The Filter Browser
Defining Interfaces Graphically

Raimund K. Ege*, David Maiert and Alan Bomingt

Abstract

We describe a new approach to constructing user interfaces by declaratively specifying the relation-
ships between objects via filters. A filter Is a package of constraints dynamically enforced between a
source object and a view object. For example, the relationship between an employee object in a da-
tabase and a bitmap object represented on a display screen can be modelled as a filter. The object
in the database can then be modified by manipulating the object on the screen, and changes made to
the employee object by other programs are Instantly reflected on the screen.

This paper describes a speclfication language for filters, an Implementation of filters with the ald
of a constraint-satisfaction system, and a graphical interface for designing filters. We illustrate the
power and fiexibility of the filter paradigm with an intertace example and show that it stimulates and

supports the re-use of existing components and gives a design methodology for constructing inter-
faces.

1 Introduction

This paper presents a new approach to building user interfaces in an object-oriented environment. In
such an environment, all entities of interest are represented as objects, so all aspects of user inter-
faces are modelled as objects. In the Smalltalk modei-view-controller (MVC) Paradigm [9], for exam-
ple, the interface consists of model, view and controller objects. The model and view are basically
two different representations of the same conceptual entity [6]. In Smalltalk's MVC paradigm, the

model and view have procedural components that allow the controller to manage the interface
correctly.

The Filter Paradigm : Our approach is to abandon procedural specification of user interfaces and
relate the model (source) and view with a declarative interface specification. The idea is to use
constraints to specify the conceptual relation between the source and view objects. For example,
the relationship between an employee object and a bitmap object on a screen can be represented by
constraints. The constraints state that the bitmap object always displays a certain rendering of the
employee object. The constraints hide the procedurality of the interface. If the bitmap object on the
screen is changed, then constraint satisfaction will ensure that the employee object Is changed
accordingly. If the employee object changes, then that change is reflected on the screen.

A filter is an object that describes and maintains these special constraints between objects in
an interface. For example, consider an interface between two binary trees. The binary trees store an
integer number at each node. The interface should be constructed in a way that one tree is the

Authors' addresses:

Dept. of Comp. Science & Eng. ¥ Dept. of Comp. Sclence, FR-35
Oregon Graduate Center University of Washington
Beaverton, OR 97006-1999 Seattle, WA 98195

USA USA

Research was supported by NSF grants |RI-8604923 and IRI-8604977.

141

reversal of the other tree, i.e., the interface can be viewed as the constraint that one tree is the mirror
Image of the other. This constraint can be represented as a filter between a binary tree as source
and a binary tree as view object. Filters are constructed from sublfilters on subparts of a source and
view object. Figure 1 illustrates this tree reversal for two binary trees of height one constructed from
three equality subfilters. The equality subfilters ensure that the integer numbers, stored in
corresponding nodes, are kept equal. If a number is changed then the corresponding number on the
other side of the filter is changed by the constraint-satisfaction system. If a subnode is added to a
node on one side then a subnode is added by the constraint-satisfaction system on the other side of
the filter and an equality subfilter is established between them. If a subnode is deleted from a node

then the corresponding subnode is deleted from the other side of the filter and the equality subfilter is
removed.

The definition of what types of the source and view objects are allowed for the filter and how the
subfilters are connected to them is given by the filier {ype. Filter types specify how filters are built
from atomic filters using set, iteration and condition constructors. Atomic filters are given by the
implementation. The filter and object types are described by a filter specification language (#1.5pe)
[B]. FiSpel is currently a theorstical tool for composing filters; a compiler and optimizer for it are
planned. The Filter Browser is a tool for constructing filters graphically. The Filier Browser
lets the interface designer create filters by defining and manipulating filter types. Subfilters are added
interactively by connecting them with the various constructors to the object types that are displayed in
the browser. The Filter Browser also allows the designer to instantiate a filter from its filter type
definition with sample objects to test the constructed interface.

