Conformance, Genericily, Inheritance and Enhancement

thris Horn

Distributed Systems Group, Department of Computer Science,
Trinity College Dublin, 1RL-Dublin 2 (hom®@tcdes.uucp)

A recent paper by Meyer compared the usefulness of Genericity and Inheritance as a basis for static type checking in
object oriented systems. Contormance is also being considered by some researchers, and Meyer's paper is re-
examined here using Conformance. Some problems result related to the conformance of formal and actual parameters
of operations. Additional rules for conformance are introduced to overcome these problems and these lead naturally to
the concept of Enhancement as a union of the techniques of Conformance, Genericity and Inheritance.

This work has been partially sponsored under the ESPRIT programme, in project 834 Comandos - Construction and
Management of Distributed Office Systems.

Object-orientation is gaining acceptance as a powerful philosophy for software production. A number of researchers are
currently investigating the use of static typing to improve the performance of object-oriented programming languages on
conventional hardware architectures, as well as providing early notification of programming errors. In the recent OOPSLA
conference, Meyer [Meyer86] informally analysed genericity and inheritance as two techniques to improve the extendibility,
re-useablility and compatibility of software subsystems. In particular he noted how genericity could be simulated in a
programming language offering only inheritance, but not vice-versa. Nevertheless he concluded that genericity is more
elegant than inheritance when the genericity is unconstrained: that is when the actual type parameters substituted for a generic
formal type parameter need not support an}; particular operations. Constrained genericity (in which there is such a

requirement on the actual type parameters) can be implemented using inheritance and abstract superclasses.

In addition to genericity and inheritance, conformance and subtyping are being considered by some as the basis for a
flexibly typed object based system: for example the Emerald project[Black87], Trellis’Owl [Schaffert86], Galileo
[Albano85], as well as [Cardelli85]. Basically, conformance can allow one object (of a particular type) to be used as if it
were another (of another type). In a system supporting inheritance, (an instance of) a subtype can always be used as if it
were (an instance of) any of its supertypes. However conformance may allow a more general relationship between types
than that implied by inheritance (whether multiple or single) alone. Whereas inheritance allows one type to extend or redefine
the representation of another, one type may conform to another without necessarily obtaining executable code (methods) or
data (instance variables) from it. Essentially, an abstract type S conforms to another type T (written S < T), if [Black86]:

1. S provides at least the operations of T (S may have more operations).

2 For each operation in T, S has the same number of arguments and results.

3. The abstract types of the results of S's operations conform to the abstract types of the results of T's operations.

4 The abstract types of the arguments of T's operations conform to the abstract types of the arguments of S's

operations (ie arguments must conform in the opposite direction).
Then if T < Ty:

a. An expression of type T can be assigned to an object of type To

b. An actual argument of type T can be assigned to a formal argument of type T in an operation invocation

c. Anactual result of type Ty can be used to receive a formal result of type Ty
Conformance and subtyping are considered more precisely in [Cardelli85]. The chief potentials are the ability to partially
order abstract types as well as concrete types [Albano85]; and extensibility and a uniform object model in a distributed
environment, by permitting different implementations of the same abstract type [Black87].

224

In view of the interest in conformance, it is interesting to reconsider Meyer's OOPSLA paper, and determine how the
notion of conformance can be successfully integrated with those of genericity and inheritance, In section 1 therefore, Meyer's
Swap utility is considered using conformance alone. Problems occur due to the conformance rule 4 above, and in section 2,
before continuing to investigate the other problems which Meyer studies, instead an abstract type having multiple
implementations is considered, an application for which conformance is reputedly well suited. It consequently becomes
apparent that the conformity rules as stated above may be too restrictive, and itis suggested that it is sometimes beneficial to
allow one type S to conform to another type T without S necessarily implementing all of T's operations. This introduces
the concept of enhancement, and in this case we shall say that type S can be enhanced to type T. In section 3, nesting of
enhanced types is considered. It may sometimes be useful to obtain a new abstract type which is a limited “view” of another
- having a subset of the operations - and in section 4 the concept of restriction is introduced as a suitable mechanism,
together with the ability to rename operations for convenience. In section 5 Meyer's remaining problems are re-examined
using enhancement. Section 6 briefly considers the implications of enhancement on data modelling. Finally in Section 7,

we draw some conclusions,

A syntax reminiscent of Modula-2 and Ada is used throughout the following examples, rather than any particular

existing object oriented language: the reader is free to alter the syntax where desired.

