OBJECTS AS COMMUNICATING PROLOG UNITS®

Paola Mello, Antonio Natali

DEIS - Facolta' di Ingegneria
University of Bologna-ITALY

ABSTRACT

The aim of this paper 1is to present a set of extensions to the
Prolog language in order to insert in it concepts typical of parallel, distributed
object-oriented systems. A program is a collection of objects (P-Units) that repre-
sent chunks of knowledge expressed as separate Prolog programs. P-units interact by
asking for the demonstration of goals conceived as requests for operations. P-units
can perform operations in parallel. Policies of interaction between objects, the
creation of parallel activities, inheritance and delegation mechanisms are not
frozen in the basic interpreter, but can be explicitly expressed in particular P-
units that act as meta-objects. This approach enhances both the flexibility and re-
usability of the resulting object-oriented system.

1. INTRODUCTION

The object-oriented programming paradigm has shown itself to be very useful in a
number of applications because of its protection and flexibility features. Systems
based on the object model are intrinsically modular, easy to use and potentially
open towards new multi-processor and distributed architectures.

On the other hand, logic programming languages [l], in spite of their very attrac-
tive declarative style and their expressive power, seem to be lacking in precisely
the object-oriented characteristics mentioned above. In particular, in the most
widely used language of this type, Prolog [2], it is difficult to express concepts
such as modularity, protection and information hiding. Besides that, Prolog is a
sequential language which does not allow programmers to exploit the advantages of
multi-processor and distributed architectures, and, again, it is also very hard in
logic to deal with problems which need the concept of state, such as the control of
physical devices. Problems of this type have been solved in Prolog by introducing
built-in, non-logical predicates.
The lack of object-oriented features could prevent Prolog from being used to devel-
op large, complex software systems, even if its declarative style and efficient
implementation [3] make it very attractive for several applications.
The main aim of the proposal presented in this paper (called CPU - Communicating
Prolog Units - [13]) is to explore the usefulness and the synergetic advantages of
*This work has been supported by CEE Esprit Project p973, ENIDATA S.p.A. and Italian
National Research Council (CNR)

182

the combination of logic- and object- oriented programming to overcome the
limitations mentioned above.

The integration of logic and object-oriented programming has already been the

subject of research. Perhaps the most interesting and complete proposals are based,
at the current state of the art, on Concurrent Prolog {61, [7], a language that is
intrinsically parallel and not compatible with Prolog.
Moreover, the concept of 'multiple worlds', providing a way to group together asser-
tions about a concept and the possibility to describe inheritance of properties
between concepts, has already been adopted in several proposals of extension to
Prolog such as Prolog/KR [8] , ESP {91, MULTILOG [26], SPOOL [10], and [11].
However, in these proposals there is no possibility to express explicit parallel
objects.

Instead, the aim of CPU is to fully subsume Prolog and allow parallel activities
to be explicitly expressed. Besides, it exploits meta-programming {19] in order to
enhance software flexibility and re-usability and make it easier to experiment with
different object-oriented organizations, according to rapid prototyping techniques.

In summary, CPU introduces the following concepts:

a) the compact Prolog database (facts and rules) is split into a collection of
separate Prolog programs called P_UNITs, assimilable to CLASSES. P-units are the
basic construct for modularity, information hiding and knowledge structuring, but no
pre-defined policy is introduced for these topics;

b) the behavior of a single P-unit is modelled as a set of parallel demonstration
activities, each owning a local state (INSTANCES);

c) interactions between different P-units are expressed as requests of goal demon-
stration (MESSAGES);

d) explicit communication policies between different P-units and instances are
expreséed in terms of '"meta-rules" written in "meta-P-units" associated to '"object~
P-units". Static and dynamic INHERITANCE mechanisms, frozen at the implementation
layer in traditional object-oriented systems (e.g Smalltalk [4] and Flavors [51),
can be explicitly stated in meta- P-units.

The impact of these concepts on the design and implementation of large software

applications is currently investigated with reference to a programming environment
for Prolog in the context of the ALPES Esprit project [12].
The paper is organized as follows. Section 2 introduces CPU classes, instances and
basic communication mechanisms. Section 3 discusses other forms of communication
between object instances. In section 4 the CPU approach to knowledge sharing between
different objects is discussed.

