Concurrency Features for the Trellis/Owl Language

J. Eliot B. Moss ~ Department of Computer and Information Science
Walter H. Kohler - Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

Abstract. Trellis/Owl is an object oriented pro-
gramming language being developed as part of the
Trellis programming environment by the Object
Based Systems group within Corporate Research
and Architecture at Digital Equipment Corpora-
tion’s Hudson, MA facility. Trellis/Owl incorporates
support for concurrency. Here we describe the high
level language features designed, the rationale for
that design, the implementation techniques used, the
principles behind them, and experience with the re-
sulting system to date. We show how the object
oriented nature of Trellis/Owl influenced the design,
and how it affected the implementation.

1. Introduction

Trellis/Owl (simply Owl in this paper) is an object
oriented programming language being developed as
part of the Trellis! programming environment. Un-
like Smalltalk-80%, Ow! is strongly typed and offers
inheritance from multiple supertypes. Owl is tar-
geted to slightly different uses as well: development
and maintenance of moderate to large programs.
Owl’s different objectives strongly affected its design,
but actually had little direct impact on the concur-
rency features or their implementation. For further
information on Owl and Trellis see [Schaffert et al.
85, O'Brien 85].

The concurrency features were designed to sup-
port moderate to large grain parallelism: an arbi-
trary operation invocation may be run as a sepa-
rate activity. No attempt was made to support finer
grained concurrency, say at the expression level as
for a dataflow architecture, or for vector or array
processing. We assumed that the primary source of
concurrency would be the logically concurrent tasks
requested by the user when interacting with the sys-
tem. That is, we believed that the applications of
most interest to us (programming environments and
tools) would not exhibit high concurrency by them-
selves. This position might have to be reconsidered
if the project were one focusing more on concurrency
rather than object oriented computing.

We assumed that, in an object oriented environ-
ment with large grain parallelism, concurrency is ex-
pressed through the interaction of multiple activities
on shared objects. This is in sharp contrast to, for ex-
ample, Hoare's communicating sequential processes
[Hoare 85|, which organize concurrency around the
activities and messages passed between them. Ob-
ject oriented computing emphasizes modularity of
design more in terms of data (objects), with type
definitions defining access control and synchroniza-
tion, rather rather than giving processes the primary
role. We feel this approach is more consistent with
the overall thrust of Owl, and object-oriented lan-
guages in general. However, message passing (e.g.,

“Trellis, VAX, VMS, VAXStation, and MicroVAX are trade-
marks of Digital Equipment Corporation.
3Smalltalk-80 is a trademark of Xerox Corporation.

via a user defined message queue data type) is cer-
tainly possible within our design, and could be tai-
lored to meet the needs of the application. Since
most objects will likely not be shared, we placed the
burden of managing access to shared objects on the
user. On the other hand, we provided facilities for
mutual exclusion and scheduling which allow rather
sophisticated concurrency control to be implemented
in a modular fashton.

We chose not to incorporate transaction-oriented
concurrency in this design. The primary reason for
that decision was to allow us to attack and solve
an easier problem, so as to offer a working base
for building the programming environment. We also
wanted to see how well a less ambitious design could
meet our needs, and to get a better idea of ex-
actly which additional features should be investi-
gated. However, we tried not to include anything
in our design that would interfere with a transac-
tion concurrency mechanism. Rather, we believe the
features provided will integrate well and assist in im-
plementing transaction support.

Below we review the high level features of the de-
sign and further discuss our rationale for choosing
them. The design is influenced less by object ori-
entedness per se than by data abstraction. There is
considerable similarity between the Owl features and
ones proposed in c!Weihl and Liskov 85| for use with
Argus [Liskov and Scheifier 83]. However, there are
substantial differences, which we will review later.

We then present the implementation, which has
two major aspects. The first is the representation of
the specific data types and the algorithms for ma-
nipulating them. This aspect is relatively straight-
forward, so we concentrate mainly on how some novel
features are implemented and on how the implemen-
tation is tuned to the expected patterns of usage.
The second aspect of the implementation is how
we achieved appropriate atomicity of execution of
various actions in the system. Unlike most inter-
preter based systems (including the Smalltalk sys-
tems of which we are aware), we take a permissive
approach to interrupt handling: we allow interrupts
and task switches everywhere except in critical sec-
tions. Other systems generally check for interrupts
in the main interpreter loop, or improve on that in
various reasonably simple ways (see, e.g., [Deutsch
and Schiffman 84]). We used a number of methods
to solve a variety of problems. Other implementers
of heap based languages may find our descriptions of
these problems and solutions useful.

We conclude with a brief discussion of experience
to date with the concurrency features and their im-
plementation.

2. Language Features

Our choice of concurrency features for Owl was based
on two major assumptions. First, that activities
(threads of control) will be used primarily to model
conceptually independent tasks. Second, the activity



172

mechanism should be cheap enough that a new activ-
ity can be forked whenever a new thread of control
would better reflect the task structure of the appli-
cation. Two implications of the first assumption are
that a forking activity may not need to wait for the
results of a forked activity, since the two activities are
logically independent, and it is unlikely that frequent
conflicts over shared data will occur. Activities are
not intended to be the principle units of functional-
ity or modularity in Owl; those roles are taken by
operations and type definitions (respectively).

The language features we have added to Owl to
support concurrency include mechanisms for forking
an activity and for awaiting termination of one. We
have also provided concurrency control mechanisms
to serialize and schedule concurrent access to shared
objects by multiple activities.

2.1 The Activity Type

In Owl, we represent activities by objects of type
Activity. New activities are forked by the create
operation. For example, if example_act is a variable
of type Activity,

example_act :=
create (Activity, "FOO", {ai, a2, ...});

forks a new activity to perform operation FOO, pro-
viding arguments al, a2, etc. The activity object
example_act identifies the new thread of control,
and provides means for monitoring its status, as well
as a handle for debugging. Any operation can be
forked as a separate activity.

An activity terminates only by completing the op-
eration it was forked to perform, whether that com-
pletion be normal (via a return) or exceptional (via
a signal).® It cannot be aborted by another activity,
not even its parent, since this might leave the ob-
jects it was manipulating in an inconsistent state.!
However, a collection of activities can be designed
to coordinate their termination by explicitly setting
and checking the state of a shared object.

