Semantics of Smalltalk-80*

Mario Wolczko!
Dept. of Computer Science, The University, Manchester M13 9PL, United Kingdom
miw@uk.ac.man.cs.ux, mevax!ukc!man.cs.uximiw

Abstract

A formal model of the Smalltalk-80 programming language is introduced. The semantics of much
of the Smalltalk-80 language are described using the denotational style. A poorly-designed feature of
Smalltalk is highlighted, and alternative semantics are presented for the language feature.

1 Introduction

Smalltalk-80 is the archetypal object-oriented programming environment. All code within the Smalltalk-80
system is written in the Smalltalk-80 programming language (hereafter referred to as “Smalltalk”). Small-
talk has several characteristics that are common in object-oriented langauges, and others that distinguish
Smalltalk from other languages: a uniformly-applied object model; an inheritance hierarchy of classes; and
message-sending as the sole inter-object communication mechanism.

A formal model of Smalltalk would be useful in describing what Smalltalk is, and how it differs from
other languages. Also, as many non-object-oriented languages have been described through formal models,
it would help to illustrate how the object-oriented paradigm differs from other programming paradigms(5].
Furthermore, since a formal model is likely to be more concise and succinct than, say, an interpreter for the
language[2), it would provide a convenient framework for discussion of language semantics. This is because
a formal model would be at the right level of abstraction for such discussions: implementation details (e.g.,
the garbage collection strategy) would not appear in the formal model.

This paper introduces a formal model of Smalltalk. As Smalltalk is a non-trivial language, the complete
model cannot be presented in the limited space available; the remainder will appear elsewhere{7]. However,
the major parts of a simplified model are presented here. This simplified model also serves as an introduction
to the more complicated model. Using the model as a basis, the design of Smalltalk is discussed, and
weaknesses in the design are highlighted. In particular, the block evaluation mechanism is found to be
inadequate, and an alternative design for this feature is presented.

2 A Formal Model of Smalltalk

The formal description technique used will be that of denotational semantics[1,3,6], “sugared” with a VDM-
like syntax(4]. Several simplifications are made to keep the semantics tractable, and to preserve the right
level of abstraction:

1. In a Smalltalk-80 system there a number of processes (conceptually) executing in parallel. Due to
the lack of any protection mechanisms, these processes, which reside in a single address space, could
interfere with each other. By convention, most methods in the Smalltalk-80 system assume that no
interference is taking place, and the use of concurrency is limited to a few places in the system. To
simplify the model we have assumed that no concurrency is present, and therefore that no interference
can take place.

2. Non-local variables, i.e., global, class and pool variables, have been omitted. These could all be
simulated in Smalltalk by sending messages to the appropriate dictionary.

* Smalltalk-80 is a registered trademark of Xerox Corp.
1Work supported by the Science and Engineering Research Council
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3. The only forms of literal dealt with are integers and blocks. It would be straightforward to deal with

other forms, such as Floats and Strings, but the treatment would be similar to that for integers, and is
therefore omitted for brevity.

4. All the integer classes (Smalllnteger, LargePositivelnteger, LargeNegativelnteger) have been replaced by

a single class, Integer, instances of which are integers of arbitrary size.

5. A block in Smalltalk can be directed to return to the place that invoked its execution, or to the place

that invoked its creation, which need not be the same. The semantics presented here only deal with
the former case.

6. A blockin Smalltalk can access all the variables of its enclosing method. This means that the activation

record of a method that contains a block cannot be discarded when the corresponding method is
exited. As a simplification, the semantics presented here restrict blocks so that they cannot access the

temporaries of the enclosing method. However, they can access the arguments of the method and the
instance variables of the receiver.

The Abstract Syntax of Smalltalk

A “program” in Smalltalk is composed of a set of class definitions. Each definition states: (i) how the class
relates to other classes by inheritance, (ii) the instance variables that are defined by that class, and (jii) the
messages that instances of that class respond to, and how. Formally, this can be stated thus:

Program = Class-map

Class.map = map Class.name to Class_body

Class.body :: Instvars : set of Id
Super : Superclass
Methods : map Selector to (Method.body U Primitive.method)

In the single inheritance scheme supported by the Smalltalk Virtual Machine, each class can have zero or
one superclasses:

Superclass = [Class.name)

For the purposes of this paper, we shall restrict ourselves to the single inheritance scheme supported by the
Smalltalk Virtual Machine.