2. THE CPU MODEL
2.1 CLASSES

In the CPU model [13] (see figure 1) a program is conceived as a collection of
separate (and - if needed - distributed) objects, each one representing a chunk of
knowledge on a particular domain. Each object (called P-unit) is expressed as a
Prolog database [2]. A Prolog database is a collectlon of Horn clauses, i.e. logical
implications of the form A +-A LA ,....A where A, (i=l,..,n) is an atomic
formula and n »=0. Variables occurring in atomic formuias are denoted by constants
beginning with an upper-case letter, and are universally quantified.

Prolog clauses -that can be read declaratively as logical assertions- can also be
interpreted procedurally: e.g. 'to solve a goal (or to execute an operation suc-

183

cessfully) matching Ag, solve (execute successfully) the subgoals (operations)

Al ... A, in sequence". Backtracking can be activated to find the right solution if
META-UNIT FIGURE 1
connect —- X The. CPU model
create — _aak Primitive methods:
e — ask
todemo odemo create
connect
Reflection predicates:
connect —» aslc
create P-UNIT > todemo
e * odemo

l
IMNSTANCES E:] .

more than one definition for the same operation exists.
Thus, in CPU, operations (methods) are simply represented by Prolog clauses. In the

following example the P-unit 'list' containing methods to manipulate lists is
presented. It defines the methods: 'append', 'insert' and 'notempty'.

unit(list).

append(...):~

notempty(LIST):-

insert([],ELEM, {ELEM]).

insert([FIRST}REST],ELEM,[FIRST:RI]):- isless(FIRST,ELEM),insert(REST,ELEM.Rl), 1.
insert([FIRST{REST],ELEM,[ELEM,FIRST:REST]).

isless(FIRST,ELEM):-...

P-units can communicate by sending messages; a message sent to a particular
object can be conceived as a request to demonstrate a goal using a particular
database. The primitive predicate ask(Dest, Goal, Res) embeds a synchronous message
passing. It asks a P-unit 'Dest' to demonstrate 'Goal' with result 'Res'.

'ask' acts as a (remote) procedure call [17] where the caller waits until the
invoked operation is terminated. 'Res' is bound to 'true' if the demonstration of
'Goal' into 'Dest' ends with success. In this case some of the variables within
'Goal' may have been bound to terms. In the case of failure, 'Res' is bound to any
constant different from 'true'. The default value for a failure is 'unknown' and not
'false' because P-units are open-worlds [l4]: the close world assumption of Prolog
(which usually justifies a concept of falsity) must be established, if needed, in an
explicit way.

If the method (goal) invoked is local to the current P-unit, the 'ask' primitive can
be omitted. In the following example 'list' invokes the P-unit finteger' to demon-
strate the external goal 'isless'.

unit(list).

append(...):- ...

insert([],ELEM, (ELEM]).

insert([FIRST|REST],ELEM, [FIRST|R1]):- ask(integers,isless(FIRST,ELEM),true),
insert(REST,ELEM,R1),!.

insert([FIRST{REST].ELEM,[ELEM,FIRST}REST]).

184

Expressing methods as Horn clauses and method invocations as goals to demon-
strate, leads to a set of important features:
1) knowledge is expressed in a declarative style. This helps in building knowledge-
based systems;
2) the use of goal arguments as either input- or output-parameters of operations is
determined by the context at the execution-time thanks to unification {1513
3) the same method can have multiple definitions (see 'insert' in 'list'). In this
case, the right solution is automatically searched via backtracking;
4) the system is not necessarily uniform: unification can be profitably applied to
logical terms which are not represented as object instances.

2.2 INSTANCES

P-units can activate different and, if needed, parallel demonstration processes
to solve goals (i.e. to perform requested operations). Thus, P-units can be con-
sidered as TYPE or CLASS objects whose instances are agents performing operations on
behalf of an external sender object (MASTER) and sharing the knowledge base repre-
sented by the clauses of the class. The Basic Machine supporting a P-unit is concep-
tually a multi-processor system with shared memory and a finite but not limited
number of processors.

In the P-unit 'list' presented before, a demostration process is implicitly acti-
vated every time a 'list' method invocation is received and the caller is suspended
until such a process has produced an answer. List demonstration processes, like
unserialized actors [16], have no private state. Thus, it is not necessary for the
programmer to name them explicitly. Demonstration processes are only passive servers
of external requests and can be completely transparent to the user.