Generally we do not expect parent activities to
want to wait until a child activity completes, but we
do think there will be cases when one activity will
want to monitor another activity and handle excep-
tions that arise, or use the results returned by the
forked invocation. To support this type of coordina-
tion we provide two operations on activity objects:
await and await_with timeout.

Assume that A and B are activities. If A does
await(B), A is blocked until activity B terminates.
If A invokes await_with timeout(B), A is blocked
until B terminates or the wait times out. Timeout is
indicated by having the call to await_with timeout
signal the exception timeout rather than returning
normally.

Since an activity may want to start a-number of
new activities and then wait until some or all of
them complete, we also provide an iterator® on ob-
jects of type Activity_Set. An Activity_ Set is

30wl’s exception handling is similar to that of CLU (see
[Liskov, et al. 1981]) or Ada. Ada is a registered trademark of
the U.S. Government (Ada Joint Program Office).

4The implementation supports more powerful manipulation
of activities, intended for use by a debugger utility only.

% An sterator is an operation that provides members of some
collection of objects one by one to a loop body for processing.

a set of activities, with some special operations for
monitoring completion. We may insert new activi-
ties into an Activity_Set, close it (to indicate no
more activities will ever be added), and process its
members, as they terminate, with the await_next
iterator. This iterator finishes only when all activi-
ties in the Activity_Set have both terminated and
been provided by the iterator for processing, and the
set has been closed. Note that Activity_Set has
just the operations necessary for handling termina-
tion of each member of a dynamically defined set of
activities, and no more. It is sufficiently special that
it is not really useful to define it as a subtype of
Set [Activity].

2.2

Since we have assumed that activities interact pri-
marily through the use of shared objects, we provide
mechanisms for the implementers of a data type to
serialize and schedule operations on shared objects
by concurrent activities. The synchronization prim-
itives we provided for Owl are quite basic, but they
can be used to implement sophisticated synchroniza-
tion policies in a modular fashion.

Synchronization in Owl is supported by two com-
plementary mechanisms: locks for mutual exclusion,
and wait queues for waiting and signaling. Locking
with waiting and signaling is also the basis for the
monitor approach to synchronization [Andrews and
Schneider 83, but we did not include the automatic
encapsulation provided by monitors, feeling it to be
too rigid.

Mutual Ezclusion Locks

Our locking mechanism uses a mutual exclusion Lock
type with three basic operations: create, acquire
and release. In use, a lock object is generally in-
cluded as a component of a shared object. Acquire
and release operations on the lock can be used to
guarantee exclusive access to the shared object. Usu-
ally, however, these operations would not be invoked
directly by the application programmer. Instead,
they are used by the system as part of a structured
lock black, which will be discussed later.

The Lock operations act as follows. To create
a new lock object, one uses create. Newly cre-
ated locks start unlocked. An activity that invokes
acquire (via a lock block) is granted the lock imme-
diately if it is currently unlocked. If the lock is held
by another activity, the requesting activity is sus-
pended in a first-in, first-out queue associated with
the lock. The release operation is used to unlock a
lock that is currently held.

Since waiting activities may hold locks while wait-
ing for a new lock, there is potential for deadlock. If
lock deadlock occurs, it is detected by the system®
and one or more waiting activities are chosen as
deadlock victims. Each deadlock victim’s acquire
operation will raise the deadlock exception. It is up
to the programmer to determine how to handle the
deadlock, but a deadlock victim should release some
locks to enable other activities to obtain the locks
and proceed. However, an activity that has raised a
deadlock exception is not forced to release its other

Concurrency Control

See also [Liskov, et al. 1977, Liskov, et al. 1981}.
SDeadlock detection and resolution has been designed but
has not yet been implemented.



173

locks, and it is not prohibited from requesting addi-
tional locks. If it requests additional locks, the sys-
tem will test for deadlock again and this may raise
another deadlock exception. After a lock is released,
the first activity in the lock’s first-in, first-out queue
will be allowed to acquire the lock and proceed.
Lock deadlock is not the only potential cause of
unbounded waiting. As we will see later, activities
can also be waiting for a wakeup signal from another
activity that will never occur. The potential for this
type of wait/signal infinite wait is a common feature
of concurrent programming. No satisfactory solu-
tion is known. Consequently, the Owl system does
not attempt to detect the situation automatically. A
timeout mechanism is provided that can be used to
assist in detecting and handling unbounded waits.

Lock Blocks

The lock block structure solves the problem of how
to unlock automatically at every exit point from a
block of code protected by a lock. Lock blocks are
similar to critical regions. For example, code that is
to be executed only while a lock is held is written
within the body of a block of the form:

lock 1 do
... protected code ...
end lock;

Entry to the lock block will cause the invocation of
the acquire operation on lock 1 before the body is
executed. At the end lock, or at any other exit from
the scope of the lock block (such as an exception
being signaled), release is executed on lock 1. If
the acquire signals deadlock, the body will not be
executed and the deadlock exception will be caught
by the nearest exception handler enclosing the lock
block. Exceptions raised within the body of a lock
block are handled in the normal way by exception
handlers within the block. Multiple locks can be
acquired sequentially by nesting lock blocks.

There is an optional else clause allowed in lock
blocks. If the else is present, an acquire nowait
lock operation is invoked rather than acquire. The
effect of the no wait variant is that if the lock can be
acquired immediately without queueing the request,
then the normal body of the lock block is executed;
otherwise the else body is executed. The no wait
form of the lock biock is:

lock 1 do

normal body: executed if lock is granted
else

alternate body: executed if lock is not granted
end lock;

While the structured lock block form for setting and
releasing locks presented here should help the pro-
grammer avoid some common errors, such as forget-
ting to release a lock, it must be used cautiously.
For example, if an unexpected signal arises in a lock
block, the lock will be released automatically when
the signal is passed outside the block. If the signal
arises because the resource protected by the lock is
broken, it is the type implementers responsibility to
catch the exception and take action to fix or remove
the resource.