1. Mever's swap problem

We start by considering Meyer's first problem, in which an operation is required to swap two instances of some arbitrary
type T. Assume there is some type TOP to which all types conform. Using only conformity, a utility to swap such

instances might be outlined as follows:

ABSTRACT TYPE S{vr?wl:_er IS Y
Swap(x,y : IN Ol OP); (* x and y are both arguments and results ¥)
END Swapper;

CONCRETE TYPE Swap rIm lemcntatxon IS (* should conform to the Abstract Type *)-
Swap(x y IN OUT

t = x, X = Y,
END Swap
END Swappcrlmplememaucn,

VAR a,b : INTEGER; (* Let's try swapping two integers....*)
DoSwap : Swapperlmplementation;

b.o.Swop.Swap(a,b); (* this is actually incorrectly typed !!!!! *)
Here it is intended that since DoSwop expects a pair of objects conformant to TOP, DoSwop should thus be a potymorphic
utility for exchanging any two arbitrarily typed objects. However although the actual arguments a and b of
DoSwap.Swap(a,b) conform to the stipulated type of the formal arguments (rule b), the type of the formal results does not
conform to that of the actual results (rule ¢). Hence DoSwop.Swap(a,b) is incorrectly typed. In fact the only objects which
can be swapped using DoSwop are those of type TOP! This might have been anticipated, since it might undesireable to
swap two objects of differing types (eg an INTEGER with a BOOLEAN) as the above example might have permitted. In

effect, there is a loss of type information when receiving the DoSwop result parameters.

It would perhaps be more in the spirit of object orientation if the Swap operation were relative to the "current” object: ie
that one parameter to Swap is made implicit as the current object. We might anticipate that this does not resolve the
problem either:

225

ABSTRACT TYPE Swaj Eer
Swap(Other : IN T(g TOP,
END Swapper;

CONCRETE TYPE Swappable IS
Me : TOP;
Swa (Ot.her IN TOP) : TOP IS
AL t: TOP;

t:= Me; Me := Olher RETURN¢t (* Result returned by function is t *)
END Swap;
END Swappable

12’4
(* Function returning a result of type TOP *)

VAR a,b H Swagpable;
X 1 INT ;
b= a.Swap(b); (* Type checks OK - but not very useful *)
X := a.Swap(x); (* Typing error for function result ! *)
Instances of type Swappable can indeed be swapped - but that is the only operation they support! More interesting is to try
and swap, for example, INTEGERs: however although INTEGER conforms to type TOP, it does not conform to type
Swappable - hence we cannot use Swap on INTEGERs.

A concrete type Swappablelnteger might be envisaged instead, which would provide a Swap operation for INTEGERs.
However if this type had additional operations for INTEGER:s - eg a "+" operation - then it would not conform to the abstract
type Swappable due to conformance rule 4 above. In any case, it would defeat our original intention to have one
implementation of Swap for all types! Meyer notes a similar problem in his paper when using inheritance alone, and

introduces his technique of declaration by association as a solution.

The conclusion is that genericity, as Meyer advocates, is the most elegant solution to the Swap problem. Although
here we have considered just conformance alone (as a possible alternative to genericity), the Emerald and Trellis/Owl projects

which do use conformance, are both also including support for genericity.