A selector can be a single postfix identifier (a unary selector), an infix (binary) selector, or a keyword

selector:

Selector = Unary U Binary U Keyword
Unary = Id
Binary = {+,-,*%,/,<,...}

Keyword = seq of Id

Later we will use a function, nargs: Selector — N, which returns 0 for unary selectors, 1 for binary selectors,
and len s for a keyword selector s.

Each method body declares a number of arguments and temporary variables, and has a list of expressions

as the executable part of the method.

Method_body = Args : Ulist(Id)*
Temps : set of Id
Ezprs : Expression.list
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Ezpression.list = seq of Ezpression

An Ezpression can be one of four things: an assignment to a variable, an object name, a message send,
or a literal object (integer or block):

Ezpression = Assignment U Object.name U Message.list U Literal.object

Assignment :: LHS : Id
RHS : Ezpression

Object_name = Id U {SELF, SUPER, RooT}

SELF is the name of the receiver. SUPER is also an alias for the receiver, but messages sent to SUPER are

searched for differently. ROOT is a global object guaranteed to be in the system. It plays the part of the
global dictionary, Smalltalk.

A Message_list consists of an expression which evaluates to a receiver object, and a list of messages to
be sent to the receiver (cascaded messages, to use the Smalitalk-80 terminology).
Message_list :: Rcur : Ezpression
Msgs : seq of Message

Message ::  Sel : Selector

Args : Ezpression.list
A Literal_object is a ‘constant’ (i.e., immutable) object. Here, we only consider integers and blocks.
Literal.object = Z U Block-body

One can consider a block to be a nameless method; it is activated by sending it the value message. Bound
blocks are first-class objects. To emphasize the similarity between methods and blocks, we use the same
abstract syntax for both:

Block.body :: Args : Ulist(Id)

Temps : set of Id?

Ezprs : Ezpression_list
An extra field required in the full model, RetHome: B, has been omitted. A Smalltalk block differs from an
anonymous method in one important way: it can return to one of two different places. The normal return
route is to the method that activated the block by sending it the value message. However, control may also
return to the method that activated the textually enclosing method (i.e., the method in which the block
was bound). This is indicated by placing an uparrow before the last statement in a Smalltalk block. In
the latter case, the activation of methods is not LIFO. The inclusion of this feature would complicate the
semantics enormously, and so has not been covered in this limited exposition.

Context conditions stating exactly which programs are considered to be legal are to be found in the
appendix.

4 The Object Model in Smalltalk

Smalltalk methods operate on objects which reside in a single, persistent store. This store, or object memory,

contains all the objects that exist in a Smalltalk system, including methods, classes, and “primitive objects”

such as integers. Note also that method activation records, or contezts in Smalltalk terminology, also reside

in the object memory. However, for simplicity our semantics does not place contexts in the object store.
Object.memory = map Oop to Object

‘We shall usually denote values of Object-memory by o.
Every object is identified by a unique internal name, or object pointer (here contracted to Oop). Every
object is an instance of a class:
Object :: Class : Class_name
Body : Object._body

!The type Ulist(X) models a list with no duplicate elements. Formally, Ulist(X) = seq of X, where inv- Ulist(X)(1) Alenl =
cardrngl.

?Actually, Smalltalk does not allow blocks to have temporaries. The absence of temporary variables from blocks was a
curious omission in the design of Smalltalk. Later we shall meet other strange features of blocks.
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Object.body = Plain.object U Primitive.object

Primitive_object = Z U Block

Primitive objects have no instance variables and are therefore immutable: their internal state cannot change.?

Plain.objects are instances of user-defined classes. They contain references to other objects. In Smalltalk,
the instance variables of an object are exactly those declared in its class and superclasses (except for indexed
instance variables). This leads naturally to the following model of Plain_objects:

Plain_object = map Id to Oop

Smalltalk implementations linearise the instance variables, so that each is assigned a unique integer, leading
to the following model:

Plain_object = seq of Cop

However, this creates severe problems when multiple inheritance is involved. For the moment, we shall
choose the former model, and introduce indexed instance variables later.

5 Environments

In the semantic equations that follow we use two structures that we term “environments”. The static
environment describes the textual context of a method with respect to the rest of the program. This is
constant for any particular method within a program. The dynamic environment describes the local state of
an invocation of a method (it is anologous to a Smalltalk MethodContext). It changes during the invocation
of a method, and each invocation has its own local dynamic environment. In addition to these there is
the object memory which is global. One can consider these to be, from an operational point of view, the
environment known at compile-time, the local values known at method invocation time, and the store,
respectively.