Wait Queues

Often an activity cannot continue until some condi-
tion is satisfied by another cooperating activity. In
order for the cooperating activity to establish the
condition, it may be necessary for the waiting activ-
ity to release temporarily some of the locks it holds
so that the other activity can access the required
data. Once the cooperating activity has established
the necessary state condition, it needs a way to no-
tify the waiting activity. We provide for this type of
waiting and signaling by using a data type called a
Wait_Queue.

The type Wait_Queue has four major operations:
create, wait, wakeup, and empty. A wait queue
would commonly be a component of a shared object
that is used by cooperating activities. Wait queues
allow an activity to:

o indivisibly: release locks, enqueue on the wait
queue, and suspend execution; and

o wakeup, reacquire the released locks, dequeue from
the wait queue and resume execution.

Let qid be a variable of type Wait_Queue that has
been assigned a newly created wait queue:

gid := create (Wait_Queue);

The operation wait{qid) has the following effect.
The invoking activity indivisibly performs the fol-
lowing three actions:

o enqueues itself on the qid wait queue;

o releases all locks acquired within the current oper-
ation (note that there is exactly one lock per lexcially
enclosing lock block); and

» suspends execution,

At a later time, some other activity’s execution of
wakeup(qid) restarts the waiter. However, before
the waiter is released from the wait queue, the pre-
viously released locks are reacquired. There may be
a delay while reacquiring locks; the details of lock
reacquisition are discussed below. After lock reac-
quisition, the waiter continues immediately after the
wait(qid) statement (with the locks it held before
the wait).

The effect of wakeup(qid) is to awaken the ac-
tivity at the front of the first-in, first-out suspended
activity list for qid. That activity will proceed to
reacquire locks, etc. If there are no activities wait-
ing on qid, the wakeup is ignored. The wakeup is
also ignored if there is already an activity in the pro-
cess of waking up (i.e., reacquiring locks). In these
cases we say the wakeup is lost. The rationale for
losing wakeups is discussed below.

Since it is useful in implementing some schedul-
ing policies (e.g., readers/writers access to a shared
variable), we provide the operation empty(qid),
for testing whether there are any waiters on wait
queue qid. To help detect infinite waits, we pro-
vide a timeout mechanism. If the activity that in-
vokes wait(qid) has set the per-activity parame-
ter wait_timeout_interval, and the activity is not
awakened via a wakeup(qid) within that amount
of time, the wait will terminate with the exception
wait_timeout rather than returning normally.

In sum, wait provides a “hole” in the lock block,
and a Wait_Queue is similar to a condition variable
used with monitors. Our lock block is similar to the
seize statement of [Weihl and Liskov 85], and our



174

wait statement is analogous to their pause. How-
ever, pause results in busy waiting, while we block
a waiting activity and explicitly send wakeups later.
Busy waiting was perhaps reasonable in their case,
since the conditions they are considering are trans-
action commit and abort, which are relatively asyn-
chronous and independent of the seize code. How-
ever, we expect lock blocks with wait statements to
be used for synchronization and scheduling code: the
scheduling state variables are protected by a mutual
exclusion lock, and accessed only in lock blocks. In
this case blocking and wakeups are reasonable, since
we are doing scheduling, not asynchronous notifica-
tion.

Since we wish to support scheduling of access to
shared resources, it is a good idea to help insure
that the condition indicated by a wakeup is still
true when the awakened activity resumes execution.
There are two steps we took towards that goal. First,
we give reacquirers priority over normal acquirers of
the same lock. This prevents new activities from
disrupting the condition established by a wakeup.
Second, we discard wakeups presented while an ac-
tivity is reacquiring locks. If we did not discard such
wakeups, the first awakened activity might invalidate
the condition expected by the second one. Thus, in
our design each activity must send wakeups to the
appropriate wait queues. This design reflects our
bias towards using the synchronization mechanism
for scheduling rather than communication. Also be-
cause of this bias, we feel that activities should al-
ways block when executing a wait statement. Hence,
we discard wakeups sent to empty queues.

While the design decisions just described improve
the chances that the condition leading to a wakeup
remains true until acted upon, care must still be
taken to insure that the condition is not negated be-
tween the wakeup and when the lock is released by
the activity doing the wakeup. In the design process
we considered a number of examples from the liter-
ature, and found it easy and natural to achieve this
in practice. The next section includes an example of
wait and wakeup.

Since waiting involves releasing and then reacquir-
ing locks, the wait statement raises the issue of dead-
lock. Giving reacquirers priority over new acquirers
helps prevent deadlock, but we went a step further:
reacquirers are ordered according to when they are
awakened. This ordering prevents deadlock between
reacquirers needing the same lock (or the same set of
locks). However, deadlocks can occur between reac-
quirers if they still hold some locks from a containing
scope. The reacquire ordering also provide fairness,
which is usually preferred in scheduling problems.
For a discussion of some alternative concurrency de-
signs, see [Andrews and Schneider 83|

An Example

The fragment of Owl code for Shared Char_Buffer
shown below demonstrates how the lock block and
wait queue mechanisms can be used to synchronize
access to a character buffer shared by producers who
insert characters and consumers who remove them.
The shared type is constructed from an unsynchro-
nized type Char_Queue, by adding a lock component
for mutual exclusion, and a wait queue for empty
synchronization. A Char_Queue is assumed to be an
extensible data structure that never overflows (this

is readily implemented in Owl).

Note that in the remove operation it is not nec-
essary to check for empty again after the wait. A
wakeup is done only when the buffer is not empty,
and the non-emptiness condition cannot be negated
before the first waiter gets the lock and proceeds to
remove the newly added item. Furthermore, because
reacquirers have priority over acquirers, it is not pos-
sible for multiple inserts to occur before a waiting
remover gets t.ﬂe first inserted item. This prevents
situations where the first waiting remover is success-
ful, but later wakeups are lost so that other waiting
removers do not wakeup, even though the buffer is
non-empty.

type_module Shared Char_Buffer
: Lock;

: Wait_Queue;
: Char_Queue;

component me.mutex
component me.nonempty
component me.bufifer
operation create (Mytype) returns (Mytype)
is allocate

begin
me.mutex := create (Lock);,
me.nonempty := create (Wait..Queue) ;
me.buffer = create (Char_Queue);
end;

operation insert (me, x: Char)
is begin
lock me.mutex do
insert (me.buffer, x);
wakeup (me.nonempty);
end lock;

end;

operation remove (me) returns (Char)
is begin
lock me.mutex do
if empty (me.buffer) then
wait (me.nonempty)
end if;
return remove (me.buffer);
end lock;
end;

end type_module;

3. Implementation Data Structures

There are four major data types that must be im-
plemented to support the features discussed above:
activities, activity sets, locks, and wait queues. Im-
plementation of most operations on these objects is
obvious. However, the wait statement implementa-
tion is more interesting, as is the timeout mecha-
nism, so we describe them after a brief discussion of
the data types.