2_The Sequence

Before considering Meyer's remaining problems, in view of the difficulties encountered above with the Swap problem,
let us investigate instead a problem for which conformance is reputedly well suited - that of multiple implementations of
some abstract type. A sequence is chosen as a representative problem, to which items can be appended and removed at either
the front or tail of the sequence, together with an operation to append two sequences. We first consider only sequences of
INTEGERs, and later in section 3 extend to generic sequences:

ABSTRACT TYPE IntSequence IS 3/
Emgty : BOOLEAN;
AddFront(i : INTEGER) : IntSequence;
RemoveFront : INTEGER;
AddLast(i : INTEGER) : IntSequence;
RemoveLast :INTEGER;
Append(s : IntSequence) : IntSequence; ~
END IntSequence;

Now a supposed implementation which should conform with IntSequence, and which uses an ARRAY:

CONCRETE TYPE IntArraySequence IS 14}
d : ARRAY[1..100] OF INTEGER;
front,back : CARDINAL INITIALLY 0;

Empty : BOOLEAN ...Implementation of Empty;
AddFront(i : INTEGER) IntArraySequence ...Implementation of AddFront;
RemoveFront : INTEGE! ...\mplementation of RemoveFront;

AddLast(i : IN'I'BGER) InlAnaySequence ...Jmplementation of AddLast;
RemoveLast : INTEG ...]mplementation of Removel..ast

226

MaxLengthOfSequence | INTEGER ...Implementation of MaxLengthOfSequence
Append(s : IntArraySequence) IS
P LLOCAL: INYI"EGER;
1 := s.front;
WHILE i <> s.back
DO back := (back+1) MOD 100; d[back] ;= s.d[i]; i:=(i+1) MOD 100; END;
s.front := s.back; (* s now empty *)
RETURN SELF;
END Append;
END IntArraySequence;
For Append, it has been assumed that the representation of another instance of IntArraySequence can be accessed directly.
In C++ [Stroustrup 84], this is indeed legitimate; in Smalltalk-80 it is not and one can never directly access the

representation of any object other than the current object.

If IntArraySequence is to be an implementation of the abstract type IntSequence, then IntArraySequence must conform to
IntSequence. This is it does if IntSequence in turn conforms to IntArraySequence (by virtue of the formal argument of
Append, and conformance rule 4). Hence IntArraySequence and IntSequence must be mutually conformant. This is

unfortunate since IntArraySequence may have additional operations to IntSequence - such as MaxLengthOf Sequence.

To solve this paradox, let us redefine Append in IntArraySequence (/4/) to use the abstract type rather than the concrete
type as the formal parameter, However then Append must be coded so that it can append any implementation of IntSequence
to an instance of IntArraySequence - that is we cannot directly access the representation of the formal parameter “s" and must
use operations upon it (as would be done in Smalltalk-80):

Append(s : IntSequence) IS 51
WHILE NOT s.Empty DO
SELF.AddLast(s.RemoveFront); END;
RETURN SELF;
END Append;
IntArraySequence now conforms to IntSequence and the requirement for mutual conformance is relaxed. Naturally now a
second and alternative implementation of IntSequence could be given, which would conform to IntSequence and which would
use a different representation than IntArraySequence - for example a linked list in a concrete type IntLinkedListSequence.
An Append operation in gither concrete type would be able to append two instances having different representations - for
example a sequence implemented using a linked list could successfully be appended to a sequence using an array. Exactly the
same implementation of Append would however appear in both concrete types! This would be unexpected, unusual and

undesireable in the object approach, in which code is normally shared and reused as much as possible.

Our conclusion is that those operations which require formal parameters of the abstract type itself could sometimes be

implemented in conjunction with the abstract type. Using a slightly different syntax:

TYPE IntSequence(R AS IntBasicSequence) IS 6
<R>; (* An IntSequence has as representation any
type which conforms to IntBasicSequence *)
Append(s:R):RIS
WHILE NOT s.Em;itg'
DO SELF.AddLast(s.RemoveFront); END;
RETURN SELF;
END Append;
END IntSequence;
TYPE IntBasicSequence IS (* An Abstract Type *)
Empty : BOOLEAN;
AddFront(i : INTEGER) : IntBasicSequence;
RemoveFront : INTEGER;
AddLast(i : INTEGER) : IntBasicSequence;
RemoveLast : INTEGER;

END IntBasicSequence;