However, although logic programming does not permit multiple assignments of
values to logic variables, the instances of an object-oriented system normally
have a private state that can be changed by the execution of methods. For this
reason, CPU associates to each P-unit the primitive method 'create' in order to
explicitly create parallel, independent INSTANCES with a private state,

When a P-unit 'ul' receives a request for the method: create(Iname, Goal), it
creates an instance with name 'Iname' to perform the demonstration of 'Goal' using
the Prolog data-base of 'ul'.

The ‘'create' method terminates with success just after the activation of 'Iname'.
Thus, the instance 'Iname' performs the operation 'Goal' in parallel with its crea-
tor (the caller of 'create’). The names of explicit instances are represented as
Prolog lists as follows: ([unit_name, <unique-identifier>]. The state of an explic-
it instance is represented by the refutation-tree related to the goal to be demon-
strated and by the local bindings of logical variables. As in object-oriented
systems based on Concurrent Prolog, instance variables are represented by logical
variables. CPU instances do not change their state by using assignment but by
recursively calling themselves with different argument values, according to a side-
effect-free style of programming. Prolog predicates such as 'assert' and 'retract'
should not be wused to obtain state change because they usually do not produce a
modification on a specific instance, but a change in the whole Prolog database
(Class) shared among all instances.

Let us consider the following example. A Class named 'Point' is defined whose
instances represent points in a two-dimensional coordinate system. Each instance of
this class has an instance variable, X, that represents its horizontal coordinate,

185

and an instance variable, Y, that represents its vertical coordinate. Each instance
can assign different values to X and Y ('set-new'), show its current position
('show') or delete the point ('delete').

unit(point).

erase(X,Y):- <on screen operations>.
move(X,Y,Z,W):- <on screen operations>.
display(X,Y):- <on screen operations>.

/* this part of Point represents the methods 'erase', 'move' and 'display'®/

point(X,Y) :- serve(set-new(Z,W)),!,move(X,Y,Z,W),point(Z,W).

point(X,Y) :- serve(show(X,Y)),display(X,Y),!,point(X,Y).

point(X,Y) :- serve(delete),!,erase(X,Y).

/* this part of point represents the definition of its main loop; the arguments
of point predicate (X and Y) represent the instance variables. The 'serve'
predicate will be explained in more detail in the following */

new(X,Y):- repeat,point(X,Y).
/* the 'new' method is called to create a new point with initial state repre-
sented by X and Y actual values */

The main loop 'point{_,_)' is a specification of the behavior of a point: "A
point with coordinates X and Y can serve a 'set-new' message and become a point on
the screen with new coordinates Z and W; it can serve a 'show' message and maintain
its old state; it can receive a 'delete' message and cancel itself".

When an object Ol wants to create a new point 'pl' with X=3 and Y=5 the following
message has to be sent to the class 'Point':

ask(point,create(pl,new(3.5)),Res).
Once the new point has been created, the object Ol continues its computation without
waiting for demonstration of the goal new(3,5).
An instance terminates when the refutation process fails or when it ends with
success. In the example the latter situation occurs when a 'delete' message is
served.

2.3. META-PROGRAMMING TO SPECIFY OBJECT BEHAVIOR

A main concept in CPU is that the specification of object interactions can be
considered a typical domain of meta-programming [19]. To support this concept, the
model introduces a clear distinction between objects and meta-objects and a mecha-
nism to define precise relationships between them.

A meta-unit, 'mu' can be associated with an object-unit 'u' by executing the
following primitive method with success in 'u': connect(mu).

Since 'mu'is a P-unit, it can be connected to another 'meta-meta-P-unit' and so on:
for this reason meta-levels can grow indefinitely. When a unit is associated to a
meta-unit, each instance of the object-unit performs a DEFAULT COMMUNICATION with
its meta_unit for each (sub)goal to be demonstrated. This consists in asking the
meta-unit for demonstration of the following goal :

todemo(Master, Instance, Current-U, Goal, Result)

where ‘'Instance' is bound to the name of the object-level instance that has to
demonstrate 'Goal'; 'Master' is bound to the name of the unit for which the demon-
stration is executed (in general the name of the calling P-unit), and 'Current-U' is
bound to the name of the object-level unit involved in the goal demonstration.
'Result' represents the result of the 'Goal' demonstration.

186

For example, let us assume that the explicit instance [point,pl] executes:
ask(integers,isless(3,5),true). The following invocation is then automatically
generated in the meta-unit -if it exists- associated with ‘integers':

todemo(point, [point,pl]l , integers, isless(3,5), true).
Successful execution of the method 'isless' is strictly related to the successful
execution of 'todemo' with the specified arguments.

