Behavioral Simulation Based on Knowledge Objects

Takeo Maruichi, Tetsuya Uchiki, and Mario Tokoro
Department of Electrical Engineering

Keio University

3-14-1 Hiyoshi, Yokohama 223
JAPAN
+81 44 63 1926
maruichi%keio.junet@japan.cs.net

mario%keio.junet@japan.cs.net

Abstract

The purpose of behavioral simulation is to simulate the behavior of the characters having behavior
rules in the surrounding environment. This kind of simulation, which differs from the traditional
simulation based on a statistical model of the world, provides us with a more precise simulation with
regard to individuals. Because of the nature of behavioral simulation, characters, the environment in
which the characters exist, and messages which are passed among characters, are the main elements
that should be considered. The notion of object-orientation is one of the most attractive computational
models for providing the basis of behavioral simulation. Specifically, we employ the notion of knowledge
objects which are objects having knowledge contained within themselves. We first establish a behavioral
simulation model based on the notion of knowledge objects, then design and implement a behavioral
simulation system PARADISE. To demonstrate the capability and effectiveness of this simulation
model, barracuda and herring school is used as an example of this simulation system.

1 Introduction

Most simulations have traditionally been based on statistic or mathematic models about the
world. However, the real world is actually made up of individuals. Therefore, if we need to
simulate the world in a more precise way, simulation cannot be based on the statistics of a
group’s behavior, but on the rules of an individual’s behavior. The goal of this research is to
establish a method to build a simulated world based on the rules of the behavior of individuals.
In this paper, we choose an animal’s behavioral simulation as an example.

‘In behavioral simulation, the behavior of characters, having their behavioral rules, are sim-
ulated taking into account the surrounding environment. One good example of behavioral
simulation is found in simulated motion animation such as the barracuda and herring school
model [Partridge 1982] [Reynolds 1985], which is illustrated in Fig.1. Such kind of simulation is
effective not only for animation without scripts, but also a wide variety of simulations for edu-
cation and experiments, including robotic behavior, traffic control, cognition, and psychological
behavior.

In order to realize behavioral simulation, we have to consider the model of a behavioral
character. The notion of a knowledge object [Tokoro 1984] [Ishikawa 1987] is an attractive
computational model to represent a character in behavioral simulation. A knowledge object is
a concurrent object consisting of local variables, methods, and knowledge (or a set of rules).
It is possible to represent a character, which decides its action based on its local state and
knowledge, using the knowledge object. In order to realize behavioral simulation more exactly,
the following issues should be discussed in addition:

214

o Representation of behavioral rules for the character

Each character has not only actions, but also their behavior rules, which are knowledge
concerning its local state and environment. A means for easily representing behavioral
rules for a character must be defined.

o A simple execution mechanism for a behavioral simulation
Basic components including a character in a simulated world should be defined in a single
unified way. A simple computational model is also important.

e A programming and debugging environment for behavioral simulation

In behavioral simulation, each character simultaneously sends/receives information (mes-
sages) to/from the environment and changes its state. A visual programming and debug-
ging environment for such concurrent characters is inevitable.

In this paper, we investigate behavioral simulation and discuss components of a simulated
world, then describe the implementation of a behavioral simulation system PARADISE. A
programming example is also described.

NRNRER Y VMoo
\\\\ -

NN
N\ | \
\

Fig.1 Barracuda and herring school

2 A Behavioral Simulation Model

In behavioral simulation, characters behave in the simulated world. We first noticed that each
character is influenced by the surrounding environment. For instance, if it rains, a character’s
behavior differs from that in fine weather. Also, a character is a part of the environment for
another character. In addition, a character might communicate with other characters. This
information exchange among characters is achieved in terms of a message. In behavioral simu-
lation, such a message is sometimes influenced by the environment. Smell is a good example.
Smell actually moves with the wind. Therefore, for one character, all the other characters and
messages are a part of the environment. In order to realize such a simulation world, characters,
messages, and the environment are defined as follows:

2.1 Character Model

For example, a human being collects information by means of sight, sound, or smell from the
environment through his sense organs, then decides its next action and behaves. A character
such as a human being is an abstract model of an active entity to be simulated. This character
basically behaves like a process, and collects messages voluntarily.

215

According to the above discussions, a character has the following functions:

1. Internal Status
The character has its local status. This is defined by the instance variables of an object.

2. Sensor

The sensor is similar to the eyes or ears of an animal. Each character receives information
{messages) through its sensors. A sensor has its accessible area, or scope, and can receive
information (messages) existing in that area of the environment.

