Inheritance and Subtyping in a
Parallel Object-Oriented Language

Pierre America
Philips Research Laboratories
Eindhoven, the Netherlands

Abstract

We have investigated the concepts of inheritance and subtyping in order to integrate them in a
parallel object-oriented language. In doing so, we have concluded that inheritance and subtyp-
ing are two different concepts, which should not be confused in any object-oriented language
(be it parallel or sequential). Inheritance takes place on the implementation level of classes,
and it is a convenient mechanism for code sharing. It can be supported, for example, by intro-
ducing inheritance packages into a programming language. Subtyping deals with the message
interface of objects, and it leads to a conceptual hierarchy based on behavioural specialization.
Subtyping should take place on the basis of specifications of the external behaviour of objects,
and as much as possible of these specifications should be formal. Some specific problems with
introducing these two concepts into a parallel language are also discussed.

1 Introduction

ESPRIT project 415 aims at the development of new architectures and languages to speed up
applications in the area of artificial intelligence by the use of large-scale parallelism. Subproject A
of this large project is mainly carried out at Philips Research Laboratories in Eindhoven, the
Netherlands. Here object-oriented programming has been chosen as the approach to follow towards
this goal. A parallel architecture, called DOOM (Decentralized Object-Oriented Machine), is being
developed [14], and & language, POOL (Parallel Object-Oriented Language), is being designed to
program this machine. For more details on the language than can be given here, we refer to [2].

This paper is motivated by the wish to enrich the language POOL with a mechanism commonly
called snheritance. Inheritance is regarded by many people as the hallmark of object-orientedness
in programming languages [7]. We do not agree with this view, and argue that the essence of
object-oriented programming lies somewhere else (see section 2.1). Nevertheless, inheritance is a
very important concept and a useful mechanism to structure large systems. Therefore it would be
advantageous for any object-oriented language to have a nicely integrated form of inheritance.

In section 2 we introduce the language POOL, together with the concepts on which it is based.
This serves as a reference point for the rest of our discussion. The concept of inheritance and a
related concept, subtyping, are introduced in section 3, where we also show that the distinction
between the two is too important to confuse them, as is done in most existing object-oriented
languages. For both concepts we shall indicate ways of dealing with them in an object-oriented
language. Then, in section 4 we discuss the specific problems and possibilities of integrating these
concepts in a parallel language like POOL.

This work is carried out in the context of ESPRIT project 415: “Parallel Architectures and Languages for Advanced
Information Processing — a VLSI-directed approach”.



235

2 The language POOL

In this section we present an overview of the language POOL, in order to introduce the concepts
on which it is based, and to indicate the objectives that directed its design.

2.1 Object-oriented programming

The basic notion in object-oriented programming is of course the notion of an object. An object
is an entity that contains some internal data, and has several procedures associated with it (these
are called methods, following the object-oriented jargon). In general, objects are very dynamic
entities: They can be created dynamically and their local data can change during their lifetime.

The important point is that the data in an object cannot be accessed directly by the outside
world (i.e., by other objects): the only way of interacting with an object is sending it a message.
A message is a request for the receiver to execute one of its methods, and such a method can
access the local data of the object it belongs to. The fact that an object can only be manipulated
through this fixed and controlled interface provided by its methods gives rise to a very powerful
protection mechanism, which protects the local data of each object against uncontrolled access
from every other one. This mechanism also provides a separation between the smplementation of
an object (its set of variables and the code of the methods) and its external behaviour (the way it
responds to message). In this way the programming technique of abstract data types can be used
in object-oriented programming.

In our opinion this protection mechanism based on objects is the basic and essential principle
of object-oriented programming (cf. the locality laws of [12]). In POOL, care has been taken not
to diminish the power of this protection mechanism in any way: there are no exceptions or detours
around it.

In POOL, like in most object-oriented languages, objects are grouped into classes. All the
objects in one class (the instances of the class) have the same structure of their internal data
(the instance variables) and they have the same methods. Classes also have the task to create
new instances of themselves. In many object-oriented languages (e.g., Smalltalk-80 [11]) this is
modelled by viewing classes again as objects, so that the creation of new instances can be done
in class methods (methods of the class object). In POOL, & different approach is chosen: A class
provides its users with so-called routines. A routine is another kind of procedure, which can be
called by any object in the system, and which is associated with a class rather than with a specific
object. Routines are a suitable abstraction mechanism to encapsulate, among others, the creation
and initialization of new objects.