5.1 The Static Environment

A static environment, denoted by g, contains the “text” of all the methods, and an indication of which class
the current method is in (required by the super mechanism):
SEnv :: Class : Class.name
P : Program

5.2 The Dynamic Environment

A dynamic environment, denoted by §, records the state of the computation local to a method invocation:
DEnv @ Rcvr : Oop
Args : map Id to Oop
Temps : map Id to Oop
The receiver and arguments of a method are determined when a method is bound to a message, and do
not change during the execution of the method. Temporaries, however, are initialised to nil and are usually
assigned to within the method.

6 The Semantic Function for Methods

In our semantics, methods and blocks are functions which transform the object memory. In reality, they are
encoded into CompiledMethods, which are first-class objects interpreted by the Smalltalk Virtual Machine.
As mentioned earlier, this has been ignored in the existing semantics, and methods no longer reside in the
Object.memory as full objects.

A Method takes a receiver and a list of arguments, and returns a result object, transforming the object
memory as a side-effect:

Method = Oop X seq of Oop X Object.memory — Oop X Object_memory

3Most Smalltalk implementations take advantage of this by encoding the value of an integer object into its object pointer.
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A Block is similar, but the associated receiver is the block-object (see later section on blocks).
Block = Oop X seq of Qop x Object_memory — Oop x Object.memory

An initial object memory will contain not only the methods and blocks specified by the Smalltalk
program, but also so-called “primitive” methods, which cannot be expressed in Smalltalk[2]. Such primitive
methods include those for integer arithmetic and comparison, and special methods for activating blocks.
This is why the Methods field of a Class.body can map a Selector to a “pre-compiled” method, known as a
Primitive_method.

Primitive_method = Method

We now present the semantic function for methods. It takes a method definition, in its static environment,
and returns a method denotation.

MMethod_body : Method_body — SEnv — Method
MMethod _body[mk-Method.body( args, temps, ezprs)]p 2
Arcvr, arglist,o -
let § = mk-DEnv(rcur,{args(i) — arglist(i) | i € dom args},{id — N1LOOP | id € temps}) in
let (result,§’,0") = MEzpression.list[ezprs]pba in
(result,o’)
The result value of a list of expressions is the result of the last expression in the list.

MEzpression.list : Ezpression_list — SEnv — DEnv — Object.memory
— Oop X DEnv X Object.memory
MEzpression. list[ezprs]ploc A
let (0op,§',0’) = MEzpression[hd ezprs]pba in
if len ezprs = 1 then (0op, §’,0') else MEzpression.list{tl ezprs]pé'c’

7 The Semantic Function for Expressions

7.1 Assignment

Expressions change the local state of the computation by altering the dynamic environment. An assignment
can only alter the values of temporaries or instance variables; arguments are read-only.

MEzpression : Ezpression — SEnv — DEnv — Object.memory — Oop X DEnv X Object_.memory
MEzpression[mk-Assignment(id, rhs)]péoc 2

let (result,é’,0") = MEzpression[rhs]péc in

if id € dom Temps(§)

then (result, u(8', Ternps — Temps(8') 1 {id — result}),o’)

else (result,§’,0’ t {Revr(8) — pu(o(Rcvr(6)), Body — Body(o(Reur(8))) t {id — result})})

7.2 Variables

MEzpression[id]pboc & if id € dom Temps(6)
then ( Temps(6)(id), é,0)
else if id € dom Args(§)
then (Args(6)(id),é,0)
else (Body(o(Revr(s)))(id),5,0)

7.3 Pseudo-variables

MEzpression[SELF}pbc & (Rcwvr(6),6,0)
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MEzpression[SUPER]pboc & (Rcur(6),6,0)
RoOT is present in all object memories, and therefore has a constant Oop, RooTOOP.