Related Work : Our approach was guided by experience with the Smalltalk MVC paradigm [9].
Programming experience has shown that this paradigm is hard to foliow. The Smalltalk Interaction
Generator (SIG) tried to add a declarative interface on top of the MVC mechanism [12,15]. One con-
clusion of SIG is that display procedures need type information about the objects they display and
that Smalltalk does not provide this kind of typing. The Incense system [14] uses type information
supplied by a compiler to display objects. The user can influence the display format but cannot
update through this system. Editing can be used as an abstraction of user interaction [16] by
separating the view from the source of data and defining a protocol for update. The Impulse-86 sys-
tem [17] provides abstractions for objects as well as for interactions. Other approaches using alge-
braic techniques to specify user interfaces axiomatically [4] seem manageable only for small theoreti-
cal examples.

....................

Figure 1: Tree Reversal Filter.

142

Constraints are used to specify relations and dependencies in Morgenstern's active database
interface system [13]. Other systems use constraints as their major construct, such as ThinglLab
[1,2), which allows constraints to be expressed in & graphical manner. The Animus system [3,7]
extends ThingLab with constraints that involve time. An early system that employed constraints to
express graphical relations was Sketchpad [18]. The language Ideal [19], used in typesetting graphi-
cal pictures, is based on constraints and demonstrates their power and usefulness. Bertrand [11] is a
term rewriting language that can specify constraint satisfaction systems. In its current implementa-
tion, however, it is not interactive and therefore not well suited for our problem. Constraints have also
been used in the layout mechanism of a window management system [5).

Section 2 of this paper summarizes the filter specification language FiSpel. Section 3 introduces
the Filter Browser and elaborates an example session to generate an interface interactively. Sec-
tion 4 gives details of how the objects, filters, constraints, and the Filter Browser are implemented
in Smalltalk-80', and how the constraint satisfaction is performed by ThingLab [1]. The complete

object and filter type definitions for the employee interface example from Sections 2 and 3 are listed
in the appendix.

2 Objects and Filters

This section summarizes FiSpel, a filter specification language for defining object and filter types. If
we want to compose filters from subfilters, connecting objects of different kinds, it is necessary to type
the objects to ensure that compositions of filters are well-defined. All entities in our filter paradigm are

ultimately implemented by objects, so we put much effort in providing a comprehensive type system
for the object model.

Object Types: The object type system supports the notions of aggregation and specialization.
With aggregation we can build structured objects from components. Specialization aliows us to refine
existing objects via a hierarchy of object types and inheritance. We view object types as records. A
record is a collection of typed fields. The fields have names called addresses. There are constant
fields, which are constant for all instances of a type, and there are data fields, which are local to an
instance of an object. Fields can be iterated by specifying an iteration factor; fields can be conditional
by specifying a condition that must be true for the field to exist; and a field can specify its type

Object Type Person Object Type Employee

lastName — String inherit from Person

firstName -— String salary — Integer

socSecNum — Integer subNumber -+ Integer

address — String supervises [subNumber] — Employee
end supervisor — Employee

jobDescription — String
end
Object Type DisplayEmployee
icon -+ Personlcon
name — String
subNumber -+ Integer
subordinates [subNumber] -+ DisplayEmployee
end

Figure 2: Person and Employee object types.

' Smalltalk-80 Is a trademark of Xerox Corporation.

143

recursively. In addition, an object type can inherit fields from other object types and can place con-
straints on all fields.

Figure 2 shows the two object types, Person and Employee. Person includes the fields that
are common to a person. Employee is a specialization of rexson and defines additional fields,
such as salary and jobDescription. The field supervises is an iterated address, i.e., an
employee may supervise a number of subordinates. The number of subordinates is specified by the
field subNumber.

Object types are used in the filter type definition to describe source, view and variables that are
needed to connect subfilters. A field of an object is accessed by traversing a path of field names.
Woe distinguish direct and delayed access to an object via a path. In direct access, the structure of
the object is traversed according to the path and the correct field is returned. In delayed access, we
store the object identity together with the path to allow access on need at a later time. Delayed
access is needed because it is possible that an object does not comply with the given path at the

time when the path is defined (conditional fields), or the object at an end of a path may change before
it is used.

