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Apstract:

The research reported in this paper is part of an ongoing effort to explore potential benefits of using new sofvware technologies
for various classes of system simulation. Queueing network scengrios fiave been chosen as the first area of application. Our
experiences in the use of two object-oriented simulators are descrifed, using a simple example.

Pose is o Scheme based queueing nerwork simulator. It demonstrates the

abilty of sybolic anguages and explorsory

programming for system simulation. Some characteristics of window-based and, gm;ﬁwa[:;ymgramnung environments are then briefly

discussed, with reference to a Smalltalk-based simulation tool.

The final chapter suggests that ofjiect-oriented simulation languages embedded in interactive modelling environments Rosted on
powerful warkstations may well offer major breakshroughs in terms of user acceptance. The bandwidih of user/tool interfaces
should be as wide as possible, drawing on modern techniques for graphical interaction and multi-process systems supporting the
“desktop” metaphior. Use of Smalltalk. permits quick and easy exploration of design alternatives through rapid prototyping.
Embedding such tools in Scheme preserves their functionality while making them more accessible to a wider community.
Computational efficiency, while a lesser concern to ‘modelling for insight', remains unsatisfactory in simulation for quantitative
predictions. This problem may hopefully be overcome through future advances in software and hardware technologies.

1. Tools & Techniques of
Simulation Programming

The term “simulation" is used for a wide variety of
methods for computational animation of a descriptive model.
Any exploration of states and pattems of behaviour under a
chosen experimental frame is a simulation experiment in this
sense.
A "good" model is always the simplest one which may still be
justified. Analytical models are extremely useful as long as
questions are simpie and models can be properly validated.
There are, however, a great number of more complex
situations for which simutation is the only applicable method
of analysis. Often no other techniques exist to explore
strongly interconnected and irregular systems. Also, direct
experimentation with a real system may not be possible; i.. it
may be non-existent, unobtainable, too dangerous or costly.
One of the most important motivations of model building is
roated in a desire to predict a system's likely response, so
that appropriate actions can be taken to fulfill a given
objective. Depending on the required degree of accuracy this
leads to the use of models; either to aid in selection between a
range of a priori altematives, or as vehicles for thought
experiments. In the first case there is an emphasis on
generating sufficiently precise quantitative information. This
is the classical style of modelling, as use, for instance, in
operations research. Its successful application is critically
dependent on acceptable model validations and skillful
variation of policy parameters. This will always remain an
expensive 1ool, because each simulation run yields only a single
point on a modet’'s response surface and, if stochastic
components are involved, has to be replicated a large number
of times to establish statistical credilbility. “Modelling for
insight” as an alternative approach, strives less for numerical
solutions, but for an improved understanding of complex
systems. It supports a more exploratory, speculative style of
model analysis and may reap the full benefits of new

technological developments. Under this approach relatively
little need to be known about a system. A well defined

problem may not even exist. We are using modelling at a proto-
theoretical stage, striving for a better intuition about a

system's behaviour, essential aspects, sensitivities ... which

we may gain in the process.

Al-miniworlds are simulations in this sense. Many people
believe that such a computational exploration of symbol
structures will soon overshadow the traditional use of
simulation as an aid to decision making.

One important facet of the simulation method is the fact
that it is an experimental technique, comprising aspects of
model cafibration and data collection as well as experimental
designs and output analysis. This is often considered the
~scientific” aspect of simutation methodology. Statistical
methods can answer questions on how 1o start and stop
simulation runs, and how to analyze their results ([Fishman
1978], [Braiey et. al. 1983]). A complementary aspect of
computer-aided simulation revolves around the activilies of
model and program design, implementation and verification.
At the center of this is the art of simulation

programming. In this area a number of prototypical
modeliing frameworks have evolved over a period of almost
fourty years (see figure 1), with a muttitude of tools to
support them [Kreutzer 1986].