3.1 Activities

For expedience, we implemented activities in two
parts: a “permanent”, Owl part called an activity
object, and a “temporary”, low level stack part.

e An Owl activity object resides in the heap (dy-
namic storage area). It may be relocated by garbage
collection (gc) and exists as long as there are refer-



175

ences to it, even if the activity has terminated ex-
ecution. Activity objects support many of the Owl
(i.e., high level) operations on activities, and each
contains a reference to its stack part.

e A stack part is similar to a process state block
in a multiprogrammed operating system, but is tai-
lored to Owl. It is allocated by requesting space
from the operating system, and cannot be moved or
reclaimed by ge, though it can be recycled and used
for another activity later. It consists mainly of the
obvious things: a register save area, a subroutine call
stack’, and so on. Stack parts “exist” only until the
corresponding activity is terminated.

It is not necessary to implement activities in two,
but it is useful because it separates high and low
level implementation concerns, and because it allows
easier re-use of the bulk of the storage consumed by
an activity.

Every stack part has two sets of threading point-
ers. One thread simply chains together all active
stack parts, so the debugger and other tools can find
all “live” activities easily. The other thread chains
together activities having the same execution state
(ready, running, etc.). Here are the execution state
lists maintained in our implementation:

e Ready lists: There are 32, to support that many
priority levels.

e Running list: Contains exactly the currently run-
ning activity.

e Lock acquisition list: One rooted in each lock;
hocllds the activities requesting that lock, in request
order.

e Wait queue list: One rooted in each wait queue;
holds the activities waiting on that wait queue, in
wait order. .

e Frozen list: Contains activities marked by the de-
bugger as currently ineligible for execution (frozen),
but otherwise ready.

e Free list: Contains allocated but currently unused
stack parts, for recycling.

e Reacquire list: Contains all activities in the pro-
cess of reacquiring locks after receiving a wakeup in
a wait statement, in the order in which they were
awakened. This list is discussed in more detail later.

In addition, all non-terminated activity stack parts
are chained onto a global active list, so that the de-
bugger and other tools can find all “live” activities
easily.

3.2 Activity Sets

Activity sets are implemented entirely in Owl, using
the rest of the concurrency features. The members
of a set are stored as elements of an array, and the
array is “grown” (replaced with a larger one and the
elements copied over) if it fills up. Linear search is
used for membership testing, etc. This is deemed ad-
equate for typical activity sets, which are expected to
be small. However, it would be very easy to substi-
tute a different implementation for this abstraction
in the future.

TFor simplicity, the call stacks are of a single fixed size,
which limits overall recursion depth. This is not as bad as it
might seem, since most Owl data ie in the heap, not in the
stacks.

3.3 Locks
Mutual exclusion locks consist of:

o The current holder of the lock; a null pointer if the
lock is free.

o The lock acquisition list: as mentioned previously.
e The earliest awakened activity desiring to reac-
quire this lock; a null pointer if none.

o A count of the number of activities waiting to reac-
quire this lock.

The rationale for the last two items is postponed
to the discussion of the implementation of the wait
statement.

3.4 Wait Queues

Wait queues are similar to counting semaphores, but
the desired high level semantics requires additional
features in the implementation. Recall that Owl wait
queues lose wakeups when there is no activity wait-
ing, and when an activity is in the process of waking
up (reacquiring locks). For communication with ex-
ternal devices and the operating system, interrupts
may be turned into wakeups. However, the Owl
wakeup semantics is not always appropriate for these
uses. Therefore, the implementation makes losing of
wakeups optional. In fact, three separate boolean
flags provide a total of eight different wait modes in
the implementation, of which perhaps four or five are
useful. These flags are:

e Lose wakeups when no activity is waiting: if re-
quested, when an activity is about to wait on a wait
queue, any pending wakeups are first discarded, thus
guaranteeing that the activity will block. This op-
tion is in effect for normal Owl waits.

e Lose wakeups while reacquiring locks: if requested,
when an activity is finished reacquiring locks after
being awakened, discard any pending wakeups. This
option is also in effect for normal Owl waits.

o Wakeup the next activity: if requested, as its last
action before continuing after being awakened and
reacquiring locks, an activity will perform a wakeup
on the wait queue, so as to awaken the next activity
in the queue. This is not used in normal Owl waits.

Various combinations of the above options support
the normal Owl wait, counting semaphores, events
that happen once and thereafter do not cause a wait,
and other potentially useful semantics. These fea-
tures can be made available to the Owl programmer
in at least two ways.

e We can add new operations the Wait_Queue type,
for waiting in different modes; or

e we can provide a separate type for each kind of
waiting. These types might be presented as subtypes
of the Owl Wait_Queue type, all of which share the
same low level representation, differing only the pa-
rameters passed to the implementation when a wait
operation is invoked at the Owl level.

The first alternative requires the user to insure
that each activity that waits on a given queue re-
quests the same wait mode, if consistent, predictable
behavior is to be expected. Hence the second alter-
native is better because it is safer.

To support the above functionality, wait queues
consist of: a wakeup count, a first-in, first-out queue
of waiting activities, and a reference tu the currently



176

waking up activity (a null pointer if there is none).

3.5 The Wait Statement

The Owl wait statement requires that locks be
granted to reacquiring activities in preference to
other requesters, and in wakeup order. To support
the preference, each lock has a count of the number
of activities needing to reacquire that lock. To sup-
port the wakeup order requirement, reacquisitions
are granted according to the order of activities in
the one, global, reacquire list, which is maintained
in wakeup order. To speed lock granting, each lock
refers to its next reacquirer. The lock reacquisition
count allows us to see if the lock has additional reac-
quirers. If it does not, then the search for the next
highest priority reacquirer can be avoided. We ex-
pect that in typical use there will never be more than
one reacquirer for a given lock at a time, so we will
in practice avoid searching the reacquire list at all.
This is a case where we have tuned to expected use,
though we support the full semantics as designed.