Filter Types : The filter type system defines the structure of filters. Filters represent constraints
between two objects. The filter type defines the types of the source and view objects it relates. The
filter type also declares the subfiiters that compose the filter. In addition, the filter type can define
variables to be used as intermediate objects when subfilters are combined. A filter that is not further
decomposed is called a filter atom and is directly supported by the implementation. For example,
filter atoms are used for low-level input/output, data conversion, or error handling. A filter that has
subfilters is called a filter pack. The subfilter constructors are: sequence, iteration and condition.
The sequence constructor (set of) declares several subfilters of possibly different types; the itera-
tion constructor (iteration p times i) declares a certain number of filters of the same type; the
condition constructor (condition) declares a subfilter only if a given condition is true. It is possible
to declare another instance of the same filter type as a subfilter of the one being defined, much like a
recursive procedure call in a conventional programming language.

Figure 2 shows the object type definition for DisplayEmployee that contains displayable infor-
mation for an employee. In order to define an interface that will display an object of type Employee
we have to extract the displayable information. Figure 3 shows the filter type definition Employ-
eeDisplay. It decomposes the constraint into subconstraints. The subconstraints specify that the
name, the number of subordinates and the subordinates are the same in the source object of type
Employee and in the view object of type DisplayEmployee. The example uses the sequence and
iteration filter constructors. The iteration names the same filter type for each of the subordinates
recursively. The iteration depends on the value that is stored in source.subNumber. Whenever
that value changes, the number of subfilters that are instantiated for the subordinates is changed.
When including a subfilter, the filter type associates source and view paths with it. For example, the
subfilter stringEquality has source.firstName as its source object. When this filter type is
instantiated, the filter instance will check whether the address firstName in fact refers to an object
of type string. It is at this point that the path to the field is traversed to retrieve it. The newly

Filter Type EmployeeDisplay (source : Employee, view : DisplayEmployee)
make set of
StringEquality (source.firstName, view.name)
IntegerEquality (source.subNumber, view.subNumber)
iteration source.subNumber times i

EmployeeDisplay(scurce.supervises[i],view.subordinates[i])
end

Figure 3: EmployeeDisplay filter type.

144

defined filter type EmployeeDisplay can now be used as subfilter in other filter type definitions.
The appendix contains the complete filter and object type definitions for a sample EmployeeMani-
pulation interface.

3 The Filter Browser

The filter specification language is one way to define a user interface by defining filter types, but the
goal here is to provide a graphical tool to build interfaces. Therefore, a tool similar to the Smalttalk
[10], ThingLab [1] or Animus [7] browser, the Filter Browser, is used to define, manipulate and test
filter types graphically. In defining filter types, we distinguish the external and internal parts of the
definition. Externally, the filter type is identified by its name and the types of its source and view
object. Intemally the filter type specifies subfilters and variables. These details are encapsulated
inside the filter type. A session with the filter browser has three different phases. In phase one, the
name of the filter type and the type of source and view objects are given. In phase two, the variables
and subfilters that participate in filter constructors, such as sequence, iteration and condition are
specified. Phase one represents the external, phase two the internal definition. In phase three, a
constructed filter type is instantiated. Figures 4, 5 and 6 show examples of the filter browser in each
of the phases as we define the filter type EmployeeManipulation.

Phase one (Figure 4) : The filter browser is divided into several panes. In this phase only the
upper left, lower left and lower right panes are used. The upper left pane shows a list of all filter
types that are known to the system. The user can add a new filter type. The current subject of the
filter type definition, i.e., the filter type that will be modified or newly defined, is emphasized. The filter
browser displays two lists of all object types that are available for source and view types in the two
panes below. The user can inspect all object types and select one for source and view. The object
type also provides a sample instance (prototype) that can be used to instantiate the fiiter in phase
three. The EmployeeManipulation filter type is defined on source objects of type Company and
on view objects of type FilterDevice (these object types are emphasized).