The programming tools discussed in this paper are
restricted to queueing network scenarios, although we
believe that basic principles and conclusions hold true for
other kinds of modeliing activity. Queuelng network
scenarios model systems of capacity-constrained
resources and the effects of different allocation and
scheduling strategies on performance measures such as
utilization, throughputs, and time delays. This ciass of modeis
has a long history, including job shop simulations and, more
recently, computer system performarice analysis. Basic data
types perceived in this domain include resources and
transactions (often called machines and materials), data
collection devices and distributions. Entities for process
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synchronization (i.e. queues) are also required. A great
number of different programming languages have been
developed to support their design and implementation.
Traditionally a distinction is drawn between event, activity
and process oriented world views, with the merits of process
orientation becoming almost universally accepted.

Tools and notations are pot independent of the mode!
building methodologies by which they are employed; one
serves lo shape the perception of the other. Simulation
programming's main concem has always focussed on
structuring complexity. The better of theses tools strive for
control of complexity through conceptual closure and
*familiarity” to the task domain, in order 1o reduce the
conceptual distance between perceptions of “relevant” parts
of a system and their implementation in a program. G255

and DEMOS are two of the most popular languages for
modelling queueing network scenarios. Well designed scenario
languages can graft concepts and terminology of specific
application areas onto effective and user-friendly modefling
frameworks, although it should be stressed that any
specialized tool can also be misapplied.

GPSS (General Purpose System Simulator) [Bobillier
et. al. 1976} is a good example. It is a very convenient tool for
representation of material-oriented queueing networks; i.e.
models in which material objects ("transactions”) are the only
"active" class of entities, from whose perspective all changes
of state are defined. It does, however, lack the fiexibility to
cope with other, more complicated scenarios.

Demos (Discrete Event Modelling on Simuia) (Birtwistie
1979] is a much more flexible simulator, embedded in a
general purpose programming language (Simula), extending
iit through specialized data types and operations camying
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the main concepts of queueing network scenarios. Demos
offers distribution sampling, automatic statistics coflection

and repart generation, a process-oriented framework for
modeliing system dynamics and predsfined tempiates for
different classes of entities (i.e. queues and resources).
When prefixed accordingly (Demos BEGIN ... END;) any
Simula programs can use these features, which may also be
modified if the need arises. Demos encourages the use of life
cycle diagrams [Hutchinson 1975] as a graphical

structuring device.

2. "The Garden Party" - a
Simple Queueing Model

Suppose that we are interested in the likely degree of
contention expected during a Queen's garden party. Relevant
objects may therefore inciude a number of loyal royal subjects
wishing to shake a royal hand and, of course, a Queen
providing this service.

Flgure 2 shows a life cycle description of a simple mode! of
such an event. Flows between states and activities define

life cycles for classes  of entities. This scenario depicts an
*open" (i.e.loyal subjects are temporary entities, entering
through a "source" and leaving through a "sink”) and material-
oriented approach {i.e. temporary entites (loyal subjects)
are active in seeking the Queen's favours, while she (passively
1) only allows her hand to be grabbed and released). Let us
further assume that the Queen's handshake be uniform with a
duration of 0.5 to 1.5 minutes, while royalist's arrivals are
negalive exponentially distributed at a rate of 0.5 per
minute. Once they have been shaken, 70 % of all subjects leave
immediately, while 30% long to repeat the experience. The
only relevant stalistics is a tafly of "ime spent in garden®
across all royal subjects.

Program 1 shows a corresponding Demos mode, in which 3
classes of objects are defined. In the program body these are
instantiated with appropriate values and bound to previously
declared identifiers. A Source called ArrivaliProcess is used
to generate a steady stream of subjects, sampiing their
interamival-time from the relevant distribution. Royal
subjects themselves are created as images of the
RoyalSubject process class definition, defining all actions of
the life cycle shown in figure 2. Their last statement
activates Sink object ThatsAllTeTook, which performs
appropriate updates on flowtime statistics. These are
gathered throughy a Zafy, a device for coflecting non-
weighted information about time series. #Hold statements
mode! the passage of model time, with Scfedule commands
used to activate or reactivate concurrent object (class
instances).

Measures of queus length and server utilization are part of a
standard report, shown in figure 3 for a simulation of 100
time urits (minutes). From this we deduce that we can expect
a typical subject to spend about 1.5 minutes in the garden.
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3. Two Experiments in Object-
Oriented System Simulation.