3. Behavioral Rules

Behavioral rules define the behavioral pattern of the character taking into account the
conditions of both the character’s local status and information (messages) from the envi-
ronment. These rules would properly be represented by production-rules.

4. Behavioral Methods

After defining the behavioral pattern of the character, its behavioral methods are executed,
and the state of the character is changed. These methods are normally treated as local
procedures.

2.2 Message Model

Many kinds of messages are used for communication in the real world, such as sight, sound, or
smell. Such a message can move and change its state. Thus, a message in our simulation model
is different from that in object-oriented languages. It is more natural to represent a message as
an object.

A Message has the following functions:

1. Transmissive Area

A message has its transmissive area. For example, loud sounds are transmitted far way
while a quiet sound is not. This area is related to a sensor’s accessible area described
above.

2. Life Span

Messages such as sounds exist only for a moment, but message such as a smell do not
disappear immediately. Therefore each message has its own life span.’

3. Action

Some messages change their state. For example, a message such as a smell moves with
the wind. To represent a change in state, a message has information about its location,
velocity, direction, etc.

2.3 Environment Model

The environment is the world or field where characters exist. The environment contains and
manages the characters and the messages. It has the following functions:

1. Management of Space
The environment manages the distance between characters and messages. Concretely, this
distance is between the accessible area of a character’s sensor and the transmissive area of
a message.

2. Management of Time .

All characters and messages are executed within a certain unit of time in order to main-
tain consistency. The environment manages synchronization among all such characters as
processes. Therefore, it can be considered to have a role as the process scheduler.

216

3. Graphic Output

The environment has a window to show the animation (or sequence of frames) produced
by simulation. The area shown in the environment can be changed.

3 A Behavioral Simulation System : PARADISE

3.1 Simulation Mechanism

As mentioned above, each character is an active object which voluntarily searches for messages
to take in from the environment. This mechanism for selecting messages is called message
searching. Therefore, each character corumunicates with one other indirectly by sending and
receiving messages to/from the environment. The behavioral simulation model proposed by us
is illustrated in Fig.2.

A character accepts only messages, and the environment manages messages. During sim-
ulation, PARADISE’s scheduler manages to calculate all the characters’ behavior within one
simulation unit of time, and then updates the state of the environment for the execution within
the next time unit. This is repeatedly performed. The synchronization among concurrent
objects is automatically performed by the PARADISE scheduler.

» behavsom% > (Behavioral
rul
rule _/ fethod e/ (methods
X I

character”

character

:send-message

:search-message :search-message

@\m D

b

message
future environment

AT,

current environment

Fig.2 A behavioral simulation model

3.2 Message Management and Message Detection

The environment consists of two parts, the current message pool and future message pool.
During the execution of a time unit, each character searches for messages from the current
message pool and places messages into a future message pool. The procedures for accessing
these two message pools are provided by the environment and sensors of a character. After all
characters have finished their execution in the time unit, the environment collects all messages
in the future and current message pools. The environment possesses a lifetime counter for
each message and puts those into the current message pool. If its lifetime counter expires, the
environment removes the message.

The sensor of a character selects messages in the environment depending on the specified
ability of the sensor and the property of the messages. Though various situations for message
detection can be considered, in the current implementation, only messages within the accessible
area of the sensor are provided, which are shown in Fig.3.

217

massage

Id

transmissive area
of the message

accessible area
of the sensor

4
7 environment

Fig.3 Message detection

3.3 Implementation

The behavioral simulation system PARADISE is implemented using PANDORA [Maruichi 1987].
PANDORA is an experimental multiparadigm programming language/environment based on
object-orientation and programmed in KCL (Kyoto Common Lisp) [Yuasa 1985] running on a
VAX-11 and a Sony NEWS workstation. PANDORA uses LOOPS’ syntax [Bobrow 1983} and
has a production system class, which is an extended OPS5 [Forgy 1981], and a process class for
concurrent execution.

Characters, messages, and the environment are all designed as classes. The character class
has two superclasses, one includes the production-system class and the other includes the pro-
cess class. Because each character has its own production-system and executes like a process,
PARADISE can be said to be a distributed production-system. Users can define their characters
and messages by defining subclasses of the character and message classes, respectively.

4 Programming

The behavioral simulation of the barracuda and herring school model is used to exemplify how
we write programs for behavioral simulation. The characters, which represent barracudas and
herrings, are assumed to recognize other characters by sight messages. Therefore only sight
messages are passed to/from the environment, and two kinds of characters exist in the environ-
ment.

