) | p € pgs.out}
A disk = disk — {pg-in} U pgs.out

A is-prdisj(pgs.out)
A Y size(obf) < store.size

objemem
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Object Swapping-LRU

The following specification is the same as the previous object swapping model, except for the inclusion of
‘least recently used’ (LRU) purging. LRU purging is specified by modelling primary memory as a sequence
of objects which reflects the sequence of references to the objects. The head of the sequence contains the
least recently referenced object and objects are added to the tail whenever they are accessed. When objects
are brought in from the disk, they are also added to the tail of the sequence.
Obj-memppy :: Disk : set of Pg
Mem : seqof Obj

where

nv- Obj-memLRU(mk-Obj-memLR U( d, m)) _A_
inv-Obj —mem(mk-Obj_mem(d, mgm)) Alenm = cardingm

LRU_REFCE (p:0bj)

ext wr disk : set of Pg
wr mem : seq of Obj

pre p € rngmem U [J{OS(p) | p € disk}
post if p € rng mem
then disk = disk A mem = remove.obj(p, mem) ~ [p]

else 3pg.in € ﬁ, obj_seq.out, tmp_mem € seq of Obj,
pg-seq.out € seq of seq of Obj, pgs.out € set of Pg -
p € OS(pg-in)
A mem = obj.seg-out " tmp.mem
A tmp.mem # ]
A obj .seg-out = conc pg_seq-out
A pgs_out = {mk-Page(mgp) | p € mgpg-seq_out}
A post-add.to.mem(OS(pg-in), tmp_mem, mem)
A disk = disk — {pg-in} U pgs_out
A Y size(obj) < store.size

objemem

AVi € dom pg.seg.out «

(( > .size(obj)) + if ¢ = len pg.seq-out
obj €M pg-seq-out(i) then size(tmp_mem(1))

else size(pg-seq.out(i + 1)(1))

> pg-size)

The remove.obj function (signature Obj X seq of Obj — seq of Obj) removes an Obj from a sequence of Objs;
it can be defined in a similar way to remove.pg.

add.to.mem (objs:set of Obf)
ext wr mem : seq of Obj

post mem = mem  objlist A rng objlist = objs A len objlist = card objs