In the author's opinion, process oriented scenarios
embedded in some flexible general purpose base language
currently offer the most useful modelling tools within the
framework of traditional programming methodology. Large
sectors of different simulation communities have now finally
accepted process orientation as the most convenient
modelling world view. The benefits of closure and strong
modularization, as offered by abstract data types or
Simula's class concept, still have to gain sufficiently strong
footholds, although the resultant ease of mapping all relevant
structural and behavioural aspects of real world objects into
conceptual entiies can hardly be disputed.

The main drawbacks of a tool like Demos lie in the fact that it
is rooted in traditional programming methodology and
therefore only ill suited to more interactive and exploratory
styles of systems analysis. The belief that one should always
start from precise specifications, using formal deduction to

arrive at a working program has long dominated "main
stream" computer science. From this viewpoint programming
is similar to theorem proving; “program development and proof
should go fand in fand ", The merits of this approach are
convincingly demonstrated in [Wulf et. al. 1984}, and
Dijksira, Hoare and Gries are some of its most vocal
proponents. i works well for problems whose properties are
well understood and for which rigorous specifications can be
derived prior to the coding stage. In keeping with
mathematical tradition it is predominantly concerned with
justifying the correctness of implementations and gives little
quidance to the process of discovery. "Traditional®
methodology advises us to avoid applications with il defined
specifications, thereby excluding many “interesting"
problems from our range. We should first gain a sufficiently
precise understanding of a system before we may try to
program it. But how can such understanding be obtained ?
Traditional methodology is silent on this issue.

This framework has proven too restrictive for many
modelling applications, which are experimental and
exploratory in nalure. System identification, problem
specification, mode! implementation, verification and




BEGIN
EXTERNAL CLASS demos;

demos BEGIN
REF (Source) ArrivalProcess;
REF (Res ) Queen;
REF (Sink ) ThatsAllItTook;
REF (Rdist ) ShakeTime;
REF (Bdist ) NotAgain;

Entity CLASS Source;
BEGIN
REF (Rdist ) Arrivals,
Arrivals :- NEW NegExp (" Arrivals™0.5);
WHILE TRUE DO
BEGIN
NEW RoyalSubject("Hilda"). Schedule (Now );
Hold (Arrivals.Sample ),
END while;
END;

Entity CLASS RoyalSubject;
BEGIN
BOOLEAN hooked;
REAL  timeOfEntry;
hooked = TRUE;
timeOfEntry = Time ;
WHILE hooked DO
BEGIN
Queen.Acquire (1);
Hold (ShakeTimeSample ),
Queen.Release (1);
hooked := NOT (NotAgaln.Sample );
END while;
ThatsAlltTook.quitter :- THIS RoyalSubject;
ThatsAllItTook.Schedule (Now ),
END;

Entity CLASS Sink;
BEGIN
REF (Tally ) flowTime;
REF (RoyalSubject) quitter ;
flowTime :- NEW Tally ("LTook™);
WHILE TRUE DO
BEGIN
flowTime.Update (Time - quitter.timeOfEntry),
Cancel ;
END while;
END;

COMMENT: Body of MAIN program;

OutF :- NEW OUTFILE ('GardenParty.out");
OutF OPEN (BLANKS (30));

Queen - NEW Res
ShakeTime
NotAgain
ArrivalProcess :- NEW Source  ("Source”);
ThatsAllItTook :- NEW Sink  ("Sink”);
ArrivalProcess.SCHEDULE (NOW);

('Quecn”,1%

Hold (100, COMMENT: Simulate for 100 time units!;

END of Demos context;
END;

Program 1: Garden party in DEMOS

:- NEW Uniform ("Shakes",0.5,1.0);
.- NEWDraw  ("NotAgain",0.7);
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validation are closely intertwined. Initially, precise
specifications are unknown. Simulation model building must
therefore be an inductive, not a deductive process. It is more
closely related to experimentation than to theorem proving. A
different programming methodology, which views computers
as tools for heuristic exploration of complex symbol systems,
is therefore required. It must be possible to quickly build,
test and modify prototypes and gain an improved
understanding in the process. Since control of program
complexity has become one of the main hurdles for many
modeling applications, we need good tools to utiize the
computer's potential to reduce a programmer's memory load
by freeing her from any essentially *mechanical* chores. It
must always be possible to change our minds without undue
penalty in infellectual complexity. Recent advances in
hardware technology have made machine efficiencies
comparatively less relevant. The programmer needs all the
help she can get; never mind the expense.