4.1 Definition of Characters

The barracuda and herring classes are defined as characters. An example definition for herrings is
shown in Fig.4. The environment, the sensor, and other variables are declared in this definition.
The environment is an object named sea which is an instance of class environment, and has
a scheduler and message pools. The sensor is a class name. When an instance of herring
class is created, an instance of sensor class is also created. The variables, position, direction,
and velocity represent the state of a herring. The variable status will be described in the next
section. In this example, several instances of the herring class form a school and some instances
of barracuda attack a school of herrings.
Each such instance is treated as a process and supervised by the PARADISE scheduler.

218

4.2 Behavioral Rules and Behavioral Methods

Both the barracuda and herring classes need their knowledge, or a set of behavior rules, to decide
actions based on their internal status and messages collected from the environment. Such a set
of rules of a character usually contains many rules, and thus programming becomes complex.

To avoid this complexity, rules should be categorized by the situation of the character. For
instance, a herring has the following three situations:

1. A herring is normally swimming forward when there is nothing around it.
2. A herring schools with other herrings when there is no barracuda near it.

3. A herring escapes from any barracudas when any are near it. In this case, a herring ignores
other herrings because of panic.

These three conditions are named alone, schooling, and escaping, respectively, as shown
in the state transition diagram in Fig.5. Each arrow between states is equivalent to a production
rule. Each circle, which indicates a situation is equivalent to a behavioral method. Each arrow
is then translated by a programmer into a production rule, shown in Fig.6.

Collected messages and a character’s status are stored in the working memory of the charac-
ter, and behavior rules are invoked. After behavioral rules are selected and executed, behavioral
methods are invoked by message passing on the right hand side of each production rule. Behav-
ioral methods which appeared in Fig.6 are described in Fig.7.

Then, the characters change their screened information, send new messages to the environ-
ment, and a new frame for motion animation is created.

However, in the case of more complex behavioral simulation, such as a simulation of strategies
in vollyball game, it is not easy to make the state transition diagram. The effort is similar to
building expert systems. This is done by understanding the actions of characters and is deeply
(defcharacter herring

related to behavioral psychology.
o still swimming
(environment 'sea)

(sensor (8% sensor)) herrings /
(variables are found
se *normal-right) nobody
(audittrail nil) around m¢
(status nil)
(position nil) a barracuda
(direction nil) is found
(velocity nil)))

schooling escapin,
a barracuda is found PIng

Fig.4 The definition of a character

still schooling

still escaping

Fig.5 State transition of a herring

(start-production-rules herring
(class-in-working-memory
herring figure-message msg-list))

(p alone-swimming
(herring “status alone)
(msg-list “number-of-messages 0)
->
(<- self :swimming) (halt))

(p alone-with-barracuda
(herring “status alone)
(figure-message “type barracuda)
(msg-list “number-of-messages <> 0)
>
(<- self :@status 'escape)
(<- self :escaping
(<- (@wm 3) :get-character "barracuda))
(halt)

(p escape-still-barracuda
(herring “status escape)
(figure-message "type barracuda)
(msg-list “number-of-messages < 0)
>
(<- self :escaping
(<- (@wm 3) :get-character 'barracuda))
(halt))

(p escape-to-alone
(herring “status escape)
- (figure-message “type barracuda)
-
(<- self :@status 'alone)
(<- self :swimming) (halt))

(end-production-rules herring)

Fié.s Behavioral rules of a herring

219

(defmethod swimming ((self herring))
(prog (xy 2)

(multiple-value-setq (x y z) (<- (@ position) :get))

(<- (@ position) :put
(+ x (round (* (@ velocity) (cos-table (@ direction)))))
(- y (round (* (@ velocity) (sin-table (@ direction)))))
z)

(multiple-value-setq (x y Z) (<- (@ position) :geQ))

(<- (@ sensor) :putx y z)

(return self)))

(defmethod escaping ((self herring) barracuda)
(prog (x y zx1 y1 z1 message 1)
(setq message (car barracuda))
(multiple-value-setq (x y z) (<- (@ position) :get))
(multiple-value-setq (x1 y1 z1)
(<- (@ (@ message sender) position) :get))
(setqr

(round (natural (- (* 180 {/ (atan (- y y1) (- x1 x)) pi)) 180))))

(setf (@ direction)