Phase two (Figure 5) : The upper left pane displays a list of known filter types with the current
selection, EmployeeManipulation, emphasized. To the right there are four panes to select the
action that is to be performed on the cument filter type. The user can insert subfilters, add

Filter Browser (Version 2.0)

EmployeeDisplay[. Example {Rectangle, FilterDevice)
Emply"' pu] insert | delete |p;ConstantDistance (Point, Point)
EmployeeRender

variable|FaConstantLength (Number, LineSeq

eration ondition viec v

———————————— FaConstantLength
CenteredText FaMasterSlave
[af i FaPointEquality

FaPointSensor
Employee FaRender
EmployeeDisplay FaTextEquality
EmployeeManipulation FilterAtomThing
EmployeeRender FilterBitmap
Example EDeAGEE
FaConstantDistance IterDisplayObject
FaConstantLength FilterMergeObject
FaMasterSlave FilterMouse
FaPointEquality . FilterPackThing
FaPointSensor FilterRenderAtom

Figure 4: Filter Browser Phase One.

145

Filter Browser (Version 2.0)

1 delete R

variable[

traverseCompany7

employeeRendert

kviews> FilterD)|
.mouse> Filt
r.bitmap> Fill

jsource> Company

<.boss> Employee
i<.number> Smallinteder
<.employees> Employee|

employeeDisplays

idisplayEmployee4> DisplayEmployee|
i<.icon> Personicon

<..point> Point

l<.name> String

<.subNumber> Smalllnteger
l<.subordinates> DisplayEmployee

Figure 5: Filter Browser Phase Two.

variables, move or delete subfilters or variables in the picture pane below. The picture pane sub-
stitutes the two object lists from phase one. If the insert action is selected then the upper right pane
shows a list of all filter types and the types of their source and view objects. This list also contains
the currently defined filter type to allow the recursive specification of a filter type. The selected ele-
ment in this list represents the object of the action that is performed, i.e., it names the filter type to be
inserted as subfilter in the filter type. If the variable action is selected then the upper right pane
shows a list of all available object types, from which the user may select. The type of filter construc-

tor (sequence, iteration, condition) is selected with one of the three panes in the middle of the filter
browser.

The picture pane is used to display the subfilters, variables and their connections. A variable is
placed in the picture pane by selecting the variable action. The variable appears as a box that
shows its name and type and the paths to its fields with their types. The user selects a location and
places the variable. The variable is then inserted into the current filter type definition. A subfiter is
placed in the picture pane by selecting the insert action and a subfilter from the upper right pane.
The added subfilter is then connected (linked) to paths in either the source, view or variable objects
by pointing at their location on the screen. For iteration or condition constructors, an iteration or con-
dition object has to be selected by pointing to a path that represents the iteration factor or the condi-
tion. After the subfilter is placed in the picture pane it is inserted into the current filter type definition.

Figure 5 shows the filter browser as the user inserts the TraverseCompany subfilter into the
EmployeeManipulation filter type. A variable of type DisplayEmployee has already been
defined and connected to an EmployeeRender and EmployeeDisplay (see Section 2) subfilter.
The EmployeeRender filter renders an object of type DisplayEmployee on the display bitmap.
The TraverseCompany filter allows the selection of an employee within a company using a pop-up
menu. These filters are already defined. After the insert action has been selected and the user
moves the mouse cursor into the picture pane a lozenge for the TraverseCompany filter appears.
The source link is connected to the displayEmployee4 variable and the view link is connected to
the bitmap address of the view object.

The picture pane represents the network of subfilters. The absolute position of the subfilters in
the picture pane is not important, but it will be stored to redraw the subfilter network in the same way
as it was defined. An important issue in connecting subfilters is typing. The external definition of a
subfilter specifies the object type for its source and view object. Thus, when a source or view link of
a subfilter is connected to addresses of source, view or variable objects of the currently defined filter

146

Filter Browser (Version 2.0)]

<source> Company
<.boss> Employee
<.number> Smallintd

D <.employees> Emplo
)° <view> FilterDevice
— <.mouse> FilterMous
<.bitmap> FilterBitm

<displayEmployee4>
<.icon> Personicon
<.name> String
<.subNumber> Smal
<.subordinates> Disf]

Figure 6: Filter Browser Phase Three.

type, it is necessary to check the corresponding types. These source and view links can be con-
nected to object types that are of the same type as, or are subtypes of, their specified object types.
For example, the source of the TravexrseCompany filter has to be of type DisplayEmployee Or
one of its subtypes.