Transition from the object-level to the meta-level is only half of the communica-
tion pattern which allows the sharing of results between these two levels according
to the reflection principle [18]. Transition from the meta-level to the object level
occurs when a meta-unit sends to its object-unit the goal

odemo({ Master,Instance,Unit,Goal,R)
which forces the demonstration process 'Instance' to solve 'Goal' (with result 'R')
into the object-unit 'Unit' with the specified 'Master’.
In the following example the P-unit 'list' has been associated with the meta-unit
'meta-list'. 'List' has been modified in order to enclose interconnection policies
in its meta-unit only, to enhance system modularity and flexibility.
A list of characters can now be implemented without changing the 'list' class code:
it is only necessary to connect it with another meta-unit. '"Generic" [20] classes
can be easily defined in this way.

unit(meta-list).
todemo(Caller,I,U,isless(A,B),Res):- ask(integers, isless({ A,B),Res).
todemo(Caller,I,U,G, R):- odemo(Caller,I,U,G,R).

todemo T odemo |

unit(list).

insert([],ELEM, (ELEM]).
insert([FIRSTlREST],ELEM,[FIRST:Rl]):- isless(FIRST,ELEM), insert(REST,ELEM,R1),!.
insert([FIRST|REST],ELEM, [ELEM,FIRST|REST]).

Let us note that meta-P-units are different from meta-classes of object-oriented
languages such as Smalltalk [4]. In fact, while the main task of meta-classes in
Smalltalk is the general description of Classes, the main task of meta-P-units in
this example is that of specifying relationships between objects. More generally,
specification of a P-unit can be confirmed, modified, or completed by the associated
meta-P-unit. According to this interpretation, the behavior of the instances of a
Class 'c¢' 1is determined not only by the object P-unit ‘'c', but also by its
associated meta-P-unit.

There are several reasons for investigating an object-oriented model in which
each object communicates with its meta-level before doing any operation. In partic-
ular, even if Classes are represented as collections of methods, the use of meta-
level allows the definition of a single method {21] to answer all messages that an
object receives. This feature could be useful to trace or record all messages sent
to an object in a history-list, to debug its behaviour or to redirect messages.
Moreover, concepts and mechanisms usually frozen in language notations (e.g. scope
rules, exception mechanisms, synchronization and communication protocols) can be
expressed by meta-rules.

Further examples of meta-level applications will be discussed in the following. In
particular section 4 will be devoted to discussing the impact of meta-programming in
the implementation of inheritance mechanisms.

187

3. DEFINING COMMUNICATIONS BETWEEN OBJECT INSTANCES

The 'ask' primitive is used to send goals to P-Units that behave like Classes. P-
Units (and their associated meta-P-units) activate processes in order to perform
goal demonstrations. However, as happens in traditional object models, the need to
send messages to specific instances with an explicit name and a local state, is
present. For example, to move the particular point [point,pl], an explicit message
must be sent to it and not to its generic class.

Since CPU is intended for distributed programming, the CPU model does not allow the
sharing of logical variables between different instances (even if they belong to the
same class). For this reason, the interaction between instances is not expressed in
terms of streams and annotated variables, as in object models based on Concurrent
Prolog [6]. There is no need for explicit 'merge' operators, so an incremental style
of programming is encouraged. In particular, low-level communication between instan-
ces can be performed by calling the methods of predefined 'queue' P_units. Producer
instances can insert messages in a queue using an 'out' method while consumer
instances can remove them by calling an 'in' method. Queues are objects with an
internal state represented by the messages received and not yet removed. Because
queues are here conceived as the building blocks of instance communication, they
cannot be represented as explicit instances. Therefore, their state cannot be
represented by logical variables. In CPU, queues of messages are simply represented
by ordered collections of Prolog facts; 'in' and 'out' operations are implemented
through side-effects using Prolog pre-defined predicates 'assert' and ‘'retract'.
Inspection and manipulation of messages is performed in a very simple and expressive
way, thanks to unification.

In order to make queues able to share methods but not their local state, queue
methods can be defined in a 'meta-queue' unit. In this case object-units can be
assimilated to instances and the shared meta-unit to their class.