These convictions have prompted us to explore the potential
of using exploratory programming tools and environments for
system simulation, focussing on queueing network scenarios
as a first paradigmatic class of applications {see
[Astroem/Kreutzer 1986 for a parallel approach to control
systems analysis). Software tools ta support this style of
mancomputer interaction have been built and refined by the
Artificial Intelligence community since the early sixties. They
are typically hosted in sophisticated interactive

programming environments and emphasize ease of
representation and maniputation of dynamic symbol
structures. Intelligent browsers, editors, interpreters,
compilers, debuggers, optimizers, tools for program
instrumentation and project management aid in the
manipulation of textual and graphical information. Multiple
concurrent processes and some variant of the "desktop”
metaphorare usually also supported.

There are various reasons why exploratory

programming and its associated software toois are now
attracting wider attention. Firstly, the advent of sufficiently
powertul, self-contained workstations makes truly

interactive programming styles possible and tempers much
of the traditional concems with machine efficiencies.
Secondly, many of the "easy” computer applications have
already been implemented. Since ambition always seems to
expand to tax the limit of current technology there isaneed
for better support of the programming process itself, to
enabie us to cope with higher levels of complexity in a more
reliable fashion.

Although user communities, methodologies and terminology
have traditionally been almost compietely independent from
one another, many programming aspects of artificial
intelligence and simutation model building are closely related.
This is particuiary obvious in some “rediscoveries’; i.e. the
similarity between the activity scanning approach and
production system interpreters. The importation of
sophisticated tools and programming environments to the
field of system simulation, gratted on an object oriented
approach to program development, seems a particularly
promising way to lighten the programmer's burden to remain
in control of complex models’ evolution.

The *Modeller's workbench " project at the
University of Ganterbury seeks to pursue this objective. Ina
number of experiments we will study the benefits of using
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symbolic, interactive programming languages embedded in
multi-window, reactive programming environments for
various paradigms of system simulation [Kreutzer 1986]. A
second phase will then apply these experiences to tools and
techniques for model design by visual interaction, and aid in
their analysis through animated symbolic scenarios.

This approach is predicated on the assumptions that object
oriented programming and exploratory programming styles
offer extremely appropriate metaphors for system
simulation. The first achieves a close correspondence
between model and reality as well as potential increases in
model reliability through strong localization of information.
Propertly inheritance, furthermore, allows the cognitive
economy of “differential” system description; specifying new
objects by enumerating how they differ from those which are
already known. The second belief hinges on a desire to
shorten the cycle of definition, testing, exploration, validation
and modification of prototype models. This permits us to
gain sufficiently "deep” understanding of representations
and experiments approporiate for “relevant” aspects of
some problem situation. The following two prototype
systems were built to gather empirical evidence for this
theory.

Pose[Stairmand 1987] is an object oriented queueing
network simulator built on top of Scheme [Abelson et. al.
1985]; a member of the Lisp family. In the author's opinion
Scheme is a small and compact, but also an extremely
expressive and elegant language. This elegance stems from a
small core of simple, orthagonal and very fiexible features.
Scheme supports lexical scoping, explicite declaration of all
objects, closures with persistent local variables, and makes it
easy to experiment with new control structures. Lambda
expressions are "first class objects”, which means that they
can be assigned, passed or retumed as parameters. Using
these features, object orientation, message passing,
property inheritance and coroutines can quickly be grafted
onto the language kemel.

Scheme is an interactive language, supporting an exploratory
programming style. Structure editors and sophisticated
debugging tools are often provided as part of the
programming environments in which it is embedded.
Structure editors can go a long way to remove the
drawbacks of its sparse syntax.They ease program design
and debugging, in spite of Lisp's proverbial jungle of
parentheses.