Phase three (Figure 6) : Instantiating a filter type means creating a Smalltalk object representing
a fiter. When instantiating, source, view and variable object instances of the correct object types
have to be supplied. This instantiation operation is accessible from a pop-up menu in the upper left
pane of the browser, where the filter type has been selected. The right pane of the filter browser
simulates the display bitmap for the filters and all input is controlled by the filter browser, so it is pos-
sible to switch back to the previous phases. The right pane of the filter browser shows the participat-
ing instantiated objects. They can be selected, inspected and changed. Any change to participating
objects will immediately change the display in the left pane. Figure 6 shows the instantiated
EmployeeManipulation filter type for a prototype Company. The FilterxDevice is simulated
by the filter browser. The pane on the left displays the company’s employees. We can traverse the
tree of employees and make changes to the employees as they are stored for the company. The
appendix lists the complete filter and object type definitions.

In phase three the user can test the filter type by observing its behavior and changing values of
variables. The filter type can be changed incrementally. The user can switch back and forth between
phases two and three, adding and deleting subfilters and variables or changing values of participating
objects. All filter types are constructed from existing filters in a bottom-up fashion. The fiiter browser
lists all existing filters together with their source and view type information. Filter types can only be
constructed if the subfilters and variables are connected correctly and the filter can be instantiated
while it is being developed to test its behavior. Thus the filter paradigm stimulates and supports the
re-use of existing components and gives a design methodology for constructing interfaces.

4 Implementation

The Filter Browser is implemented on a Tekironix 4400 Series machine in Smalltalk-802.
Thinglab [1], an extension to Smalltalk, is used to do the constraint satisfaction. Filter and object

2 Smalttalk-80 s a trademark of Xerox Corporation,

147

types in FiSpel are represented as classes in Smalltalk. ThingLab extends the Smalltalk class
definition with constraints, types for instance variables and dynamic access.

Object Types: Object types are modelied as Smalltalk classes. The fields of an object are
instance variables, where the instance variable name is the address of the field. lterated fields are
represented as a set of fields, while conditional fields hold the value “nil’ if the condition is not true.
Fields can be inherited from superclasses. Field access is done through an access path that
stores the field names that have to be traversed. Smalltalk does not keep information on the type of
instance variables, so ThingLab augments the class definition to hold the type (reference to another
object type class) for each instance variable®. Constraints that are defined within the object type are
also stored in the class definition. An instance of an object type refers back to its class definition, so
the constraint-satisfaction mechanism can retrieve the defined constraints.

Filter Types : Filter types are represented as subclasses of the object type classes. Fields are
defined for the source and view objects, as well as for the variables. The subfilters are held in
instance variables that can be conditional or iterated. The subfilters have source and view object
information associated with them, i.e., what fields are used as source and view object for the subfilter.
This information is modelled as equality constraints* from the field within the source, view or variable
object to the appropriate source or view object of the subfilter. For example, consider the Employ-
eeDisplay filter type in Figure 3. The stringEquality subfilter is held by a sequence filter con-
structor; its source is associated with the source.firstName field of the filter type. This associa-
tion is modelled by an equality constraint defined for the EmployeeDisplay filter type class.

ThingLab : As mentioned earlier, the filter browser is implemented as an extension to ThingLab.
Path access using addresses (field names) and the constraint satisfaction is handled by ThingLab.
The field description within ThingLab was augmented to incorporate iterated and conditional fields.
Filter atoms are directly implemented as ThinglLab constraints. Thinglab's prototypes of things are
reduced in their importance in that they are used to hold the graphical information used to display the
filter network in phase two and to provide sample values for the instantiation in phase three of the
filter browser, but they no longer are used to infer the type of an instance variable.