Thus, each P-unit can behave as a queue if it is connected to a meta-unit including
the following meta-rules:
todemo(Caller,Inst,U,outhessage],Res):-odemo(Caller,Inst,U,assert(Message),true).
/% a message is inserted in the object queue *f
todemo(Caller,Inst,U,in(Message),Res):- odemo(Caller, Inst,U,retract(Message),true).
/* if it exists, a message is removed from the object queue */

Concurrent accesses to the database of a P-unit using assert and retract predi-
cates are assumed to be disciplined through built-in synchronization protocols so
that modification to the database is performed in a consistent way.

3.1 AN EXAMPLE: ASYNCHRONOUS COMMUNICATION
Let us consider the point example of section 2. An asynchronous communication

between 'screen' instances, to display, change or delete points, and 'point' in-
stances, can be established by writing the following meta-P-units:

unit(request-server).

todemo(Caller,Instance,U,serve(Goal),Res):-
!,ask(queuel,in(message(Source,Instance,Goal)).Res).

/* to serve an external request for a particular 'Instance', a request message

for such an 'Instance' must be removed from the queue. If no message exists, the

'Instance' backtracks. */

todemo(C,I,U,G,R):-odemo(C,I,U,G,R). /% other goals are solved locally %/

188

unit(request-sender).
todemo(Caller,Instance,U,send(Dest,Goal),Res):-
I, ask(queuel,out{message(Instance,Dest,Goal)),Res)
/* to send a request to a particular 'Instance' a message for such an Instance is
inserted in 'queuel' */
todemo(Caller,Instance,U,Goal,Res):-odemo(Caller,Goal,Res).

If we connect 'point' to 'request-server' meta-unit, ‘screen' to 'request-sender'
meta-unit, and 'queuel' to 'meta-queue' (figure 2), then the instances of 'screen'
and 'point' classes communicate in an asynchronous way.

is~mafa~nF‘l out 4

r—i screen I quevel.

ﬁ PN tj— ssnd +————— serve

FIGURE 2! implementation of intzraction between instances

When a point instance calls the 'serve' method with a 'set-new(X,Y)' argument, a
request for the 'set-new' method is searched in 'queuel'. If this message exists it
is extracted from the queue and executed; otherwise backtracking is induced in the
"point' instance and messages 'show' and 'delete' are sequentially searched for. If
none of these messages is present in the queue the main loop is repeated and the
'serve' operations retried. Thus, 'point' instances perform a busy form of waiting
for requests, using the backtracking mechanism of Prolog. Of course, if instances
share the same processor this mechanism can be replaced by rescheduling policies.
Let us note the expressive power achieved through the unification mechanism for
message-handling operations, when instance names are normal Prolog structures:

a) if 'Source' within the 'in' goal is not bound, a message can be received from any
instance;
b) if 'Source' is partially specified (e.g. it has the form: (screen,X]), only
messages sent by 'screen' instances can be received.
c) 1if 'Dest' is only partially specified within the 'out' goal, (e.g. it has the
form {point,Any]) then the message is served by the first 'point' instance that
executes a 'serve' predicate;
d) depending on the form of the requested operation ('Goal'):

1) the first message in the queue is extracted;

2) only a particular message is looked for.

The previous policies are examples of low-level process interaction mechanisms
upon which different, higher level interaction policies (e.g. synchronous message
passing) can be defined at meta-level. In [13] we have introduced a high form of
interaction between instances called "synchronization clauses', based on the rendez-
vous (20] model, similar to generalized clauses presented in [22]. Their implemen-
tation in terms of meta-rules is reported in [27].

3.2 CONTINUATIONS

When an instance terminates, it could send a last message with its final results
to a 'continuation' [23] process, specified at its creation. For example, when each
point instance terminates, it could send a special message to a particular 'garbage
collector' process. This policy can be easily implemented without any modification

189

in the 'point' code, by simply writing the following meta-rule:

todemo(Master,Instance,U,new(Continuation,X,Y),R):-
odemo(Master, Instance,U,new(X,Y),R),
ask(queuel,out(Instance,Continuation,end(Instance,R)),true).