MEzpression[RooTlpéc & (RooT1Oo0P,é,0)

7.4 Integer Constants

MEzpressionfint]péec &
let (oop,c’) = find_or.make_int(int,o) in
(oop,8,0’) forinteZ

The find.or.make_int function, given an integer and an object memory, returns the Oop of an integer object
that has the integer as its value. It is specified as a VDM operation in such a way that duplicate integer
objects are allowed (to give an implementor freedom).

find_or_make.int (int:Z) obj: Oop
ext wr ¢ : Object.memory

post a(obj) = mk-Object(Integer,int) A (o = ' vV oq{obj} = o)

7.5 Message Sending

Sending messages is the only way in Smalltalk for objects to communicate with each other. Smalltalk
messages are synchronous: the sender waits for the receiver to return a value before continuing. A Smalltalk
message can therefore be considered to be a dynamically bound procedure call; the particular method to be
executed in response to a message is determined by the class of the receiver. When a message is received
by an object a search is performed for a corresponding method, starting at the class of the receiver, and
working up through its superclasses.

Additionally, in Smalltalk there is an alternative starting point for the search, indicated by an object
sending a message to itself with the special designation super. This starts the search in the superclass of the
class in which the message is being sent from. This allows a class to override the behaviour of an inherited
method but still have access to that method.

In the formal semantics, these searches are distinguished by different bindings of the find function. The
super search is based entirely on the static environment, and can therefore be bound at compile-time, whereas
the usual search cannot.

MEzpression[mk-Message.-list(rcvr, msgs)Jpéc &

let (rcur-object,§',0') = MEzpression[rcvr]péo in
let search.fn = if rcvr = SUPER
then find(Super(P(p)(Class(p))), p)
else find(Class(o'(rcur_object)), p)
4]

MMessage_list[msgs] p&'(search_fn, rcvr_object, o')

The method search may fail to find a method corresponding to a particular message selector, in which
case the search function returns nil (i.e., a VDM nil, not to be confused with the Smalitalk nil object).

Search_function = Selector — [Method)

find :[Class_name] X SEnv — Search_function
find(class,p)sel &
if class = nil then nil else if sel € dom Methods(P(p)(class))
then if Methods(P(p)(class))(sel) € Primitive.method
then Methods(P(p)(class))(sel)
else MMethod_body[ Methods(P(p)(class))(sel)u(p, Class — class)
else find( Super(P(p)(class)), p)sel
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Sending a list of messages to an object consists of evaluating the arguments of the first message, sending
the first message, then sending the rest of the messages in the list.

MMessage.list : seq of Message — SEnv — DEnv — (Search.function X Oop X Object.memory)
~ {Oop X DEnw x Object.memory)
MMessage_list[msgs]pé(search.fn,rcor,0) &
let (v,&,0") = MMessage{hd msgs]pé(search_fn, revr,a) in
if len mnags = 1 then (v,8',0") else MMessage_list[t| msgs)pé'(search.fn, rcvr, ')

MMessage : Message - SEnv — DEnv
— (Search_function x Oop x Object-Memory) — (Oop x DEnv x Object. Memory)
MMessage[mk-Message(sel, arglist)]pS(search_fn, rcor,0) &
let (actuals, §',0") = MAIl. Ezpression_list[arglist]péc in
let (result,o") = perform(rcur, sel, actuals, search.frn,o') in
(result, &',0")

MAUl_Ezpression.list evaluates a list of expressions, returning a list of results.

MAll. Ezpression_list :seq of Ezpression - SEnv — DEnv — Object. Memory
—+ seq of Oop X DEnv X Object_Memory
MAU_Ezpression.list[ellpéc &
if el =[]
then ([],6,0)
else let (val, &', 0') = MEzpression[hd el]péo in
let (val_list,§",0") = MAU.Ezpression_list[t} el]pé'c’ in
(fval] ™ val_list,6",0")

If a particular method search fails, the special message doesNotUnderstand: must be sent to the receiver.
A method corresponding to the doesNotUnderstand: message is searched for in the same way. This allows a
class to override the behaviour of doesNotUnderstand:.

perform : Oop X Selector X seq of Oop X Search.function x Object_memory — Oop x Object. Memory

perform(rcvr, sel, args, search_fn,0) 2
let first.search_result = search_fn(sel) in
if first.search_result # nil
then first_search.result(rcvr, args, o)
else let second_search.result = search.fn(doesNotUnderstand:) in
let (message, 0’) = create.message(sel, args,o) in
second.search.result(rcvr, [message), o)

Note that for the result of the perform function to be defined should the original message not be understood,
there must exist a method corresponding to the doesNotUnderstand: selector.

The create.message function creates an instance of class Message that records the selector and arguments
of the message that was not understood.