227

The AS clause specifies that IntSequence is an enhancive fype - it enhances any type which is conformant with
IntBasicSequence. The Append operation takes an instance of the same type as is used for the representation of SELF, An
implementation of IntBasicSequence could be:

TYPE IntArraySequence IS Ve/d

d : ARRAY([!..100] OF INTEGER,
front,back : CARDINAL INIT! IALLY 0;

Empty : BOOLEAN ...Jmplementation of Empty;

AddFrom(x INT] EGER) IntArraySequence ... Implemcntauon of AddFront;

RemoveFront : INTEGER ...Implementation of RemoveFront;

AddLast(i : INTEGER) : IntArraySequence ..Implementation of AddLast;

RemoveLast : INTEGER ...Implementation of RemoveLast

MaxLengthOfSequence : INTEGER ...Implementation of MaxLenthOfSequcnce
END IntArraySequence;

IntArraySequence is a concrete type. Since IntArraySequence conforms to IntBasicSequence, IntArmraySequence can be used as
an actual type parameter for the formal type R in/6/. Naturally IntLinkedListSequence could be similarly defined.

As aresult, neither of the concrete types IntArraySequence or IntLinkedListSequence need implement Append, and yet
can still conform to IntSequence if they implement Empty, AddFront, RemoveFront, AddLast and RemoveLast. Soa
type Ty which is to conform to another type T need cnly conform to certain operations of T, and if it does, will be

enhanced by further operations. This contrasts with the (conventional) conformance rules 1-4 given earlier.

In a sense we have provided a mechanism similar to abstract superclasses in Smalitalk-80. However the mechanism here

is more powerful as a result of using conformance rather than (single) inheritance. It is possible that a given type T may
conform to many different types Tl..Tn, and using our mechanism, gain access to additional operations in each of these
types Ty..T, which T itself does not implement. Hence the mechanism is akin to inheritance from multiple abstract
superclasses, rather than justone. Further, instances of superclasses cannot be created in Smalltalk-80, and finally, the
precise "abstract superclasses” in the mechanism here need not be explicitly enumerated at the time the "subclass” is defined.
Continuing, an example of usage would be:
VAR a: IntSequence; 18/

b, ¢ : IntArraySequence;

i : INTEGER;

ai= b; (* IntArraySequence does conform to IntSequence *)

a) PutanL(x),

a.Append(c); (* Appends two Array sequences *)
(note we allow the result of a function to be ignored if desired) Here "b" as an IntArraySequence is enhanced to an

IntSequence, and as a consequence gains an additional operation Append not originally defined for IntArraySequences.

Before examining instantiation of these types the four conformity rules given earlier should first be extended with rules

for enhancement, and for expansion of enhancive types.

21 Expansion and Enhancement rules
An enhancive type T with n formal type parameters can be expanded as follows:
5. IfT(t; AS Ty, tg AS Tp,..ty AS Tpy) and if pj < Tj for all i:1..n then:
5.1 T=T(T),T,.. Ty} ieif T is unqualified it can be treated as T(T},T2,...Tp)
52 T(P1,P2-Pp) = T(P1:P2>+--Pps Try 15 Tn) Wherersn ’

Secondly, the rules for enhancement:

228

6. IfT(t; AS Ty, tp AS Tp,...tn AS Ty;) has representationt;, where 1<i<n-ie

TYPET(t) AS Ty, t ASTp,..t; ASTy) IS
<t>;

and if p< Ty, then p --> T(p) (p can be enhanced to T(p))

Enhancement can then be used as follows:

d. Static usage: If p --> T(p), then an instance of T(p) can be declared.

e. Dynamic usage: If p --> T(p), then an expression of type p can be assigned to an object of type T, or
passed as an actual argument in an operation invocation for a formal argument of type T, or returned as a
result for an operation invocation where the actual result parameter is of type T.

f. Temporary usage: If p-->T(p), then an instance x of type p can be temporarily enhanced to be of type
T(p) for a single operation invocation x.T(p)~a, where a is the name of an gperation in the signature of T.

g. Protracted usage: If p --> T(p), then an instance x of type p can be enhanced protractedly to be of type
T(p) using: WITH x AS T(p) DO ... END;

The usage of IntSequence (as defined in /6/), IntBasicSequence (/6/), IntAmraySequence (/7/) and IntLinkedListSequence can
now be considered. (In fact, we only consider here enhancive types having a single formal type parameter, for simplicity.