4. BUILDING INHERITANCE MECHANISMS

Very different mechanisms have been introduced in object-oriented languages for
the purpose of sharing knowledge. In Smalltalk [4] simple inheritance is intro-
duced; Flavors [5] supports multiple inheritance and combination; in Actors systems,
delegation ([21] is wused. Since universal agreement seems impossible ([24], the
approach of CPU is to allow programmers to explicitly express rules to share knowl-
edge between different objects. Experiments on different models of knowledge
structuring and sharing can be performed in a rapid and flexible way since inheri-
tance rules can be well expressed by meta-rules. Let us consider the following
example. A 'special-point' class could be defined with the same behavior as 'point'
(e.g. the same state representation, main loop, and sheduling policy) except a
different 'move(X,Y,W,Z)' method. 'Special' point could be defined as a subclass of
'point' that only defines a new method for 'move'. Implementation of the required
inheritance between these two classes can be expressed by an 'inheritance' shared
meta-unit (figure 3).

l FoinT sub=oclaas—of FIGURE 3
an iMplementation
of inhkeritance

jg—rmeta=—of [special-point |

I[f we suppose that the 'class-dictionary' unit specifies the methods defined in

every class and the 'class-manager' states that 'super(special-point,point)’', then

meta-rules implementing inheritance can be written (in the order of their leading

numbers) as follows.

A request for execution of a method 'G' by an 'Instance' of a 'Class' is accepted

if 'G' is defined in it (rule 4); otherwise the execution of 'G' is delegated to

the superclass 'SuperC' of 'Class' (if it exists) (rule 5).

4) todemo(C,Instance,Class,G,R):- ask(class-dictionary,def-method(Class,G),true),
!,0odemo(C,Instance,Class,G,R).

5) todemo(C,Instance,Class,G,R):- ask(class manager,super(Class,SuperC),true),
todemo(C, Instance,SuperC,delegate(Class,G),R).

A request for execution in 'SuperC' of an inherited method 'G' is directly
executed 1if 'G' is defined in 'SuperC' (rule 2); otherwise the execution of 'G' is
delegated (with the same, initial subclass 'SubC') to the superclass 'SU' of
'SuperC', if it exists (rule 3).

Let us note that when a method is executed for a subclass, the Master is named in a
special way (i.e. subclass(SubC)) to allow the selection of rule 1.

2) todemo(C,I,SuperC,delegate(SubC,G),R):-
ask(class-dictionary,def-method(SuperC,G),true),
1,odemo(subclass(C,SubC),I,SuperC,G,R).

190

3) todemo(C,I,SuperC,delegate(SubC,G), R):-
! ,ask(class_manager,super(SuperC,SU),true),
todemo(C,I,SU,delegate(SubC,G),R).

When a method invoked in a subclass 'SubC' 1s executed in a superclass 'SuperC', a
local methods have to be solved by searching for the corresponding code in the
inheritance tree, starting from 'SubC' (rulel). For example if, during execution of
the 'point' main loop, the ‘'move' method is invoked, the corresponding code in the
'special-point' subclass must be executed. Let us note that a similar rule referring
to instances is embedded at the implementation layer in traditional object-
oriented systems like Smalltalk, and obtained by using the 'Client' variable [24] in
delegation-based systems.

1) todemo(subclass(C,SubC),I,SuperC,G,R):- !,todemo(C,I,SubC,G,R).

If all the conditions previously mentioned are not verified, the result of the
method invocation is the constant 'not-def' that can be interpreted as exception by
the caller (rule 6).

6) todemo(C,I,U,G,not-def).

If a class has more than one super-class (e.g. when a new relation such as
super(special-point,graphic) is written in the 'class-manager' unit) a multiple
inheritance mechanism is automatically implemented: the inheritance tree is searched
depth-first using the backtracking mechanism of the standard Prolog interpreter.
Using the same methodology more sophisticated inheritance mechanisms could easily be
obtained. For instance, different dynamically-determined policies of knowledge
sharing could be obtained depending on the method arguments or on the involved
instances. We are still investigating the possibility of building delegation
policies [21] using the basic CPU mechanisms introduced in the paper.

FINAL REMARKS

In this proposal, concepts typical of object-oriented models have been introduced
in a logic programming framework based on the Prolog language. The use of meta-
programming, typical of logic-based systems, allows programmers to build concepts
and mechanisms usually frozen in specific language notations, e.g. communication and
inheritance policies, in terms of meta-rules. The CPU model even though somewhat
lacking in linguistic support, seems to be promising for defining highly
dynamically reconfigurable systems and, in particular, flexible programming
environments for rapid system prototyping. One of the objectives we will pursue in
the Esprit ALPES project is to build a CPU working prototype and an environment
kernel in which tools have a satisfactory degree of re-usability and flexibility in
order to support rapid development of new abstractions in process interaction,
deeply integrated with those related to knowledge representation. The first CPU
implementation on a SUN machine showed the usefulness of combining object-oriented
and logic programming models even if it still lacks in good performances, for the
overhead due to the automatic transition to meta-level.