2.2 Parallelism

There are several ways to introduce parallelism in an object-oriented language (see [18]). In POOL,
this is done by giving objects a local activity of their own. Each object has a so-called body, a local
process which starts executing as soon as the object is created. In an object’s body it is indicated
explicitly when the object sends a message and when it is willing to accept one. All the objects
in one class execute the same body. Parallelism arises because, in principle, the bodies of all the
objects can execute in parallel. There is no parallelism within one object.

Message passing is done in a way like the Ada rendez-vous [1]: The sender and the receiver
wait for each other until both are ready to exchange the message, then the receiver executes the
specified method, it returns the result (an object) to the sender, and after that both pursue their
own activities in parallel again. When sending a message, the sender specifies the destination
object, the method to be executed, and possibly some parameters (again objects). In order to
accept & message, an object executes an answer-statement, specifying 2 set of methods. The first



236

incoming message that specifies one of these methods is accepted. A select-statement, allowing
conditional message acceptance, is also present in the language.

2.3 Typing

In contrast to many other object-oriented languages, POOL is not principally meant for rapid
prototyping. Rather, it aims at the systematic construction of reliable and maintainable software
(in this respect it resembles Trellis/Ow] [15]). For this reason, we want the compiler to be able
to detect as many errors as possible in a program statically, i.e., before the program is executed.
Therefore POOL is a statically typed language.

Let us precisely define some terms: A type is a collection of objects that share some properties,
notably the operations that can be performed on them (see also [8]). In object-oriented languages,
the only operation that can be applied to an object is sending it a message, so the relevant
information here is the set of methods that an object has available. Therefore, at this point (we
shall refine this later) a type coincides naturally with a class.

Now we call a language statically typed if for any expression in a program, it is possible to
determine statically, i.e., from the program text alone, the type of the objects this expression will
represent during program execution. In POOL, like in many other statically typed languages,
this is done by indicating the type of each variable, each parameter and result of a method or
routine, and each constant. The type of every expression can then be determined starting from
the types of its ingredients (by analysis of the program text), in such a way that it is guaranteed
that whenever the expression is evaluated, the value will be an instance of this type.

In many other object-oriented languages (e.g., Smalltalk-80 [11]), this concept of type does not
occur in the language; they are not statically typed. However, in most cases, the concept plays
a role in the mind of the programmer, because he will make assumptions about the properties of
the objects he is dealing with. Therefore, even when using such languages, it is useful to have a
good understanding of the concept of typing.

3 Inheritance versus subtyping

3.1 Basic principles

The concept of inheritance was already present in the first object-oriented languages, like Sim-
ula {10] and Smalltalk-80 [11]. The basic idea is that in defining a new class it is often very
convenient to start with all the variables and methods of an existing class and to add some more
in order to get the desired new class. The new class (let us call it B) is said to snherit the variables
and methods of the old one (which we shall call A). This inheritance mechanism constitutes a
very successful way of incorporating facilities for code sharing in a programming language.

But there is more to this mechanism: It is clear that in the situation described above class B
has all the variables and methods of class A. Therefore, in a way, we can consider every object of
class B equally well as an object of class A: At any point where we expect an object of class A,
an object of class B will satisfy our needs, because it will accept all the messages an object of
class A would accept. The objects in class B can be considered as specialized versions of the ones
in class A. To express this, class B is called a subclass of A, and conversely A is called a superclass
of B.

If we compare this with the concept of typing, as introduced in section 2.3, we could see the
type associated with class B as a subtype of the type associated with class A. More precisely,
we could take a type 7 comprising all the instances of class B, and a type o which contains all
the instances of the classes A and B together. Now r is a subtype of o in the sense that every
element of r is also an element of 0. (Note that, in order to avoid confusion, we shall not say that



237

an instance of class B is also an instance of class A.) In this way, we can establish a one-to-one
correspondence between the concepts of inheritance and subtyping.

Conceptually, if we consider objects in a program as representations of entities in the real
world (for example in a database or simulation system), this makes good sense, especially if we
concentrate on the variables, which contain the local data of the object. For example, if we have
defined a claas Vehicle with variables to store the owner and the maximum speed, it is convenient
to define the class Car as a subclass of Vehicle so that we only have to add a variable to store
the license number. An instance of class Car is then automatically considered as an element of
the type associated with class Vehicle.