(round (natural
(if (and (> 1 (- (@ direction) 10))
(<1 (+ (@ direction) 10)))
(then
(if (< r (@ direction))
(+ (@ direction) 70)
(- (@ direction) 703))
(+ 1 (if (< r (@ direction)) 30 -30)))))
(<- self :swimming)
(return self)))

Fig.7 Behavioral methods of a herring

(defmessage figure-message
(direction 0)
(type nil))

Fig.8 The definition of a message

4.3 Message Passing and Message Searching

A character collects messages through its sensor(s) from the environment. All the messages are
kept in the environment. For instance, the figure of the barracuda is defined as a message as
shown in Fig.8. This message contains its lifetime, location and direction of the character, the
effective area in which the message is transmitted, and the character who sends this message.

The environment selects messages which a sensor of a character needs and returns those
message to the sensor. A character has the following methods:

e (<- self :search-message) for searching the messages from the environment by its sensor(s).

¢ (<- self :send-message a-message) for sending a message to the environment.

220

4.4 Programming Environment

The barracuda and herring school behavioral simulation program is executed as shown in Fig.9.
In this picture, one barracuda and several herrings swim in the sea. There are two windows
which show the messages in the current and future pool of the environment. Additionally, there
are some buttons named event, sensor, message, environment, etc to monitor the characters,
messages and environment. In this case, the sensor button is pressed, and the accessible areas
of the sensors are displayed as circles.

- FUTURE-POOL |
foradion b = 472 y = 2112 = r = 14] sender = herring status = escape
'dz x = 688 v = 361 z = 3 r = 14] sender = herring status = schooli
g K- 509 v = 340 z = 0 r = 140 sender = herring status = school i
x = 411 v = 476 z = 0 r = 140 sender = herring status = school i
Sensor Display Bkick new frame skk
ez 2802296 z = [} r = 140 sender = barracuda status = sttac|
ool _CURRENT-POOL {62 z = 0_r = 140 _sender = herring status = schoolin,
= 704 y = 75 2 = 0 r = 140 sender = herring status = schooling
x = 455 v = 221 z = [r = 140 sender = herring status = escape
x = 107y = 368 z = 0 r = 140 sender = herring status = schooling
k =928y =347 z = 0 r = 140 sender = herring status = schooling
Environment On 1k =429y = 484 z = 0 r = 140 sender = herring status = schooling
- 6 Bk new frame kkk
51 =300y = g24 z = 0 r = 14D sender = barracuda status = attacking
8. user>(/ 1024 16k = 683 v = 18 z = D r = 140 sender = herring status = echooling
fd =485y =119z =0 r = 140 sender = herring status = escape
9, uger =685y =168 z = 0 r = 140 sender = herring status = schooling
=472 v = 211 z = 0 r = 140 sender = herring status = escape
=688 v = 361 z = 0 r = 14] sender = herring status = schooling
=508 v = 340 z = [r = 140 sender = herring status = escape
SER = 411 vy = 476 2 = 0 r = 140 sender = herring status = schooling

" N
{ N

AN

S

Fig.9 Simulated behavior of a school of herrings attached by a barracuda

221

5 Discussion

An object in Smalltalk-80 [Goldberg 1983] is an integrated entity composed of a data structure
and methods. When an object receives a message, the object invokes a method associated with
the message. This object model is considered to be a passive object model, because an object
cannot be active unless it receives a message.

Rehearsal [Gould 1984] is a visual programming environment implemented in Smalltalk-80.
An educator who is not a programmer can develop educational software using performers on
a stage in a metaphor called theater. A performer (object) is a process which is active while

it receives a cue (message). Process switching is done in an event-driven order. In Rehearsal,
programming is making a script using a mouse and objects which appear on the screen as
performers.

Director [Kahn 1978] and ASAS [Reynolds 1982 use the actor model [Hewitt 1977]. An
actor is an asynchronous, concurrent entity and is considered to be a passive object model.
However, the object model used in Director and ASAS can be called an active object model.
Because an actor is invoked in every time unit, while it keeps messages from other actors on the
stack in FIFO order. This is different from an actor which cannot receive any messages unless
other actors send messages. Let us call this object model a dependent active object model. The
purpose of ASAS is computer animation. ASAS has rich 3D graphical functions with which to
operate an actor in a 3D world. Everything needed to make a movie such as camera, audio,
light, are represented by actors. Programming is considered to be writing an operation sequence
in a formal script. ASAS interpreter interprets scripts and sends messages to actors. Each actor
behaves under the control of the scripts.