To support automatic freeing and reacquisition of
locks at a wait statement, the activity stack part
has a separate lock stack. The lock stack has an en-
try for each lock named in a (dynamically) enclosing
lock statement (i.e., all locks the activity held just
before the wait statement). In addition, each entry
indicates the Owl stack frame for that lock. Thus
wait releases and reacquires exactly those locks as-
sociated with the current frame (the frame is identi-
fied by another slot in the activity stack part). The
lock stack also supports debugging, provides consis-
tency checks, and allows automatic deadlock detec-
tion. The lock statement does lock pushes and pops
on the lock stack. At a later date equivalent informa-
tion may be stored directly in the activity’s execution
stack, removing the current fixed depth limitation on
the lock stack. However, the fixed depth has never
been a problem.

3.6 Efficient Timeouts

Since most operations that can timeout probably will
not do go in practice, the implementers is challenged
to avoid excessive overhead in setting up and remov-
ing timeouts. We use the time slice ticks to drive
the timeout mechanism, so we avoid extra operat-
ing system overhead. However, we still need a data
structure that indicates the next activity to timeout.
Further, as activities are entered and removed, the
data structure has to be maintained efficiently.

We chose to use a balanced binary tree, threaded
directly in the activity stack parts, to hold the time-
outs. In this tree each node has a sooner timeout
than any of its descendant nodes, so the root is the
first to time out. Suppose we number the nodes in
the tree so that the root is numbered 1, and the chil-
dren of the node riumbered 1 are numbered 2i and
27 + 1. If we have n nodes in the data structure, the
next item is addéd at position n + 1, and then it-
eratively propagated upwards (by swapping with its
parent) until its parent has a sooner timeout (or the
next item becomes the root). This arrangement of
data and insertion procedure is patterned after the
heapsort sorting algorithm. It turns out that up-
ward links are not needed in the tree, since a node’s
number tells you how to find it from the root. The
resulting dafa structure supports finding the soonest

timeout in constant time, and insertion and deletion
take O(log n).

4. Additional Implementation Features

A number of features were added to the implementa-
tion that were not required in the design for the high
level language programmer. The main motivation
was to provide convenient support for system func-
tions, a debugger, performance monitor, and other
tools. However, some provision was made for possi-
ble language extensions (e.g., the addition of a vari-
ety of wait modes for wait queues). A number of op-
erations were added to allow the low level state of the
objects (activities, locks, and wait queues) as well as
the scheduler to be examined. Support for a variety
of breakpoints was added. Means for responding to
interrupts were provided, including pre-emptive pri-
ority scheduling in addition to round robin time slic-
ing of activities having the same priority. Time slic-
ing can be turned off, and its rate adjusted. We have
already mentioned that activities can be frozen for
debugging. Once frozen they can be examined, and
their frames manipulated, though not in as general
a way as Smalltalk. Slots for variables, arguments,
and temporaries may be examined and updated, and
returns or exceptions may be forced. Activities may
be identified as being members of zero or more of a
moderate number of groups of activities (identified
by bit flags in the activity}), and such groups may be
examined, reorganized, and collectively frozen and
thawed.

5. Providing Atomicity

Owl takes a permissive approach to interrupt han-
dling and context swapping: interrupts and swaps
are allowed except in critical sections. Note that it
is not immediately clear exactly what constitutes a
critical section. That is, what should be atomic de-
pends on what model and capabilities are offered by
the system. We clarify our model and goals below.

Our permissive approach to interrupts and swap-
ping avoids the overhead and additional latency of
explicit checks, but requires a more intricate design.
We first describe our model and the atomicity prob-
lems that must be solved, and then discuss the tech-
niques we used to achieve atomicity.

5.1 Atomicity Problems

The basic requirement is: when an activity is sus-
pended the debugger and gc must be able to act
upon it. Both the debugger and ge require the stack
to be interpretable. Ge¢ must also be able to find and
adjust all pointers, even those in an activity’s regis-
ters. The requirement that suspended activities be
interpretable raises the following problems:

e Frames in the stack must be whole and recogniz-
able. Guaranteeing this requires frame construction
and destruction to be atomic.

e An activity stack must not contain uninitialized
data, which might confuse the garbage collector or
debugger. Hence, local variables must be set to some
legal value as frames are built. We chose to use a
value recognizable an uninitialized, in order to sup-
port detection of uses of uninitialized variables. Con-



177

veniently enough, a value of all 0’s serves this pur-
pose.

e An activity’s saved registers must be interpretable
by gc. In particular, gc must be able to distinguish
pointers from non-pointers.

The last item has several implications. First, sup-
port routines, since they are written in another lan-
guage where we do not have control over register us-
age, must be atomic. How we make them so will be
discussed in detail below. If we did allow suspension
in the middle of a support routine, we likely could
not interpret the register contents reliably. The few
toutines that allow suspension in the middle (e.g.,
those implementing concurrency control) are spe-
cially coded to avoid problems. This is done by copy-
ing any Owl pointers that are in local variables to
a special place before blocking, and reloading those
pointers into local variables upon waking up.

Routines that may suspend in the middle are also
vulnerable to being caught there by the debugger.
Therefore, we made provision for debugger com-
mands that would break out of the suspension as
cleanly as possible. A further consideration is that
since most routines are guaranteed to be executed
atomically, they do not need to take special care to
leave registers in an easy to find location in the stack.
Blocking routines do a little extra work to make it
possible for gc and the debugger to find registers,
and for the debugger to change them effectively (in-
cluding cutting back the stack, and so forth).

Communication to large external packages where
activity switching in the middle may be desirable
must be done without giving those packages direct
access (pointers) to Owl objects. One approach is
to have an array of object pointers and let exter-
nal packages refer to Owl objects through routines
that are given only the index of an object on the
table rather than an Owl pointer. To pass informa-
tion from Owl to external routines, the information
is either copied, or Owl objects are created in a non-
compacted area (so that they will not move out from
under the external package). Reclamation from such
an area might be prohibited, or left under user con-
trol (an explicit free operator). External packages
also imply stack areas that do not obey the Owl rules.
We have designed and built a simple mechanism for
external packages, but it has not yet been fully tested
or evaluated.