Of course, this procedure can be repeated several times. For instance, we can define a class
Truck as a subclass of Car, with an extra variable to store the load capacity, we can define Bus as
another subclass of the class Car, with a variable for the number of seats, and we can define Bike
to be a subclass of Vehicle, adding a variable containing the number of speeds. In this way we
can get a whole hierarchy of classes, which has the form of a tree:

Vehicle

C’// \;:k
N

Bus Truck

Moreover, it is possible to allow a new class to inherit from more than one existing class. This
mechanism is called multiple snheritance, in contrast to linear inheritance. For example, & horse
can be considered as an animal (having, for example, a father and a mother) and as a vehicle, and
therefore the class Horse can be defined conveniently as a subclass of both Animal and Vehicle.
In the case of multiple inheritance, the class hierarchy is not a tree any more; it becomes an acyclic
directed graph:

Vehicle . Animal

NS

Horse

The mechanism we have described above constitutes the basis of inheritance/subtyping as it
is incorporated in most existing object-oriented languages. It has proved to be a very power-
ful mechanism to structure large software systems, and its presence has determined the success
of object-oriented languages for a large part. This is not very surprising, because such a struc-
turing mechanism is very useful in the development of large software systems, and while (as we
have argued in section 2.1) inheritance is not essential for object-oriented languages, the object-
orientedness 13 essential for inheritance: Only in languages where we in fact consider the internal
details of only one object at a time, it is possible to replace one object by a more specialized one,
which offers the same functionality as the old one, but possibly some more.

3.2 Problems with inheritance and subtyping

However useful the above mechanism is, it has some problems associated with it. One of the most
evident problems is what to do when a new class wants to inherit from two existing classes that
both have a variable or method with the same name. Should one of the two be chosen, and if so,
which one? Or otherwise, if both are included in some way in the new class, how are they named



238

nnd accessed”? A symptom for the fact that the inheritance mechanism is problematic is the large
variety of ways in which the basic mechanism is augmented in languages like Smalltalk-80 [11,8],
LOQPS [5], Flavors [17], etcetera.

The origin of many of these problems lies in the fact that the inheritance structure, used for
code sharing, and the conceptual subtyping hierarchy, originating from specialization, are not the
same thing. They lie on different levels of abstraction in the system: inheritance is concerned with
the implementation of the classes, while the subtyping hierarchy is based on the behaviour of the
instances (as seen from the outside, by other objects).

For simple, record-like objects whose main function is to store data the practical difference
between these two points of view are not very large. But for more complicated objects the distinc-
tion between the interface with the outside world and the internal implementation is much more
important, and therefore the discrepancy between inheritance and subtyping is clear.

It may well be that in many cases the hierarchical relationships induced by inheritance and
by subtyping coincide, but this is certainly not always the case: On the one hand it is very well
possible in many cases to define a class that really specializes the behaviour of another class, but
employing a totally different structure of variables and having different code even for methods
with the same name (so we have subtyping without inheritance). On the other hand, it is also
possible that, by simply adding some methods to an existing class, the behaviour even of the old
methods is changed in an essential way (the new methods might assign to the variables of the
object in such a way that an invariant, on which the old methods rely, is violated). In the latter
case the new class cannot be said to give rise to a subtype of the old one, so we have inheritance
without subtyping.

Therefore we argue that the concepts of inheritance and subtyping should be decoupled and
that each should be considered on its own right (of course, the commonalities between the two
should not be forgotten). This observation is not totally new (for example, it was already presented
in [16]), but in exploring this line of thought further, we shall encounter some new consequences.

3.3 Inheritance

Let us first concentrate on inheritance. Now that we consider inheritance only as a mechanism for
code sharing, we can see more clearly what it should look like. First of all, because inheritance
is not the same as subtyping, it is not necessary that inheriting from a class means inheriting
everything from that class: Since the new class is not necessarily associated with a subtype of the
old one, it does not have to have all the old methods. It should be possible to inherit only a subset
of the variables and methods of a given class. Of course, if a method is inherited that acts on a
certain variable, that variable should also be present in the new class. A way to ensure this would
be to inherit such a variable automatically with the method.