A styfistically good Scheme program should be built in
levels, as demonstrated by Allen (1978) and Abelson et. al.
(1985). This methodology draws on sound engineering
principles and can equally easily be used to structure the



process of model identification, definition and
implementation. By encapsulating and localizing information
as tightly as possible, object orientation carries this idea one
step further. After identifying relevant levels, all primitives

of a given level (objects and operations; state variables and
transformations; entities and actions) should be defined.
These are then implemented through functions to construct
instances, select components, modify representations,
evaluate predicates and display objects.

Pose provides features for modelling queueing network
scenarios which are very similar to those of Demos. Chez
Scheme [Dybvig 1986] is used as a base. Although this is
transparent 1o a naive user of the system, it is built on top of
a flavours package implemented with a Smalltalk-like class
system to support object oriented programming. Program
2 shows our garden party example.

(DefMonitor GardenParty)

(Define-Process RoyalSubject
((hooked #!TRUE)) GardenParty
(WHILE hooked
(Queen 'Acquire 1)
(Self ‘'Hold (ShakeTime ‘Sample ))
(Queen 'Release 1)
(WHEN (NotAgain 'Sample )
(SET! hooked #!FALSE)) )
(ThatsAllltTook ‘Swallow ) )

(DefBinary  NotAgain 0.7 12345)
(DefNegExp Arrivals 0.5 67891)
(DefUniform ShakeTime 0.5 1.5 23457)

(DefRes  Queen 1 GardenParty)
(DefSink  ThatsAllltTook GardenParty)
(DefSource ArrivalProcess

RoyalSubject Arrivals #!TRUE GardenParty)

; simulate this scenario for 100 time units
(GardenParty '‘DURATION 10Q)

Program 2: Garden Party in POSE

The concepts of Monitor, Entity and Process form the top of
a hierarchy of object classes. Distributions, Sources,
Resources, Bins, WaitQs, CondQs and Sinks are currently
implemented as subclasses. Statistics coflection and
reporting is automatic, although special data cofiection
objects (i.e. Tally, Accumulate, Histogram) may easily be
implemented.

Monitor objects are used fo controf simulation experiments.
Normally there is only one monitor, responsible for model
execution. This is, howsver, not a necessary restriction. The
notion of simulation moritors is & recursive one and mulliple
layers of monitors (i.e. for controfling experiments across a
number (or instatiations) of models, models containing
models as subcomponents, ...) can also be accomodated.
Among other relevant information each monitor owns a
counter (sampler or clock), an agenda of scheduled tasks, a
list of lists of mode! entities of various classes, and a
reference to the currently active process. Instances are
created by the DefMonitor macro. They may then
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respond to a number of predefined messages.

Distributions use a muttiplicative congruential simulator
[Knuth 1969] te obtain samples from a 0 to 1 uniform random
number distribution , with appropriate transformations to
other distributions delegated to subclasses. All of these
respond to appropriate Sample messages. Uniform,
NegExp, Normal and Binary distributions are currently
implemented as subclasses. Note that distributions are
conceived as global objects and are independent of any
specific monitor.

Res is a subclass of entity, modelling capacity-constrained
resources. s instances respond 10 acquire, release and report
messages. Bins, WaitQs and CondQs are also patterned
after the corresponding Demos concepts. Sinks will report
flowtime statistics of processes. For this purpose each
process is automatically ime-stamped at the time it is
created by a source and should be swallowed by a sink just
before it leaves the model.

Processes contain basic mechanisms (implemented via the
Scheme function "cal/cc *) for detaching, resuming and
scheduling. They respond 10 monitor, startTime, timeStamp!,
fiold and schedule messages. fold is predominantly used by a
process to defay its own progress (i.e. self ‘hold 10), while
schedule 18 used to influence other processes’ svolution. A
monitor is responsible for coordinating execution of al
processes it is associatd with. Sources are a special
subclass of processes. They have a predefined body of
actions, which causes them to generate a new process of the
appropriate type in intervals sampled from the associated
distribution, until a simulation terminates or its attached
condition evaluates to false.