Not all objects will be defined within ThinglLab. Objects outside ThingLab are the display bitmap,
the keyboard, specialized input devices (mice), or existing complex objects in an application. These
object can be incorporated by either providing a special object in ThingLab that holds the outside
object and controls all accesses to it (object holder), or by providing special filters that link existing
objects within ThingLab to those external objects (implementation filter atoms). Graphical primitives,
such as line rendering or input sensoring [8], are examples for filter atoms to incorporate /O-objects.

5 Summary and Conclusion

The filter paradigm represents a new approach to interfaces in an object-oriented environment. Con-
straints are used as the basic building block for interfaces. Constructors are provided to allow build-
ing of structured interfaces in a declarative way. The feasibility of the filter paradigm is shown by pro-
viding a working interface generation tool. In addition, the object type system represents another
approach to bring typing into Smalitalk.

Acknowledgements

This research has been funded by the National Science Foundation under Grants No. IRI-8604923
and IRI-8604977. Thanks also to Casey S. Bahr for many discussions that helped to refine the ideas
for the implementation of the filter browser.

3 Thus, at present, our typing mechanlsm does not allow an instance of a subtype to be stored in a typed Instance
varlable. This Is clearly an undesirable limitation, which we plan to remove. Removing It Is not trivial, however, since
depending on how the instance variable is used, we may need to ensure that the constraints on a subtype are not more
restrictive than those on the specified type.

4 Note that we do not distinguish between unification and equality constraint.

148

Bibliography

[1]1 Boming, Alan, ThingLab - A Constraint- Oriented Simulation Laboratory, PhD Thesis,
Stanford University, 1979.

[2] Boming, Alan, The Programming Language Aspects of ThinglLab, a Constraint-Oriented Simula-
tion Laboratory, ACM Trans. Prog. Lang. and Systems 3, 4 (October 1981), 353-387.

[3] Borning, Alan and Robert A. Duisberg, Constraint-Based Tools for Building User Interfaces,
accepted for ACM Transactions on Graphics 5, 4 (October 1986), .

[4] Chi, Uli, Formal Specification of User Interfaces: a Comparison and Evaluation of four axiomatic
Methods, /EEE Trans. on Software Eng. SE-11:8(August 1985), 671-685.

[5] Cohen, Elis S., Edward T. Smith and Lee A. Iverson, Constraint-Based Tiled Windows, [EEE
Computer Graphics and Applications, May 1986.

[6] Deutsch, L. Peter, Panel: User Interface Frameworks, OOPSLA'86 Conf. Proc., Porland, OR,
September 1986.

[7] Duisberg, Robert A., Constraint- Based Animation: The fmplementation of Temporal

Constraints in the Animus System, Ph.D. Thesis, Department of Computer Science,
University of Washington, 1986.

[8] Ege, Raimund K., The Filter - A Paradigm for Interfaces, Technical Report No. CSE-86-011, Ore-
gon Graduate Center, Beaverton, OR, September 1986.

[9] Goldberg, Adele and D. Robson, Smalltalk-80: The Language and its Implementation,
Addison Wesley, Reading, Mass., 1983.

[10] Goldberg, Adele, Smalltalk-80: The teractive Programming Environment, Addison
Waesley, Reading, MA, 1984,

[11] Leler, Wm, Specification and Generation of Constraint Satisfaction Systems
using Augmented Term Rewriting, PhD Thesis, The University of North Carolina at
Chapel Hill, 1986.

[12] Maier, David, Peter Nordquist and Mark Grossman, Displaying Database Objects, Proc. First
Int. Conf. on Expert Database Systems, Charleston, South Carolina, April 1986.

[13] Morgenstern, M., Active Databases as a Paradigm for Enhanced Computing Environments,
Proc. 9th nt. Conf. on Very Large Data Bases, Florence, Italy, October 1983.

[14] Myers, B., INCENSE: A System for Displaying Data Structures, Computer Graphics 17(3)
(July 1983), 115-125,

[15] Nordquist, Peter, Interactive Display Generation in Smalltalk, Master's thesis, Technical Report
CS/E 85-009, Oregon Graduate Center, March 1985,

[16] Scofield, J., Editing as a Paradigm Jor User Interaction, PhD thesis, University of
Washington, Computer Science Department Technical Report 85-08-10, August 1985.