Generalizing this a little, it is reasonable to say that a new class should inherit a consistent
subset of the variables and methods of an old one. This leads to the idea of an inheritance package
of variables and methods, which can be inherited in one piece. Such an inheritance package could
be accompanied by an inheritance interface, listing the variables and methods that can be used
freely by the inheriting class. It would be possible to include variables and methods in the package
that are not in the inheritance interface. These can be used by the methods in the inheritance
interface but they remain hidden from the definer of the inheriting class. In this way a certain
amount of abstraction and encapsulation can be built into the inheritance mechanism. (It is even
possible to completely detach inheritance packages from classes, so that inheritance packages exist
independently and can be used and shared by classes.)

In fact, we get two interfaces for each class: the message interface (dealing with the messages
accepted by instances of the class), and the inheritance interface (dealing with the inheritance
packages, the code that can be inherited by other classes). This phenomenon was also observed



239

in [16], but there inheritance meant inheriting everything from an existing class (which is, of
course, an important special case of our more general mechanism). )

Considering multiple inheritance, it is clearly very useful to allow a class to inherit more than
one inheritance package from possibly different existing classes. However, these packages should
not have conflicting methods or variables. Every method and variable should of course be present
only once in the resulting class. A simple renaming mechanism would allow the combination of
inheritance packages that are conflicting originally (note that with subtyping renaming is impos-
sible because it destroys the subtype property). The variables and methods in the inheritance
package that are not in the inheritance interface are assumed to be renamed in such a way that
they can never cause any name conflict. :

Different ways of combining methods (like in Flavors [17]) can also be used together with this
mechanism. The question is only whether the additional complexity of the language is justified
by the ease of programming resulting from such extensions.

3.4 Subtyping

We have seen (in section 2.3) that a type is a collection of objects sharing some properties. In
section 3.1 we encountered the concept of subtyping. It is clear that for o to be a subtype of 7, it
is necessary that all elements of ¢ have the properties required by 7. This brings us to the issue
of what information at all should be associated with a type. Let us remember that we want to
use types to base our conceptual specialization hierarchy on, or more precisely that we want this
hierarchy to consist of types ordered with the subtype relation. Then it is clear that a type should
give us information about the behaviour of the objects that belong to it. This means that a type
should consist of a specification of the behaviour of these objects. Ideally, this should be a formal
specification of all the aspects of this behaviour that we are interested in. In general this will
include the messages that can be sent to such an object (the methods it has available), the order
in which these messages may be sent, the conditions on the values of the parameters, the value of
the result, possibly also the messages the object will send itself, and perhaps even the time the
object needs to perform all these actions.

Let us suppose that for each type we have a formal specification of the behaviour of its elements,
in the form of & formula in some kind of logic. For example, let the type o be specified by the
formula ¢(z), meaning that for évery element B of o we have #(B). Now it is easy to formulate
the condition that must be satisfied in order to be able to regard one type as a subtype of another
type. If the type o has the specification ¢(z) associated with it and 7 has the specification ¥(z),
then 7 can be considered as a subtype of o precisely if, for all z, ¥(z) implies #(z). This means
that every object o that is a member of 7 so that we have ¥(a), will automatically satisfy ¢(a)
and can thus be considered as an element of 0.

Unfortunately, formal specification technology is not yet in a position that formal specifica-
tions of this kind can be included in a practical programming language. One could even say that
especially for object-oriented languages there has been surprisingly little research on the formal
description of program behaviour (see for example [4]). In regard of the fact that formal specifi-
cation theory can contribute substantially to the understanding of mechanisms like subtyping in
object-oriented programming,'it certainly deserves more attention. However, even with (partly)
informal specifications, it is useful to keep the above characterization of subtyping in mind. There-
fore, lacking & suitable formalism to express the behaviour of objects in a type, we should at least
associate with each type an informal description of this behaviour.

One aspect of this behaviour that can and should be described formally for each type, is the set
of available methods, together with the types of their parameters and results. For this aspect the
above subtype condition reduces to the following: In order for a type T to be a possible subtype



240

of ¢, the following should hold: For each method m listed for o, with parameter types ay,...,0n
and result type 8, the type 7 should have a method with the same name m, with parameter types
~1,.++,7n and result type §, in such a way that, for every ¢ between 1 and n, o; is a subtype of ;,
and § is a subtype of £.