Multiple formal type parameters requires further rules to resolve possible name clashes) First, assume the following

declarations:
VAR IntSeq : IntSequence; o/
IntSeqASeq : IntSeq (IntArraySeq)s
IntASeq : IntArraySequence;
IntLLSeq : InthkedLlstSequcnce, (* NOT conformant with IntArraySeq *)
i : INTEGER;

(note that we also assume IntArraySequence and IntLinkedListSequence are not mutually conformant). As indicated in rules d
to g above, there are four possible different enhancement methods. The first is Szafic: instances of an enhancive type such
as IntSequence statically define their representation. ~When an instance of an enhancive type is declared, actual type
parameters can be supplied (for at least some of) the formal types specified in the AS clause of the enhancive type - examples
are IntSeq and IntSeqASeq above. Example usage might be:

IntSeq.AddFront(45); (*52,4and b *) 1w
i := IntSeq.RemoveLast; (*52,3andc*)
IntSeq.Append(IntLLSeq); (*52,1-4and b *)
IntSeqASeq.Append(IntLLSeq); (* Type error!!! 14 and b *)

Since the declaration of IntSeq did not define an actual type parameter for its formal parameter in the AS clause, any type
conformant with IntBasicSequence can be used subsequently for the parameter. However the same is not true for IntSeqASeq,

and the parameter to an Append operation on it must conform to IntAmraySequence.

The second method is Dynamic: an instance of an enhancive type may change its representation at execution time:

IntSeq := IntASeq; (* IntSeq is now represented by an array: 5.1,1-4,6and e *) /11/
IntSel:%Append(IntL LSeq); (*5.1,6and b *)

IntLLSeq := IntSeq.Append(IntLLSeq); (* Type error!!! 5.1, 6 andc *)

IntSeq := IntLLSeq; (* Now change Ianeq s representation: 5.1, 1-4,6 and e ¥)
IntSeq.Append(IntASeq); (*5.1,6and b *)

Dynamic usage may also be used for argument transmission and result reception in operation invocations.

The third method is Temporary: this allows a concrete type such as IntArraySequence to be enhanced for a single

operation invocation:

229

IntASey IntSeyuenve(InlAmaySequence)- Appaad{{Tntl]Seq); ("52,6 hand b *) 1y

This is useful 1o allow a type t temporarily gain access to additional operations which were not originally defined for itsclf.

The final method is Pratracied: wconcrete type may be enhancad aver savaral sratsments:

Vv'lTlg(IJntAStq AS IntSequence(IntArray Sequanca) (*52,6andi®) ny
Ix;.t-l.\Seq. Append(IntLLSeq); (*b*
END;
3 _The Generic Sequence

IntSequence {/6/), IntBasicSequence (/6/) and IntArraySequence {/7/) can now be changed to handle sequences of arbitrary
type:

TYPE Sequence(R, AS BasicSequence) IS 14/
<R>;
Append(s R):R1IS
WHILE NOT s.Empty
DO SELF. AddLast(s RemoveFront); END;
RETURN SELF;
END Append;
END Sequence;
TYPE BasicSequence(T as TOP) IS
Empty : BOOLEAN;
AddFront(i : T) : BasicSequence;
RemoveFront :T;
AddLasy(i: T) : BasicSequence;
RemoveLast :T;
END BasicSequence;

TYPE ArraySequence(T AS TOP) IS
d : ARRAYJL..100) OF T;
front, back : CARDINAL'INITIALLY 0;

Empty : BOOLEAN ...Jmplementation of Empty;
AddFront(i : T) : BasicSequence ...Implementation of AddFront;
RemoveFront: T ..Implementation of RemoveFront;
AddLast(i : T) : BasicSequence mplementation of AddLast;

RemoveLast: T ...Implementation of RemoveLast;
MaxLengthOfSequence : INTEGER ...Jmplementation of MaxLengthOfSequence;
END ArraySequence;

Depending on how instances of these types are declared, homomorphic sequences can be created (in which all items in the
sequence have the same type), as well as polymorphic sequences (in which items of differing types can simultaneously be
stored in the same sequence). However only instances of TOP can be retrieved from a polymorphic sequence if static type

checking is used.