Pose is sfill in an experimental stage. Preliminary
explorations of various simple examples have shown it to be
conceptually just as powerful as Demos, with important
advantages regarding fAexibility. The interactive environment
permits a significant speedup in model development lime.
Execution efficiency remains a probiem. While incremental
definition and modification of models is fast, they are slow to
execute. The reason for this lies in the multiple levels of
interpretation imposed by the methodology of layered design
and in the fact that Chez Scheme, while generally a
remarkably fast and compact implementation, can currently
not compete with good optimising compilers for "classical"
programming languages. Currently this certainly impedes the
use of Pose for quantitative decision making. Future
advances in implementation techniques and hardware
technology will hopefully make this a less relevant concern. As
a first step towards this goal, an "intelligent" back-end
compiler could be employed to automatically transform a
mode into a fast executable representation once ils design
has stabilized.

Our second experiment has focussed on the synergistic
benefits of using object oriented programming styles in a
more sophisticated modelling environment.

We should be free to specify, design, implement and
experiment with 2 model, alternating between difierent
activities at will and, if convenient, leaving processes in some
intermediate stage of execution. This is typical for the style
most people use when working at their desks. Several tasks
may be relevant to particular projects and may need to be
interleaved if the creative process is not to be inhibited.
Modelling environments predicated on this idea may improve
both productivity and quality of the model building process
by an order of magnitude.



The Smalltalk_system [Goldberg & Robson 1983
seemed the most appropriate vehicle to testthe suitability of
this metaphor for system simulation. There are two aspects
to Smalttalk, its programming paradigm and its programming
environment. Smalltalk's programming paradigm centers on
the concepts of classes, inheritance hierarchies and message
passing, while its programming environment features a muiti-
process implementation of the *desktop metaphor™ with
windows, mouse-driven user interaction and browsers. It has
sometimes been claimed that the merits of Smailtalk's
programming paradigm and programming environment are
two orthogonal and largely unrelated issues. Our experiences
do not confirm this conjecture. It rather seems that the full
benefits of object oriented systems can only be obtained in an
appropriate environment containing source code inspection,
debugging, analysis and project management tools. The
reasons for this may be found in the fact that object oriented
programming Systems are large, with many predefined
objects available for reuse and modification. It may be claimed
that its typical programming style shifts emphasis from
creation of new to skiliful modification of existing pieces of
code. Object oriented programs alse tend to contain many
small method definitions. Appropriate tools for navigation,
inspection and modification of information are therefore
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vital; even more so than in conventional programming projects.

Such tools must be tightly integrated into the editing and
execution process. Smalltalk's concepts of browsers,
debuggers and inspectors cater for these requirements.

We have used the simulator described in chapter 3 of the
*blue book™ [Goldberg & Robson 1983 as our initial point of
departure. This system has been implemented in PS-
Smalltalk on a Sun-3 workstation and augmented with
various daa collection devices [frwin 1986). In its current
fom it comes again very close to the Demos system,
containing a multitude of classes of probabifity distributions,
a simulation monitor, consumable and non-consumable
resources, process synchronization and statistics collection
entities.

Simulation subclass: #MeetTheQueen
instance VariableNames: 'arrivals thatsAllitTook'
classVariableNames: "

poolDictionaries:

category: Simulation Applications’

MeetTheQueen methodsFor: ‘initialization’

defineArrivalSchedule
self scheduleArrivalOf: RoyalSubject
accordingTo: artivals.
self schedule: [self finishUp ] at: 100

defineResources
self produce: 1 of: 'Queen’

initialize
super initialize.
arrivals « Exponential named: 'Arrivals’
mean: 0.5,
thatsAllitTook < Tally named: 'TtTook'

MeetTheQueen methodsFor: recording’

recordExperience: aNumber
thatsAllitTook update: aNumber

MeetTheQueen methodsFor: reporting '

printStatisticsOn: aStream
(self provideResourceFor: 'Queen’)
printStatisticsOn: aStream.
thatsAllltTook printStatisticsOn: aStream

SimulationObject subclass #RoyalSubject

instanceVariableNames: 'birthTime'
classVariableNames: "
poolDictionaries: "

category: Simulation Applications’