If this condition is fulfilied, we know that every object in 7 will behave like an element of ¢
(at least with respect to the messages it accepts): It will accept each message that specifies such
a method name m, listed with o, it will be able to handle parameters from the types ay,...,an,
like o says it should, (it can even handle parameters from the larger types 71,...,7,), and it will
return a result of the type 3, complying with ¢’s wishes (the result will even be a member of the
smaller type §). This is the well-known “contravariant” parameter rule described in (7] and used
for example in the language Trellis/Owl [15].

However, let us remember very well that there is more to types than this condition: a type
represents a constraint on the behaviour of its elements, and only a part of this behaviour is
captured by the above rule. For example, a type Stack, with the methods put and get (having
the obvious meaning), is not distinguished by the above rule from the type Queue, with the same
methods. Yet their behaviour is clearly different and none of them should be considered as a
subtype of the other. Nevertheless, both are subtypes of the type Bag, again with the methods
put and get, where get is supposed to return an arbstrary element that was previously inserted
by put.

In statically typed languages, the contravariant parameter condition can be checked by the
compiler, and one can be sure that during the execution of & program it will never happen that
an object is sent a message for which it has no method. But as we have seen, the behaviour of
objects cannot yet be formalized in all its aspects, so the compiler cannot check completely that
one type is a subtype of another one. This is the reason why the subtype relation should not
be assumed automatically whenever the contravariant parameter condition is satisfied. To ensure
that a subtype really specializes its supertype with respect to its behaviour, a certain discipline
is required from the programmer: To the formal description of the available methods and their
parameter and result types, an informal description of the behaviour of the elements of the type
should be added, and whenever the programmer asserts a subtype relationship between two types,
he should check the condition on the associated behaviour descriptions himself. The situation is
like in traditional statically typed languages: the compiler can ascertain the absence of certain
errors, but not of all errors.

Let us finally note that in this setting, multiple subtyping is a naturally occurring phenomenon:
it is often the case that a type is a subtype of several, mutually unrelated types. Conflicts, like
we saw above with inheritance, do not arise.

4 Integrating it in POOL

In the last section we have investigated the essential properties of inheritance and subtyping, which
are valid for sequential as well as parallel object-oriented languages. In this section we shall look
at the specific issues arising when we try to integrate these concepts into a POOL-like language.
Now that we have seen that inheritance and subtyping are two different concepts, we can deal
with each of them in turn.

Let us first talk about inheritance. It is clear that inheritance of methods and variables does
not present any additional problem in a parallel language. The same scheme using inheritance
packages can be used, as we described it in section 3.3. Inheriting routines (cf. section 2.1) does
not make much sense, because routines can anyway be called from everywhere in the system.

The most difficult question is how to do something suitable with inheritance in the definition
of the body (the local process of an object). There are several theoretically appealing options, like



241

putting inherited bodies in parallel, or one after the other, or even nesting them. None of these
possibilities seems very useful in practice, and it seems best not to allow inheritance of bodies.
Nevertheless, there is one promising option: In general, the first part of a body will be concerned
with the initialization of the variables. It seems very useful to include this part of the body in
the inheritance package to which the variables belong. Then these statements will be prefixed to
the body of any class that uses this inheritance package. In this way it is also ensured that the
hidden variables in this package are initialized correctly. _

However, as the bodies of objects become a more important part of their code, inheritance
becomes a less useful mechanism for code sharing. Therefore it might well be that for parallel
systems the importance of inheritance (at least in the above form) is not so great as for sequential
systems.

For the integration of subtyping within a parallel object-oriented language the same kind of prob-
lems apply as in sequential languages. Of course, the formal description of the behaviour of parallel
objects is probably even more difficult than in the sequential case. Nevertheless, there is some
more work going on in this field (see for example [3,9,13]). As this work has not yet resulted in
a practical way of formally specifying object behaviour (it is not even sure that it ever will), we
shall have to help ourselves with informal descriptions, complemented with a formal specification
of the available methods and their parameter and result types, just like in the sequential case.
Let us realize that here the formal part of the description captures an even smaller fraction of the
relevant object behaviour: For example, the order in which messages can be accepted and sent is
much more important than in a sequential system. Failing to take these things into account can
lead to nasty problems like deadlock. In this situation, where there is & greater need for formal
specification, the prospects for it are worse.