[17] Smith, Reld G., Rick Dinitz and Paul Bart, Impulse-86: A Substrate for Object-Oriented Interface
Design, OOPSLA'86 Conf. Proc., Portland, OR, September 1986.

[18] Sutherland, 1., Sketchpad: A Man-Machine Graphical Communication System, PhD
Thesis, MIT, 1963.

[19] Van Wyk, C., IDEAL User's Manual, Computing Science Technical Report No. 103, Bell Labora-
tories, Murray Hill, 1981.

Appendix

Section 2 and 3 described object and filter types as examples. The object and filter types given here
incorporate those into an interface example that allows the manipulation of a sample employse data-
base. Object or filter types from Figure 1 and 2 are not repeated here. The types Integer,
InputSensor, Interval, String, FormRender, StringRender, IntegerEquality,
IntegerMultiply, IntegerDivide, BitStreamEquality, StringConversion,
StringConcat, StringSensor and PopUpMenu are atomic and given by the implementation.

149

ObJject Type Form Object Type Company
wldth — Integer boss — Employee
height — Integer number — Integer
count — Integer employees [number] — Employee
bitsfcount] —+ Bit end

constraint IntegerMultiply ((vidth,height), count)
end

ObJect Type Personlcon

Object Type Davice
inherit from Form

display — Form

constraint IntegerEquality (width, 30) sensor — InputSensor
constraint IntegerEquality (height, 45) end
constraint BitStreamEquality ((bits, (0O@0), '0000100001000010000L. . .")

end

rilter Type ExtractHorizontal (source: (Form, Interval), view: Form)

vax
ratio — Integer
from — Polnt

make set of
IntegerEquality(source.width, view.width)
IntegerMinus ((source.second.high, source.second.low), ratio)
IntegerMultiply ((source. first.height,ratlio), view.height)
IntegerEquality (O, from.x)
IntegerMultiply ((source. first.height,source.second.low), from.y)

BitStreamEquality ((source.first.bits, from), view.bits)
end

Filter Type ExtractVertical (source: (Form, Interval), view: Form)
var
ratio — Integer
from — Point
nake set of
IntegerEquality(source.height, view.height)
IntegerMinus ((source.second.high, source.second.low), ratio)
IntegerMultiply ((source. first.width,ratio), view.width)
IntegerEquality (O, from.y)
IntegerMultiply ((source. first.width, source.second.low), from,x)
BitStreamEquality((source.first.bits, from), view.bits)
end

Filter Type EmployeeRender (source: DisplayEmployee, view: Form)
var
topForm, middleForm, bottomForm — Form
verticalForms [source.subNumber] — Form
formInterval [source.subNumber] —+ Interval
make set of
ExtractHorizontal ((view, (0,0.25)), topForm)
ExtractHorizontal ((view, (0.25,0.3)), middleForm)
ExtractHorizontal ((view, (0.3,1)), bottomForm)
FormRender (source.icon, topForm)
StringRender (source.name, middleForm)
iteration source.subNumber times i
IntegerDivide ((i-1, source.subNumber), formInterval[i].low)
IntegerDivide ((i, source.subNumber), formInterval({i].high)
ExtractVertical ((bottomForm, formInterval[i])). verticalForms[i])
EmployeeRender (source.subordinates([i], verticalForms([1])
and

rilter Type EmployeeManipulation (source : Company, view : Device)
var
bossDisplay — DisplayEmployee
make set of
EmployeeDisplay (source.boss, bossDisplay)
EmployeeRender (bossDisplay, view.display)
TraverseCompany (bossDisplay, view.sensor)
end

150

Tilter Type TraverseCompany (source : DisplayEmployee, view : InputSensor)
var
selection — Integer
numberString, menuString — String
make set of
condition (source » nil)
StringConversion(source.subNumber, numberString)
StringConcat (('name', numberString), menuString)
PopUpMenu ((selection, menuString), view)
condition (selection = 1)
StringSensor (source.name, view)
condition (selection » 1)
TraverseCompany (source.subordinates([selection-1], view)
end