Further rules are required to allow nested enhancive types: those whose formal parameters are instantiated by further
enhancive types. For example Sequence has a formal type parameter BasicSequence, which in turn has a formal type

parameter TOP.

31 Furtt I I i . les_for Enhancive T
7. IfT(ty ASTy), and p(t AS Tp) <Ty(ty AS Tp) and q < T then:
7.1 p-->T(p)
7.2 p@) > T(p(q)

230

7.3 P(q) > T(T1(q)
7.4 P -->T(T1(T2))
Rule 7 generalises to an arbitrary degree of nesting and arbitrary number of parameters. For expansion of nested enhancive

types:
8. IfT(t; AS Tp), Ty(t2 AS Tp), andp<Tj, q< Ty then:

8.1 T=T(T1(T9))
8.2 T(p) = T(RT2)

Rule 8 likewise generalises.

3.2 Usage of the generjc sequence
Examples of the application of rules 7 and 8 are now given:

VAR SqASq : Sequence(ArraySequence); 1151
SqASqlnt : Sequence(ArraySequence(INTEGER));
SqBSqInt : Sequence(BasicSequence(INTEGER));

ASq : ArraySequence;
ASqInt : ArraySequence(INTEGER);
LnkSq : LinkedListSequence;
Sq : Sequence;
i : INTEGER;
t : TOP;
SqASq.AddFront(i); (*82,51and b *)
i := SqASq.RemoveFront; (* Type error ! 8.2,5.1and ¢ *)
t := SqASq.RemoveFront; (*82,51andc*)
SqASqlInt.AddFront(i); (*b*
SqASq Append(LnkSq); (* Type error!! 8.2,5.1and b *)
SqBSqlnt := ASqlnt; (*73ande *)
Sq := ASqlnt; (*8.1,51,74and e ¥)
SqBSqlnt.Append(LnkSg); (* Type error!! 5.1andb ¥)

Sq.Append); (*8.1and5.1%)
ASq := Sq.Append(LpkSq); (* Type error! ASq NOT < BSg, & rule c fails *)
ASq.Sequence(ArraySequence)~Append{LakSq); (*7.1,51and f *)
WITH ASq, LaokSq AS Sequence (* 5.1 and £

DO ASq.AddFrout(3); *b*

t := LnkSq.RemoveFront; (*c*

END: ASq.Append(LnkSq); *b¥)

{ _Restricti 1 R .

Any implementation of the BasicSequence in /14/ could be used to implement abstractions other than that of a Sequence,
for example a Stack. An abstract type similar to Sequence in /14/ could be defined for a Stack, but not all the operations
applicable to BasicSequence should be allowable on a Stack. Hence although the representation of a Stack could be a
BasicSequence, the set of operations made available must be restricted, as follows:

TYPE Stack(R AS BasicSequence({AddFront, RemoveFront, Empty}) IS ne
END Sr.ac;; %
where the {..} notation denotes a set of operation names. Any type conformant with BasicSequence may be used for Stack,
but only the AddFront, RemoveFront and Empty operations will be invokable on instances of Stack. This obviates the
need to introduce an additional type definition explicitly: instead a new type is implicitly introduced having a "hidden” type
name and only the specified operations.