Like inheritance, it may well turn out that subtyping will play a relatively less important role
in parallel than in sequential languages: As there are more aspects of object behaviour that can
make a difference (e.g., the order in which messages are sent or received), it is less likely that one
type is really a specialization of the other.

5 Conclusion

As we have seen in section 3, inheritance and subtyping are two different, though related, concepts,
and they should not be confused. We have also developed some ideas on how to integrate them in
object-oriented languages in general. In section 4 we have shown some possibilities to introduce
these concepts into a parallel language like POOL. We have also observed that in a parallel
language it is questionable whether the importance of inheritance and subtyping will be as great
as in sequential languages.

As to the status of our own work: At the moment of this writing we have not yet completed
a language design along the lines sketched above. We are certainly planning to experiment with
inheritance and subtyping in the near future. However, at the moment we give a higher priority
to the design of a language without these features, in which reliable programs can be written
in a reasonably easy way, and which can be efficiently implemented on a parallel, decentralized
machine.

References

[1] The Programming Language Ada Reference Manual. ANSI/MIL-STD-1815A-1983, published in: Lec-
ture Notes in Computer Science, Vol. 155, Springer-Verlag, 1983.



(2

@3l

(4]

(5]

(6]

7]

(8

[o

(10]

(11]

(12]

(23]

[14]

(15]

(16]

(17]

(18]

242

Pierre America: Definition of the programming language POOL-T. ESPRIT project 415A, Doc.
No. 0091, Philips Research Laboratories, Eindhoven, the Netherlands, September 1985.

Pierre America, Jaco de Bakker, Joost N. Kok, Jan Rutten: Operational semantics of a parallel
object-oriented language. Conference Record of the 13th Symposium on Principles of Programming
Languages, St. Petersburg, Florida, January 13-15, 1986, pp. 194-208.

Pierre America: Object-oriented programming: a theoretician’s introduction. Bulletin of the European
Association for Theoretical Computer Science, No. 29, June 1986, pp. 69-84.

Daniel C. Bobrow, Mark Stefik: The LOOPS Manual. Technical Report KB-VLS]-81-13, Xerox Palo
Alto Research Center, Palo Alto, California, 1981.

Alan H. Borning, Dafniel H.H. Ingalls: Multiple Inheritance in Smalltalk-80. Proceedings of the AAAI
Conference, Pittsburgh, August 1982, pp. 234-237.

Luca Cardelli: A semantics of multiple inheritance. In: G. Kahn, D.B. MacQueen, G. Plotkin (eds.):
Semantics of Data Types. Springer-Verlag, Lecture Notes in Computer Science, Vol. 173, 1984, pp. 51~
67.

Luca Cardelli, Peter Wegner: On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys, Vol. 17, No. 4, December 1985, pp. 471-522.

William D. Clinger: Foundations of actor semantics. Technical report 633 (Ph. D. Thesis), Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory, May 1981,

Ole-Johan Dahl, Kristen Nygaard: Simula — an ALGOL-based simulation language. Communications
of the ACM, Vol. 9, No. 9, September 1966, pp. 671-678.

Adele Goldberg, David Robson: Smalltalk-80, The Language and its Implementation. Addison- Wesley,
1983.

Carl Hewitt, Henry Baker: Laws for communicating paraliel processes. In: Proceedings of IFIP-77,
Toronto, Canada, August 1977, pp. 987-992.

Van Nguyen, Alan Demers, David Gries, Susan Owicki: A medel and temporal proof system for
networks of processes. Distributed Computing, Vol. 1, 1986, pp. 7-25.

Eddy Odijk: The Philips Object-Oriented Parallel Computer. In: J.V. Woods (ed.): Fifth Generation
Computer Architecture (IFIP TC-10). North-Holland, 1985.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, Carrie Wilpolt: An introduction to Trel-
lis/Owl, Proceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages
and Applications, Oregon, September 1986, pp. 9-16.

Alan Snyder: Encapsulation and inheritance in object-oriented programming languages. In: Proceed-
ings of the ACM Conference on Object-Oriented Programming, Systems, Languages and Applications,
Oregon, September 1986, pp. 38-45.

Daniel Weinreb, David Moon: Flavors: Message passing in the Lisp machine. Al Memo 602, November
1980, Massachusetts Institute of Technology, Artificial Intelligence Laboratory.

Akinori Yonezawa, Mario Tokoro (eds.): Object-Oriented Concurrent Systems. MIT Press, 1987.