7.6 Blocks

The implementation of blocks in Smalltalk does not work as one might expect. When a block is bound to
its surrounding context, an instance of BlockContext is created that records the binding. The BlockContext
also has memory reserved for the workspace required when the block is activated. Unfortunately, blocks
can be activated re-entrantly. This means that most Smalltalk implementations fail in unexpected ways
when presented with re-entrant blocks, because the workspace of one activation is overwritten by another.

For example, the following Smalltalk code, which looks reasonable at first sight, would not work on most
systems:
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factBlock « [ :n |

n=0 ifTrue: [1}
ifFalse: [n * (factBlock value: n—1)]].

factBlock value: 2

The solution to the problem is to make a clean separation between the acts of binding the block to its
surrounding context, and activating a bound block. To this end, we propose that binding a block create an
instance of a new class, Closure. The Closure would be a first-class object. To activate the block, the special
value message would be sent to the Closure. This leads to the following semantics:

MEzpression[block]pbc A
let (closure, 0') = make.closure(block, p,6,0) in
(closure,6,0')  for block € Block.body

When the closure is created the block is bound to the dynamic environment in existence at the time.

make-closure (block: Block. body, p: SEnv,§: DEnv) closure: Oop
ext wr g @ Object_ Memory

post o(closure) = mk-Object(Closure, MBlock. body[block]ps) A (0 = ‘& V oa{closure} = ‘7)

As mentioned earlier, a block is bound in such a way that it has access to the receiver of the method in
which it was bound, and the arguments of the enclosing method (and any enclosing blocks) but not to the
temporary variables of enclosing methods/blocks. Access to these would require dynamic environments to
outlive their associated invocations, complicating the model somewhat.

Note also that a block must check at run-time that it was invoked with the same number of arguments
that it had in its definition. If this is not the case, an error message is sent.

MBlock_body : Block_body — SEnv — DEnv — Block

MBlock.body[mk-Block.body(args, temps, exprs)]pé( closure, arglist,c) &
let (result,6",0') = .
if len arglist = len args
then let &' = mk-DEnu(Revr(6), Args(8) U {args(i) — arglist(i) | { € dom args},
{id » NI1LOOP | id € temps}) in
MEzpression.list[ezprs]ps'o
else MMessage[mk. Message(mk-Unary(wrongNumberOfArguments),[])]0é
(find(Class{o(closure)), p), closure, o)
in
(result,o’)

8 Primitives

Every Smalltalk system has to have a complement of primitive operations provided. In this section, we
outline how the semantics of such primitives can be described within our model. There are far too many
primitives in Smalltalk to cover here, but many are provided purely for efficiency purposes, and many are
similar to each other. We will only describe a few: the value: primitive for activating blocks, the new
primitive for creating objects, an arithmetic primitive, and the perform: primitive for computed selectors.

8.1 The value: primitive

The value: primitive activates a block with one argument. The other forms of value for zero, and two or
more arguments would be similar.

value-primitive : Method

value_primitive &  Aclosure, [arg}, o - Body(o(closure))(closure, [arg), o)



116

8.2 The new primitive

Up to now we have not dealt with the fact that in Smalltalk, classes are objects. We shall simply state that
an initial object memory should contain representations of the classes in the static environment, and that a
function is required to map the representation of the class to its abstract syntax. The operation presented
here, which creates a new instance of a class, is passed the abstract syntax of the class as an argument.

new.primitive (class: Class_name) new_oop: Oop
ext wr o @ Object_.Memory
rd P : Program
post new.oop § dom G
Ao =g U{new._oop — mk-Object(class, {id — N1LOOP | id € inst_vars(class, P)})}

A definition of inst.vars can be found in the appendix.

8.3 An Arithmetic Primitive

As an example of one of the many arithmetic primitives, we present the primitive for integer addition.
Rather than model the Smalltalk Virtual Machine concept of primitive failure[2], we choose to return nil if
the argument to the primitive is not an Integer.

plus_primitive : Method
plus_primitive &
Arcor, [arg],0 -
let addend = Body(o(rcvr)) in
iet augend = Body(o(arg)) in
if augend € Z
then find_or_make.int(addend + augend,o)
else (N1LOOP, 0)

8.4 The perform: Primitive

The perform: primitive takes a Symbol representing a selector, and sends a message to an object using that
selector as the name of the message. As with the new primitive, we have not explicitly stated that selectors
have representations in the object memory, but we assume that a mechanism exists for deriving the abstract
syntax of the selector from its stored representation. The following operation assumes that its selector is a
unary selector.

perform.primitive (obj: Oop, sel: Selector) result: Oop
ext wr 0 : Object.Memory
rdp : SEnv

post (result, o) = perform(obj, sel, [}, find(Class('a (ob5)), p), ‘T)

9 Indexed Instance Variables

Thus far we have not mentioned indexed instance variables. We now outline how the model can be adapted
to include indexed instance variables.