231

Tt would actnally be preferable if the operations on a Stack could be given more meaningful names, and of course, there
might also be additional operations on a Stack which are not available on BasicSequences (as there was the operation Append
for Sequence), as follows:

TYPER§tack(R AS BasicSequence({Push <= AddFront, Pop <= RemoveFront, IsEmpty <= Empty}) IS nn

>;
Empg IS (‘ Cnllapsc entire Stack *)
WHILE NOT SELF IsEm ty
DO t := SELF.Pop;
End Empty;
END Stack;
Here AddFront is renamed as Push, and RemoveFront as Pop, to "users” of a Stack. The renaming implies the first

conformance rule (rule 1) must take account of explicit name changes to operations.

As asecond example, BasicSequence could be used to implement a FIFO queue:
TYPI;.‘.;SOQueue(R, R1 AS BasicSequence({Put <= AddFront, Get <= RemoveLast, Empty}) IS 18/
END FIFOQueue;
Note that now we can treat the same instance of an ArraySequence (/14/) as a Sequence (/14/), or as a Stack {/17/), or as a
FIFOQueue (/18/)!

VAR al,a2 : ArraySequence; noys
b :Sequence;
¢ :Stack;
d :FIFOQueue;
b:=al; (* Treat al as a Sequence *)
b.Append(a2); (* al can use the "inherited” Append *)
c:=al; (* Now treat al as a Stack *)
c.Empty; (* al can be flushed *)
d:=al; (* Finally treat al as a FIFOQueue *)
d.Put(50); : (* al supports Put as a synonym for AddFront *)

4.1 Restricti i_Enhancive T
Although BasicSequence does conform with BasicSequence({AddFront, RemoveFront, Empty}) as in/17/, in general a
type T does not necessarily conform with a restriction of itself. T shall be called the base type of the restriction. For
example, INTEGER does not conform to INTEGER({"+"}), because of conformance rule 4 and because the arguments to
+" for the restricted type will themselves be of type INTEGER({"+"}). With restricted types, we can introduce a further

rule:

9. If an enhancive type is given an actual type parameter which is a restricted type, then any actual arguments or
results of operations, whose formal types are the restricted type, can be any subtype of the base of the
restricted type.

Examples of the use of this rule are given below when constrained genéricity is considered.

5 C ined_Generici

Having considered how to extend the conventional conformance rules, let us now return to Meyer's problems. Using
the additional rules 5 to 8 given above, it is straight forward to describe solutions to both the Swap utility and the Stack
which Meyer considers: this is left as an exercise for the interested reader. His examples of constrained genericity require
both the additional rules and the restriction and renaming mechanism introduced in section 4, as follows.

232

Meyer's first example of constrained genericity is a utility to find the minimum to two values of the same arbitrary type:
however their type must obviously support a comparison operation. Rule 9 above allows a solution since an INTEGER can
be passed as an actual parameter for a formal parameter of type INTEGER({le <= "+"}), even though INTEGER does not of
itself conform to the restriction. Itis also left as an exercise to the reader.

The second of Meyer's examples of constrained genericity is a matrix package, which allows matrices whose elements
are of the same type to be added and multiplied: this type must support add and multiply operations itself (on the elements)
as well as a zero and unity value. Such a type is a Ring:

TYPE Matrix(R AS TwoDimensionalArray(RingType)) IS 20
<R>; (* a 2-D array of RingType *)
Plus(Other : R) : RIS ..Jmplementation of Plus;
Multipy(m: R) : RIS ...Implementation of Multiply;
END Matrix;
TYPE RingType IS
Zero : RingType;

Unity :RingType;
Plus(Other : RingType) : RingType;
Multiply(Other : RingType) : RingType;
END RingType;
and a possible usage:
VAR m1,m?2 : Matrix(TwoDimensional Array(INTEGER({Zero <= 0,Unity <= 1, Plus <= "+", Multiply <="»"})); v

ml.Plus(m2);

6 Data Modelling

So far an approach based on abstract data types has been used in the discussion and examples. This resulted from our
consideration of conformance in Emerald, and Meyer's particular examples. However conformance between one type and
another can also be based on data valued attributes: for example, a record (or tuple) type Rq would conform to another record
type R2 if Rq had at least the fields of R2, and the types of those fields conform. [Albano85] and [Cardelli85] consider
subtyping and conformance in greater detail.