RoyalSubject methodsFor: accessing'

timeStamp: aTimeValue
birthTime « aTimeValue

birthTime
T birthTime
flowTime
T (Simulation active now ) - self birthTime

RoyalSubject methodsFor: simulation control

tasks

Ishake notAgain hooked myQueenl

self timeStamp: now .

shake ¢ Uniform named: 'Shake' min: 0.5

max: 1.5.
notAgain < Binomial named: NotAgain'
prob: 0.7.
hooked ¢ "True'.
hooked whileTrue:

[ myQueen « self acquire: 1 ofResource: 'Queen’.
self holdFor: shake next .
self release: myQueen.
hooked « (notAgain next ) not].
(Simulation active ) recordExperience: flowTime

Program 3: Garden Party in SMALLTALK

Program 3 shows the Smalltalk implementation of our
garden party. A monitor called GardenPartyis created as a
subclass of Simufation, with object arrivals and resources
defined by initiafize, defineRrrivalSchiedute and
defineResources methods. Since we choose a material
oriented approach, active processes of class RpyalSufject
drive the simutation; implemented as subclasses of
SimulationOfject. Figure 4 shows a typical Smalltalk
screen.
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|zardenFarty|

203525 Mariani Ave
Cupertine, CA 95014

To try an sxemple, select the exampls
name within double quotes and hold
down on the Shift key while choosing
dolt from the edit menu. Click on the
mouse when you. want the normnal
screen restored, Hers are some examples:

Figure 4 : Garden Panty Ln SMALLTALK
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gardenParty « MeetTheQueen new startUp.
[gardenParty proceed] whileTrue

It is very difficult to convey any taste of programming in
Smalltalk without reference to practical experience.
Browsing, construction, modification, execution and
debugging of classes and methods is a highly interactive
process with frequent switches among contexts. Smalltatk
offers an extremely powerful environment for system
developoment, but it must be stressed that itis
predominantly a tool for the professional programmer.

4. Future Research &
Developments

Self-contained workstations with Integrated system
development environments will make a large impact on the
shape of programming in the 90s. Exploratory prototyping

of complex systems, an acceptance of the inevitability of
change in system specifications, and a shift in emphasis
from wriing new to madifying existing programs will further
increase the atiraction of late binding, object orientation and
powerful program management tools for browsing, design,
tesging, modification, instrumentation and optimization o
code.

interactive programming environments for simulation have
received refatively little attention in the past. Nelson (1979)
showed how a capability can be built into a simulation
language (Simula) and greatly enhances its quality. The
recent shift in price-performance ratios for personal
workstations makes such tools conceptually attractive and
economically viable. First steps in this direction have
already been taken. Stella ‘chhmond 1985] offers interactive
construction and analysis of graphical System Dynamics




scenarios on the Apple Macintosh. SimLab is a Simscript
implementation embedded in a relatively simple interactive
environment for the 1BM PC. Goldberg and Robson (1979)
report on an experiment linking queueing network simulation
and graphical animation in Smalltalk. [Birwistie 1984].
Sheppard 1984), [Birtwistle 1984], [Vaucher 1984],
Birtwistel et al. 1982, 1984), [Unger et al. 1984], [Birtwistle
& Luker 1984], [Sol 1984] and [Stanridge et al. 1984) argue
convincingly for the mexits of augmenting computer-
simulation laboratories with graphical animation. Such
simufation workstations should integrate coflections of
general purpose and simulation specific tools, accessed
through a uniform and friendly interface. In implementing such
systems, methodologies and tools will be needed from the
field of Artificial Inteliigence. Some research in this area
romises interesting results; see, for example, [SCS 19853,
FBinwisUe 1985}, [Lavery 1985], [O'Keefe 1985, 1986), an

[Kerkhoffs & Vansteenkiste 1986].