In PARADISE, the characters have behavioral patterns as its knowledge. Such a character
can be considered to be another active object model. The character is also controlled in time-
slice order. A character object does not receive any messages directly, but voluntarily searches
and collects messages. Thus, message passing is indirect, using the environment. Lets us call
this object model an independent active object model. The mechanism by which a character
object voluntarily searches for messages is similar to that in which a process selects information
from a black board in [Hayes-Roth 1979]. Jn Director and PARADISE, there are no scripts.
Programming is representing an object’s behavioral pattern as ifs knowledge.

The most interesting point of PARADISE, compared with the other systems, is that a mes-
sage in PARADISE is an object, so that it is not related to a message selector. A method to be
executed is decided by the matched behavioral rule according to the message objects and current
state. The comparison of the object model, script, scheduling, instruction for communication,
and the purposes of Rehearsal, ASAS, and PARADISE are shown in Table 1.

Table 1: Comparison of Rehearsal, ASAS, and PARADISE

kind of object | script scheduling mstructl?ns f or purpose
communication
performer . ec'luca.tion,
in z:§:16w;e YES event-driven | direct send visual
Rehearsal) programming
actor dependent YES time-sli direct send, computer
m active object 1me-siice direct send all animation
ASAS
behavioral

f:haracter independent . . indirect send, o) lt.
in active object NO time-slice search simulation,
PARADISE experiment

222

6 Conclusion

We have proposed a behavioral simulation model and implemented a behavioral simulation
system called PARADISE. Some applications are running and being implemented, such as traffic
simulations, a car driver’s psychological simulations, and panic evacuation simulations.

The authors would like to express their sincere gratitude to Mr. Michio Isoda of Keio

University for his reliable advice. The authors are also grateful to Mr. Hirohisa Ishino and Mr.
Junichi Nagahama for implementing the animation display part of the PARADISE system.

References

[Partridge 1982] Partridge, B., The Structure and Function of Fish Schools, Scientific American
246(6), 1982.

[Reynolds 1985] Reynolds, C., Deseription and Control of Time and Dynamics in Computer
Animation, notes for the SIGGRAPH'85, Symbolics Graphics Division, 1985.

[Tokoro 1984] Tokoro, M. and Ishikawa, Y., An object-oriented approach to knowledge systems,
Proc of Int’l Conf. on Fifth Generation Computer Systems, ICOT, 1984.

(Ishikawa 1987] Ishikawa, Y., and Tokoro, M., Orient84/K : An Object-Oriented Concurrent
Programming Language for Knowledge Systems, in Object Oriented Concurrent Pro-
gramming, A.Yonezawa and M.Tokoro, eds, MIT Press, 1987.

[Maruichi 1987] Maruichi, T. and Tokoro, M., PANDORA : A Multiparadigm Programming
Language/Environment (in Japanese), Department of Electrical Engineering, Keio Uni-
versity, 1987.

[Yuasa 1985] Yuasa, T. and Hagiya, M., Kyoto Common Lisp Report, Research Institute for
Mathematical Sciences, Kyoto University, 1985.

[Bobrow 1983] Bobrow, D., and Stefik, M., The LOOPS Manual, Xerox Palo Alto Research
Center, KB-VLSI-81-13, 1983.

[Forgy 1981] Forgy, C., OPS5 User’s Manual, CMU-CS-81-135, Carnegie Mellon University,
1981.

[Goldberg 1983] Goldberg, A. and Robson, D., Smalltalk-80 - The language and its ymplemen-
tation, Addison-Wesley, 1983.

[Gould 1984] Gould, L. and Finzer, W., Programming by Rehearsal, Xerox Palo Alto Research
Center, SCL-84-1, 1984.

[Kahn 1978] Kahn, K. and Hewitt, C., Dynamic Graphics using Quast Parallelism, SIG-
GRAPH’78 Conference Proceedings, published as Computer Graphics 12(3), 1978.

[Reynolds 1982] Reynolds, C., Computer Animation with Scripts and Actors, SIGGRAPH’82
Conference Proceedings, published as Computer Graphics 16(3), 1982.

[Hewitt 1977] Hewitt, C., Vieurng Control Structures as Patterns of Passing Messages, Artificial
Intelligence 8, North-Holland, 1977.

[Hayes-Roth 1979] Hayes-Roth, B. and et.al, Modeling Planning as an incremental, opportunis-
tic process, IJCAI'T9 Conference Proceedings, 1979.