The examples have shown how a type could be enhanced by additional operations not originally defined upon it. In the
same way, a record type may in principle be augmented by additional fields, and thus enhanced using static, dynamic,
temporary or protracted enhancement, Dynamic enhancement appears particularly useful since it allows an object to gain
additional attributes, and adopt many different roles, as its "life" progresses, as in /19/. Exactly what these additional
attributes are need not be decided when the object is first created, but can be added subsequently., It appears possible to

enhance the object and modify its behaviour throughout its lifetime, yet without abandoning static type checking.

Note also that given N enhancive types, 2N combinations of types can be created. This mechanism is a solution to the

addition of mix-ins to object instances, as discussed by Hendler [Hendler86].

233
1___Conclusions

We have observed that it may be useful to extend the usual rules for conformance so that a type can be enhanced to gain
additional operations or data attributes, and yet still be statically type checked. In a sense the extension is similar to multiple
abstract superclassing. However the major difference from languages which do support multiple inheritance is that using
enhancement, the "inheritance” need not be statically determined, but can be achieved at execution time.

In retrospect, the concept of enhancement given here is similar to the descriptive classes of Sandberg [Sandberg86],
although enhancement is derived from considering conformance, and descriptive classes from abstract superclassing. The
chief difference appears that when an instance of a descriptive class is created, actual class parameters must be supplied for all -
the formal class parameters. As a result such an instance cannot augment its representation at run-time, and for example,
much of example /15/ given here might not be possible using descriptive classes.

The concept of enhancement is now being considered as a modelling and implementation tool for the infrastructure for
Office Systems, and other application environments, in the context of the ESPRIT Comandos project.

8 _Acknowledgements

I am indebted to my colleagues on the Comandos project at Trinity for their constructutive criticisms: V. Cahill, A.
Donnelly, E.Finn, N. Harris and 1. White. I would also thank my colleagues in the other institutions participating in
Comandos, and in particular R. Balter, E. Bertino, R. Gagliardi, L. Martino, G. Mueller and A-K Proefrock.

9__References

[Albano85) "Galileo: A Strongly-Typed, Interactive Conceptual Language”, A. Albano, L. Cardelli and R. Orsini, ACM
Transactions on Database Systems, Vol. 10, No. 2, June 1985

[Black86] "Object Structure in the Emerald System", A. Black, N. Hutchinson, E. Jul and H. Levy, Technical Report
86-04-03, Department of Computer Science, University of Washington, April 1986.

[Black87] "Distribution and Abstract Types in Emerald", A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter,
IEEE Transactions on Software Engineering, Vol SE-13, No 1, J anuary 1987,

[Cardelli85) "On understanding Types, Data Abstraction, and Polymorphism”, L. Cardelli and P. Wegner, ACM
Computing Surveys, Vol 17, No 4, Dec 85.

[Goldberg83] "SmallTalk-80: The Language and Its Implementation”, A. Goldberg and D. Robson, Addison-Wesley, 1983
[Hendler86} "Enhancement for multiple-inheritance”, J. Hendler, ACM Sigplan Notices, Vol 21, No 10, October 1986.

[Meyer86] "Genericity versus Inheritance”, B. Meyer, 1986 Proc. of Object-Oriented Programming Systems, Languages
and Applications (OOPSLA) (also in ACM SIGPLAN Notices, Vol 21, No 11, November 1986)

[Sandberg86] "An Alternative to Subclassing”, D. Sandberg, 1986 Proc. of Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), (also in ACM SIGPLAN Notices, Vol 21, No 11, November
1986). -

[Schaffert86] "An introduction to Trellis’Owl", C. Schaffert et al, 1986 Proc. of Object- Oriented Programming Systems,
Languages and Applications (OOPSLA) (also in ACM SIGPLAN Notices, Vol 21, No 11, November
1986).

[StroustrupB4] "The C++ Programming Language - Reference Manual®, B. Stroustrup, AT&T Bell Labs Computing
Science Technical Report No 108, January 1984,