5.2 Techniques for Achieving Atomicity

Let us briefly review the atomicity requirements that
must be met:

o Stack frame creation and destruction, and some

other short, frequently occurring, instruction se-

quences must be atomic.

o Some reasonably short code sequences that are log-

ically inline, but are implemented as assembly lan-
uage subroutines to save space, must be atomic.
These routines do not follow the usual Owl calling

conventions.)

e Most calls to the runtime system must be atomic.
Those routines that may suspend in the middle must
be specially coded.

e As in any system, there are some critical sections
that must execute without the possibility of another
activity gaining the processor in the middle.

e Each “global variable” (called a fized name in Owl)

has associated initialization code, which is run upon
first access to that variable®. We must make sure
that the initialization code is atomic, to the extent
that the initialization is not done twice. (If a second
activity requests the value while the first is calculat-
ing it, the second is to wait for the first.)

Each of the above problems is solved in a slightly
different way. This has partly to do with feasibil-
ity of different methods in different situations, but is
also related to performance. In particular, building
stack frames takes only a few instructions. Adding
two or three instructions to the normal case code
Jjust to achieve atomicity would be unacceptable. On
the other hand, two or three instructions of normal
case overhead on a thirty instruction subroutine that
is not executed all that frequently may be all right.
We describe the methods we used to solve each prob-
lem after first giving an overview of the structure of
interrupt handling and scheduling in our design.

Overview of Interrupt Servicing and Scheduling

Fielding and responding to interrupts in Owl consists
of several stages: registering, handling, delivering,
and responding, each described in detail below. The
overall goal is to gain a response from an activity.
This is done by delivering a wakeup to an appropriate
Wait_Queue. Registering is the initial recording of
interrupt information, and handling is the process of
deciding when to act on that information.

When the operating system® delivers an asyn-
chronous system trap (AST), by forcing a call of a
previously designated trap handling subroutine, the
AST handler will call a routine we provide, which
will register the interrupt. Registration stores an
identification of the Wait_Queue to wakeup and the
activity that was running when the interrupt oc-
curred. A few system defined interrupts are deliv-
ered to a special Wait_Queue, for debugger use; each
user defined interrupt can be delivered to any desired
Wait_Queue. The interrupt information is saved in
a ring buffer. Registration acts as a producer, stor-
ing into the buffer, and delivery acts as a consumer,
reading out of the buffer and posting to Wait_Queue
objects. Ring buffer access is synchronized with ap-
propriately atomic instruction sequences.

In addition to storing information in the ring
buffer, registration must insure that the next step,
handling, will take place. This is done in different
ways depending on the current status of the system.
As will be explained in more detail later, there is a
flag indicating whether we are currently in interrupt-
ible code. If we are interruptible, then the program
counter is saved and the interrupt handler’s return
point modified so that handling will take place imme-
diately. If we are executing non-interruptible code,
we need only set a flag indicating that an interrupt
has occurred; the non-interruptible code will check
this flag later. If the Owl system was completely idle
(pending input/output, for example}, then a special
signal is made to the operating system, to break out
of the idle wait after dismissing the interrupt.

80wl requires a fixed name to be initialized some time be-
fore the first use. The current implementation executes the
initialization code upon the first attempt to use the fixed name.

°The implementation we describe runs under YMs. However,
the techniques and almost all of the code are operating system
independent.



178

As mentioned previously, interrupts are handled
either immediately, or when non-interruptible code is
finished. The handling code either immediately calls
a routine to deliver all pending interrupts, or uses
one of the atomicity mechanisms to defer handling
to a later time. This is discussed more fully when
the mechanisms are described.

Delivering interrupts is reasonably simple: each
itemn in the ring buffer is consumed and the appropri-
ate Wait_Queue is given a wakeup. This may cause
some activities to become ready. Interrupt delivery
is itself atomic, but when it is finished a new activity
may be chosen for execution. The activity awakened
by a delivered wakeup, when run, will then respond
to the interrupt. Activity priorities can be adjusted
to give response appropriate to the interrupt. This is
similar to the technique described in [Goldberg and
Robson 83].

Here is a brief summary of the interrupt servicing
stages:

e Registering: The fact that an interrupt has oc-
curred is recorded.

e Handling: The system decides when to act upon
the information (immediately, if possible; otherwise
at the end of the current critical section).

e Delivering: The appropriate Wait_Queue is given
a wakeup, thus notifying the Owl code of the event.
e Servicing: The system or application Owl code
responds to event as desired.

We now consider the atomicity mechanisms.
Very Short Atomic Sequences: Emulation

The problem in making short instruction sequences
atomic is achieving acceptably low overhead. In par-
ticular, even if we could protect these sequences with
one instruction at each end, the overhead would still
be substantial, especially since operation call and
return (stack frame creation and destruction) is so
common. OQur solution to this problem is to have
the interrupt handling code detect when we are in
one of these sequences and effectively delay handling
until the sequence is complete. The sequences are
recognized by the occurrence of particular opcodes;
the “delay” is achieved by emulating these instruc-
tions on the saved state. {Actually, very little of the
state is saved, and in many cases the instructions can
be directly executed.) Emulation continues until we
are out of the sequence, and then handling begins.

Since we are matching based on opcodes (plus the
registers and addressing modes used), it is possible
that we occasionally emulate instructions unneces-
sarily. However, because all the sequences are short,
we will not waste much time with such unneeded
emulation. A more subtle problem is insuring that
emulation terminates. We do this by checking for
each opcode to be emulated in the same order they
occur in the atomic sequences, and after emulating
one instruction we continue by performing the nezt
check on the next opcode, rather than going back to
the start of the emulation tests.