Firstly, a class can either define that all its instances may have indexed instance variables, or inherit
the property from its superclass. This requires the addition of a field, Has_indezed: B, to the definition of
Class.body. One can then determine whether a class’ instances may have indexed instance variables with
the following function:

has_indezed : Class.name x Class.map — B

has.indezed(class, class.map) & Has_indezed(class-map(class))
V (Super(class.map(class)) # nil = has.indezed(Super(class.map(class)), class-map))
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Secondly, the definition of Plain..object has to be modified to include the integer indices into the domain
of the map:

Plain_object = map Id UN; to Oop

Next, the new: primitive is provided so that objects with indexed instance variables may be created:

new: _primitive (class: Class-name, size: N;) new.oop: Oop
ext wr ¢ 1 Object_memory

rd P : Program
pre has_indezed(class, P)

post new_oop ¢ dom G
A (0 = G U mk-Object(class, {name — NILOOP | name € instvars(class, P) U {1,...,size}}))

Finally, the at: and at:put: primitives have to be provided to allow access to the indexed instance
variables:

at_primitive : Method

at_primitive 2 Aobj,[indez], o -if in_bounds(obj, indez, o)
then (Body(o(obj))(indez), o)
else bound.error(obj, indez,o)

atput.primitive : Method

atput_primitive 2
Aobj, [indez, value], o -
if in_bounds(obj,indez, o)
then (value,o 1 {obj = u(c(obj), Body — Body(c(obj)) t {indez — value})})
else bound._error(obj, indez, o)

in.-bounds : Oop X Oop X Object_.Memory —» B
in-bounds(obj,indez,0) £ Body(c(indez)) € dom Body(co(obs))

The bound_error function sends an appropriate error message; it will not be defined further here.

10 Discussion

We have presented semantics for most of the Smalltalk language. A number of things have been omitted:

1. Concurrency has been omitted because it would severely complicate the existing model. In fact, it is
doubtful whether the existing approach can deal satisfactorily with concurrent processes at all.

2. Classes, selectors and methods do not appear as objects in the object memory; this is purely to make
the model more understandable.

3. Blocks are not allowed to perform non-local returns and do not have access to non-local temporaries.
Introducing non-local returns requires the use of continuation semantics(3,6] to carry around the extra
possible return path. It also introduces a class of programming error whereby one can return to a
context that has already been returned from.

Allowing access to non-local temporaries requires a more sophisticated mechanism to release contexts.
In the Smalltalk-80 system each context is a full object, and because a method context can be referenced
by a block context, it cannot be released automatically upon return. To keep the semantics simple we
avoided non-local references to temporaries. However, they can be done away with quite easily by adding
an indirection object to methods that contain blocks that access a non-local variable, and changing all
references to the temporary to go via the indirection object instead. For example,
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[i]
i1,

[i < 10] whileTrue: [i « i+ 1]

can be rewritten as:

[il
i « Indirection on: 1.
[i value < 10] whileTrue: [i value: i value + 1].

where the following Indirection class is assumed to exist:
class Indirection
superclass Object
instance variables object

class methods

on: anObject
1self new value: anObject

instance methods

value
Tobject

value: anObject
Tobject +— anObject

In this case, the value of i accessible to the blocks in the whileTrue: statement is determined when the blocks
are bound; essentially it is an extra argument to the blocks. The semantics are changed by altering the
creation of the dynamic environment in MBlock.body to use the following expression:

&' = mk-DEnv(Rcvr(§), Args(6) U Temps(6) U {Args(i) — arglist(i) | 1 € dom args},
{id — N1LOoP | id € temps})
The context condition for blocks (see Appendix) is similarly modified so that non-local temporaries appear
as arguments.

This transformation, together with the removal of non-local returns enables us to have LIFO contexts.
The implications for implementations of the Smalltalk Virtual Machine are large, and may lead to significant
performance gains. However, whether the loss of non-local returns significantly hampers programming style
has yet to be determined. Clearly, the loss of access to non-local temporaries is not a problem; a pre-processor
could mechanically transform existing code to use indirection objects.