Any notation has its particular strengths and weaknesses.
None of them is equally well suited to all purposes. Object
orfentation seems a particularly appropriate metaphor for
simulation model building. It has many advantages over
traditional methodologies, particularly for the representation
of complex systems; but most importantly it results in a
change of perception. The key concepts of object-criented
programming systems are the notions of closure, message
passing, concept inheritance and the idea of programming as
simulation of some miniworld. The economy of differential
system description and a close comespondence of fomal
representation and real life manifestation of segments of
reality enhances our understanding and communication with
application experts.

There is empirical evidence for this within the Simula
community. Strongly modular object encapsulation also
encourages more refiable and modifyable programs.

Negative atiributes of object-oriented knowle
representations are rooted mainly in their resource
requirements. The idea of message passing as the sole
means of communication typically resuits in long chains of
indirect references and many transient data structures,
particularty in the case of frequently interacting objects.

Qur experience with the Pose system has caused us to
believe that object orientation is indeed an adppropriate slyle
for simulation programming. This corresponds well with
experiences gained in writing Artificial Intelligence
applications. Since managing complexity is at the heart of
both simulation and Al programming, we should not be
surprised by a convergence of concems; even though this
may be well hidden by different traditions and terminologies.

The question of what language would be most appropriate
to host simulation laboratories is difficult to answer, since
thera are now a number of programming systems which
claim to support both object oriented and exploratory
programming. The cost of subscribing to new programming
paradigms is not insignificant. New oon(ﬁ;ts and
programming idioms must be leamed and machine efficiencies
may drop considerably. The overall advantages in shortening
development cycles, increased program refiability and ease
of change, however, shoukd easily outweigh this investment.
Flexible and powerfut programming environments are well
established in the Lisp family of languages. 1 is very fikely
that Lisp will remain the most imporiant language for
symbolic programming for quite some time, although Prolog
continues to rise in popularity as a tool for education and
pmtol@i . This trend may accelerate as more intelligent
compilers become avallable and hardware efficiencies
become relatively less important {i.e. by exploiting
paralielism). Smalltalk will probably remain primarily in the
research domain, but the merits of its pioneering combination
of an object oriented approach with window based

Erogmming environments are already well established.
vidence for this trend is clearly visible in many modem
expert system development tools.

Good modeliing environments must offer high resolution
graphics and provide meaningful and extensible symbol sets.

here shouid be some pointing device, such as a mouse, for
feature selection. It should also be possible to view different
processes in different stages of execution (i.. a graphical
model specification, a view of the mode!'s state, various
stalistical measures, ...). The mouse may be used to select
and activate processes, with more detailed control provided
by menu selection. Options may include starting a simulation,
resetting it to a previous state, ediling models, tracing an
object's states, obtaining cross references, performing
statistical analyses, ... .

If we ignore speed of execution as a main criterion,
Smalltalk wouid be an almost ideal environment to host
simulation workbenches. Our project views it as a tool for
rapid prototyping in order to experiment with appropriate
modelling interfaces for a number of simulation styles (i.e.
queueing networks, system dynamics, monte carlo
simulations, ...). This will hopefully be particularly productive
during stage 2, where graphical scenarios are involved. It
seems currently stiil unrealistic to assume availability of
such systems on a large scale. The use of Scheme is a
reasonable compromise for making some of the workbenches
available on more widely accessible systems. One of our
next projects will therefore, for instance, graft a simple
mggiu-gaﬁed environment onto Pose implemented on an Apple

Intosh.

Pose will also serve as a stepping stone to explore the

amﬁcation of expert systems as intelligent advisors during
ditierent phases of the simulation modeliing cycle.

There will be a gradual convergence or al least an

interchange of experiences (tools and methods) between
artificlal intelligence and simulation programmln%ecaused bya

. common concern with the intellectual complexity of

systems we must cope with. The lechnique of object
orientation originated in simulation programming (Simula) and
has been exported to and popularized in Al (Smalftaik, actor
languages, Expert System%). Modern expert system
development tools (i.8. KEE, KnowledgeCraft, ART) already
provide some simulation capability. There is also a trend
towards integration of model based reasoning in knowledge
based systems.

It may be hoped that the field of system simulation will now,
in return, reap the benefits of a more mature technology

rafted onto user friendly environments which cater for .
interactive and experimental styles of model design and
exploration.
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