Emulation involves overhead when handling inter-
rupts (we have to check for instructions to emulate
whenéver we are about to handle interrupts), and
is somewhat slower than executing the emulated in-
struction directly. However, it occurs rarely enough
that the cost does not substantially impact overall
performance. We chose not to use the single-step

trap on the VAX for emulation. Rather, since al-
most all the registers are intact, once we recognize
an instruction requiring emulation, it is usually easy
to execute a corresponding instruction (or a few in-
structions) to update the registers. The program
counter has been saved, so branches are emulated by
updating the saved value, etc.

Almost Inline Routines: Location and Restart

The subroutines that are too long to be inline are
grouped into a particular area of memory, and cur-
rent execution of one of them is detected by examin-
ing the saved program counter value to see if it falls
in that region. These routines are carefully coded to
be restartable, so the handler just backs them up to
the point of call (a legitimate location in Owl code),
and delivers interrupts at that point.

Non-Restartable Routines: The Interrupt Flag

For non-restartable routines, as well as low level crit-
ical sections, a flag is set to indicate when we are
executing non-interruptible code. This flag is actu-
ally a counter, incremented upon entering a critical
section, and decremented and tested on exit. Us-
ing a counter allows critical sections to be nested,
though we have not used this flexibility in the sys-
tem. A special coding of the interrupt flag simplifies
matters here. The second most significant bit of the
counter is normally set, and is cleared when an inter-
rupt is registered. The counter value is thus always
> 0, and equals O only when an interrupt has been
registered and we are not in a critical section. Thus,
when the counter is decremented to zero, we have
just finished a critical section in which an interrupt
occurred.

Decrementing, testing, and conditionally branch-
ing to the interrupt handler takes more than one in-
struction, so emulation is used to insure atomicity of
the critical section exit sequence. Emulation could
also be used to make the critical section entry code
atomic, if it were more than one instruction long.

Non-Owl Support Code: Return Traps

This method is a bit more specific to our circum-
stances, but might still be useful in more general
situations. For speed, since it does not require all
the features of the VAX calling convention, Owl uses
a simplified calling convention. This is part of why
the stack frame manipulation is not atomic. Non-
Owl code is called using the VAX convention, which
modifies a particular register: fp - the VAX frame
pointer register. By checking to see if the contents
of this register is different from the initial £p value
(saved when an Owl activity is created), we can im-
mediately tell if we are executing Owl code (or al-
most inline code), or external support code.

If we are in external support code, the handler
should defer handling until the external subroutine
completes. This is done by tracing up the stack and
changing the return address of the frame that would
return to Owl. The new return address causes a
branch to an entry of the interrupt handler; the old
address has been saved in a particular place. We
call this technique a return trap. Return traps make
support routines atomic without any entry/exit se-
quence. Should an activity block with a pending
return trap, the trap is removed, and handling is at-
tempted on the newly scheduled activity (which may



179

result in the placement of a new return trap).
High Level Code: Swap Deferral

To separate low level code, of which there is not
much, but which is carefully crafted assembly lan-
guage and C, from high level Owl code, the inter-
rupt flag mechanism is not used for high level critical
sections. This allows us to guarantee, for example,
that an activity will not block in the middle of non-
interruptible code. It also gives us some bound on
the time between interrupt registration and delivery,
and thus control over whether or not the interrupt
ring buffer might overflow.

For high level critical sections, we provide a swap
deferral flag, which prevents pre-emption of the cur-
rent activity, unless it explicitly blocks itself. One
place this is used is in the activity termination code:
swaps are deferred while all the activities that are
in an await on the terminating activity are made
ready, one by one.

Swap deferral does not delay interrupt registra-
tion, handling, or delivery. However, it does delay ac-
tual scheduling of activities awakened by interrupts,
and hence holds off interrupt response. Similar to
the interrupt flag, the swap deferral flag is a count.
However, it is maintained separately for each activ-
ity. Thus, if an activity has a non-zero swap defer
count, it indicates exactly those places where 1t is all
right to be interrupted by other activities by block-
ing or explicitly calling a routine that performs a
rescheduling.

Initialization of Globals: Double Check

Initialization of globals is made atomic by using an
additional slot associated with each variable. This
slot gives the identity of the activity initializing the
variable. The variable is a candidate for initializa-
tion only if its value is a code that means uninitial-
1zed, namely zero. In that case, a critical section is
entered, and a determination is made between the
following courses of action:

¢ The variable has acquired a value between the time
we first looked at it and the time we entered the
critical section. In this case, just return that value.
o The variable is still uninitialized, but another ac-
tivity is initializing it. Go to sleep on a special
Wait_Quene. When awakened, check the variable’s
status again.

o The variable is still undefined, and no activity is
initializing it. Indicate that the current activity is
initializing it, and do so. When done, wakeup all
waiters in the special Wait_Queue.

This method causes extra context switches if con-
flict on initialization is common and the conflict
occurs on more than one variable, since a single
Wait_Queue is used for all initialization waits. How-
ever, we have no reason to expect conflicts to be
common.

Of more significance is that we check the value of a
variable twice: once outside the critical section, and
again inside it. The first check totally avoids the
overhead of critical sections and immediately pro-
vides the value when the variable is already initial-
ized. The code sequence is short enough that it is
done inline. If the variable appears to need initial-
ization, a subroutine is called, which then enters the
critical sections and takes action as described above.

5.3 Applicability of Techniques

We feel that the techniques we have described are
broadly applicable to language runtime systems that
must deal with concurrency.

e Emulation is appropriate for short, stylized code
sequences, such as those produced by compiler code
generators. It also compensates for any lack of con-
venient non-interruptible instructions.

e The interrupt flag mechanism is an obvious tech-
nique, quite similar to hardware interrupt enable
flags. However, it can be used when access to the
hardware is impossible, and use of operating system
features is too expensive. It works on general se-
quences of code, but has a few instructions of over-
head, in time and space.

o Restartability also bears some similarity to hard-
ware features. It is much less applicable than the
previous mechanisms, and requires extreme care in
writing the code. Its applicability is further reduced
by the difficulty of distinguishing restartable code
from non-restartable code, a problem we solved by
putting all restartable routines in a special region of
memory.

e Return traps are very nice for making subroutines
atomic. Their use depends on efficient recognition
of the routines that are to be protected that way,
on ready interpretation of the stack, and on guar-
antees that the routines will not bypass the return
trap in some fashion. We recognize routines accord-
ing to calling convention, but location in memory
would also work very well. Our routines can bypass
the return trap, but only by calling some particular
entries, which we fixed to take care of the potential
problem.