11 Conclusions

The semantics of a large subset of Smalltalk have been presented. It is believed that discussion of language
features is greatly aided by basing such discussion on formal semantics. Further work has to be done to cope
with more of the language (parallelism, multiple inheritance); this work is the subject of current research.

From the viewpoint of the formal semantics presented here it is felt that a better understanding of Smalltalk
and other object-oriented languages will be gained, leading to improved desigans in the future.
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A Context Conditions

In this appendix we state the context conditions defining which programs are well-formed.
The static environment required by the context conditions simply records which identifiers are in scope,
and what sort of variable they denote.

CCEnv = map Id to Var.Type

Var.Type = {INSTVAR, ARG, TEMP}

A Program is well-formed if the graph of classes is well-founded, and each individual class is well-formed
with respect to its superclasses:

WFProgram : Program — B

WFProgram[class-map] £ non.circular(class-map)
AVclass.id € dom class.map - '
Super(class-map(class_id)) € dom class_map U {nil} A
let inh.iv = inherited.inst.vars(class.id, class.map) in
WFClass[class.map(class.id)]{id — INSTVAR | id € inh.iv}

non.circular : Class.map — B

non.circular(class.map) £ Vs C domclass.map-s# {} = 3class € s- Super(class.map(class)) ¢ s

inherited_inst_vars : Class-name X Class.map — set of Id

inherited_inst.vars(class, class.map) 2
if Super(class_map(class)) = nil then {} else inst_vars(Super(class.map(class)), class.map)

inst.vars : Class_name x Class-map — set of Id

inst.vars(class, classmap) 2 Instvars(class-map(class)) U inherited._inst_vars(class, class.map)

A class is well-formed if it does not redeclare any inherited instance variables, and all its methods are
well-formed.

WFClass : Class.body - CCEnv — B
WFClass[mk-Class.body(iv, super, meths)]§ & is-disjoint(iv,dom )
A Vsel € dommeths -
meths(sel) ¢ Primitive.method
= nargs(sel) = len Arys(meths(sel))
A WFMethod[meths(sel)}(6 U {id — INSTVAR | id € iv})
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A method is well-formed if none of its instance variables, arguments or temporaries are multiply declared,
if it has at least one expression,* and all its expressions are well formed.

WFMethod : Method_body — CCEnv — B

WFMethod[mk-Method_ body(args, temps, ezprs)]0 &  all_disjoint({dom 8, rng args, temps])
Alenezprs > 1
AVe € ing ezprs -
WFEzpression[e](8 U {id — ARG | id € rgargs} U {id » TEMP | id € temps})

all.disjoint :seq of set of Id — B
all.disjoint(ss) L& Vi,j € domss-i#j = is_disjoint(ss(3), ss(j))

Now we shall enumerate by cases the well-formedness condition for each type of Ezpression.
An assignment is well-formed if it assigns to a variable (not an argument) that is in scope, and its RHS
is well-formed.

WFEzpression : Ezpression — CCEnv — B

WFEzpression[mk-Assignment(id, ths)]§ 2
WFEzpression[rhs]d A id € dom#8 A 6(¢d) € {INSTVAR, TEMP}

WFEzpression[id]@ £ id € dom@ forid € Id
WFEzpression[SELF}6 2 true
WFEzpression[SUPER]0 &  true
WFEzpression[RoOT]§ & true

WFEzpression]mk-Message.list(rcvr,msgs)]8 £ WFEzpression[rcvr]f A len msgs > 1
AVm € mgmsgs -
len Args(m) = nargs(Sel(m)) A Varg € g Args(m) - WFEzpression[arg]ld

WFEzpressionf[int]§ 2 true forint € Z

WF Ezpression[mk-Block-body(args, temps, exprs)]8 &
WFMethod[mk-Method_body(args, temps, ezprs)](8 > {INSTVAR,ARG})

If, as discussed in the text, we allow a block to have read-only access to non-local temporaries, the
definition becomes:

WF Ezpression[mk-Block_body(args, temps, ezprs)}f &
WFMethod[mk-Method_body(args, temps, ezxprs)](# > {INSTVAR, ARG})
U {id — ARG | id € dom#8 A 8(id) = TEMP}

*Smalltalk does allow empty methods and empty blocks. However, the former are equivalent to {self, and the latter return
nil. We therefore insist that all methods and blocks have at least one expresswn