In order to enhance performances, we are going to investigate, among other things,
the application of partial evaluation techniques [25] typical of logic programming
languages.

REFERENCES :

{1] R.Kowalski: "Predicate Logic as Programming Language", Proc. IFIP-74

{21
(3]
(4]

{51
{6l

171
{8]

(91
{10]

{11]
(12]
(13]
(14]
[15]
[16]
{171
18]
(191
(20]

{21]

(22]

{23]
(24]

(25]

(26]

(27}

191

Congress. North Holland, pp. 569-574, 1974.

W.F. Clocksin, C.S. Mellish : " Programming in Prolog ", Springer-Verlag, New-
York, 1981.
D.Warren et alii: '"Prolog - The Language and its implementation compared with

Lisp", SIGART Newsletter 64, pp. 109-115, 1977.
A.Goldberg, D. Robson: Smalltalk-80, The Language and its Implementation.
Addison Wesley, 1983.
D.Moon et alii: "LISP Machine Manual', MIT-Books, AI Laboratory, 1983.
K.Kahn: '"Objects in Concurrent Logic Programming Languages", Proc. OOPSALA-86,
Portland, Oregon, September 1986.

K.Furukawa et alii: '"Mandala: A Logic Based Knowledge Programming System', in
International Conference on Fifth Generation Computer Systems, 1984.
K.Nakashima "Knowledge Representation in Prolog/KR", International Symposium on
Logic Programming, Atlantic City, February 1984.
T.Chikayama: "ESP Reference Manual", ICOT Report, Feb. 1984,

K.Fukunaga: "An experience with a Prolog-based Object-Oriented Language', Proc.
OOPSALA-86, Portland, Oregon, September 1986.

C.Zaniolo: '"Object Oriented Programming in Prolog", International Symposium on
Logic Programming, Atlantic City, February 1984,

ALPES Esprit Project P973. Technical Annex 1985,

P.Mello, A.Natali: "Programs as Collections of Communicating Prolog Units" In:
ESOP, Saarbrucken, March 1986, Lecture Notes in Computer Science n.213,
Springer-Verlag.

C.Hewitt, P.De Jong :"Open Systems", Tech. Rep. MIT-AIM 691 December 1981.
J.A.Robinson: "A machine-oriented logic-based on the Resolution Principle",
Journal of ACM, 12, 23-41, 1965.

D.G. Theriault: "Issues on the Design and Implementation of ACT2", Tech. Rep.
MIT AI-TR 728, June 1983.

B.J.Nelson: Remote Procedure Call. Dept. of Computer Science, Carnagie-Mellon
Univ. , Ph.D. Thesis, Rep. CMU-CS-81-119, May 1981.

K.Bowen, R.Kowalski :'"Amalgamating language and metalanguage in logic program-
ming'", in Logic Programming , Academic Press, 1982.

L.Aiello, G.Levi:" The uses of meta-knowledge in AI Systems", ECAI-84, Pisa,
September 1984,

"Reference manual for the Ada programming language ", U.S.Departement of
Defense, ANSI/MIL-std 1815-a, Jan.1983.

H.Lieberman: 'Delegation and Inheritance: Two Mechanisms for Sharing Knowledge
in Object-Oriented Systems'", in J.Bezivin, P.Cointe (editors), 3eme Journees
d'Etide language Oriente Objets, AFCET, Paris, 1986.

M.Falaschi, G.Levi, C.Palamidessi: "A Synchronization Logic: Axiomatics and
Formal Semantics of Generalized Horn Clauses." Information and Control,
Academic Press, Jan.1984.

R.E. Filman, D.P. Friedman: "Actors", in 'Coordinated Computing ', Prentice-
Hall, 1984,

H.Lieberman: "Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems', Proc. OOPSALA-86, Portland, Oregon, September 1986.
R.Venken: "A Prolog Meta-Interpreter for Partial Evaluation and its Application
to. Source to Source Transformation and Query-Optimization', in Proc. of ECAI-
84, North Holland, 1984.

H. Kauffman, A. Grumback: "MULTILOG: MULTIple worlds in LOGic programming',
ECAI-86.

P.Mello, A.Natali: ‘"Configuration of Software Systems: A Domain for Meta-
Programming', Technical Report DEIS, September 1986.