5.4 Conclusions about Atomicity

The design and implementation of atomicity mech-
anisms was strongly affected by the presence of
garbage collection. It is essential that gc be able
to locate all pointers, and to fix the ones to objects
moved during compaction. Eliminating compaction
does not substantially reduce the problem. In this
sense the object oriented nature of Owl had great
impact on the implementation. However, features
such as inheritance and compile-time type checking
did not have much influence on low level implemen-
tation; neither did the operating system. We hope
that Owl can be ported to other operating systems
available for the VAX. Porting to other architectures
would require substantially more effort. In our ex-
perience this is true of most garbage collected lan-
guages: for reasonable performance they require con-
siderable tuning to the specific architecture. How-
ever, as we indicated above, the general approach
and many of the specific techniques should carry over
well.

6. Experience

Since the Trellis environment is still under construc-
tion and has few users outside the development team,
there is little experience with our concurrency mech-
anism. However, it does appear adequate for build-
ing the system, and its collection of tools. Specifi-



180

cally:

e The mechanisms are working dependably.

e They are not too slow. For example, the debugger
forks a new activity to process each user command,
with no noticeable pause.

® The features are sufficient for a multiprogrammed
debugger, for the window system and browser, etc.

The concurrency features are in fact more than
just sufficient. Having multiple threads of control
available actually simplifies implementation and im-
praves functionality of the system. The debugger is
a good example of these effects. Running an inter-
active debugger as a different activity from the code
being debugged has the strong advantage of separat-
ing tie stacks and thus simplifying the manipulations
the debugger must perform on the debugged activ-
ity. We can even have multiple debuggers in exis-
tence simultaneously, each dedicated to debugging a
particular activity. The debugger has also been used
effectively in debugging parts of itself. In short, our
experience is overwhelmingly positive, though lim-
ited.

7. Performance

The performance of our implementation is quite
good; it is certainly at least adequate for the uses
intended. A few preliminary benchmark tests are
quoted below, They were performed on a VAX
11/786 and on a VAXStation II (MicroVAX), both
running VMS. Each test was run a large number of
times, with and without the code to be tested, so
that the difference provides the cost of the code be-
ing measured. The times given consist of user mode
processor time only. None of the operations (except
the first activity creation, to allocate a stack part) in-
volves operating system calls. The 785 time 1s stated
first, with the MicroVAX time in parentheses. The
numbers are averages of five runs, each with many
repetitions of the operation measured, and are ac-
curate to about two decimal places. Most of the
support code is written in C; some small parts (e.g.,
low level task switching) are written in assembly lan-
guage.

o Task switch: 170 usec (260 psec).
e Lock acquire/release pair, as in lock block, when
the lock is available: 130 usec (230 psec).
e Synchronized data exchange (via a type similar to
Shared Char_Buffer): 0.93 msec 51.9 msec) per ex-
change (two messages, one in each direction, between
a pair of activities).1°
e Activity creation/destruction overhead: 2.5 msec
4.0 msec{ (given stack parts available for recycling).
he total cost to create and wind down an activity 1s
somewhat higher, since it includes finding the code
to execute given the string name of the operation
and the arguments. This additional cost will be re-
duced by planned changes to string handling and by
integration of multiple activities with the compiler.

Acknowledgements. The design of concurrency
features for Owl was performed by a group of re-
searchers led by Toby Bloom. The group included
Craig Schaffert (Digital), Bill Weihl (MIT), and Bar-

!Note that this includes two acquire/release pairs which
block, two waits, two wakeups, and two task switches.

bara Liskov (MIT), in addition to the authors. The
entire Trellis group reviewed the design. We imple-
mented it, with assistance and guidance from Craig
Schaffert and others. All support was provided by
Digital Equipment Corporation. The group manager
is Ken King.

References

{Andrews and Schueider 83] Gregory R. Andrews
and Fred B. Schneider, “Concepts and Notations
for Concurrent Programming”, Computing
Surveys, Volume 15, Number 1, March 1983,
pp. 3-43.

[Deutsch and Schiffman 84] L. Peter Deutsch and
Allan M. Schiffman, “Efficient Implementation of
the Smalltalk-80 System”, Conference Record of
the Eleventh Annual ACM Symposium on
Princtples of Programming Languages, January
1984, pp. 297-302.

[Goldberg and Robson 83} Adele Goldberg and
David Robson, Smalitelk-80: The Language and
its Implementation, Addison-Wesley, 1983.

[Hoare 85] C. A. R. Hoare, Communicating
Sequential Processes, Prentice-Hall International,
1985,

[Liskov, et al. 1977] Barbara Liskov, Alan Snyder,
Russell Atkinson, and Craig Schaffert,
“Abstraction Mechanisms in CLU”,
Communications of the ACM, Volume 20,
Number 8, August 1977, pp. 564-578.

{Liskov, et al. 1981] B. Liskov, R. Atkinson, T.
Bloom, E. Moss, J. C. Schaffert, R. Scheifier, A.
Snyder, CLU Reference Manual, Springer-Verlag,
1981.

[Liskov and Scheifler 83] B. Liskov and R. Scheifler,
“Guardians and Actions: Linguistic Support for
Robust Distributed Programs”, ACM
Transactions on Programming Languages and
Systems, Volume 5, Number 3, July 1983,
pp. 381-404.

|O’Brien 85] Patrick O’Brien, “Trellis Object-Based
Environment: Language Tutorial”, Version 1.1,
Eastern Research Laboratory, Digital Equipment
Corporation, Technical Report 373, November
1985.

[Schaffert et al. 85] Craig Schaffert, Topher
Cooper, Carrie Wilpolt, “Trellis Object-Based
Environment: Language Reference Manual”,
Version 1.1, Eastern Research Laboratory,
Digital Equipment Corporation, Technical
Report 372, November 1985.

[Weih! and Liskov 85] William Weihl and Barbara
Liskov, “Implementation of Resilient, Atomic
Data Types”, ACM Transactions on
Programming Languages and Systems, Volume 7,
Number 2, April 1985, pp. 244-269.



