ON SOME ALGORITHMS FOR MULTIPLE
INHERITANCE IN OBJECT

ORIENTED PROGRAMMING

R. DUCOURNAU", M. HABIB™

*SEMA-METRA
16-18 rue Barbés,
92126 Montrouge cédex.

**L1B (Laboratoire commun ENST Br et UBO)
Département Informatique et Réseaux,
Ecole Nationale Supérieure des Télécommunications de Bretagne,
ZI de Kernevent, BP 832,
29285 Brest cédex.

ABSTRACT

We study here some problems yielded by multiple inheritance in object-oriented
languages. We give an interpretation and a formalism of heritance mechanisms within
the framework of partially ordered sets theory. An inheritance mechanism can be
regarded as a traversing algorithm of the inheritance graph, and we prove that those
which yields linear extension (total order) play a central role.

We discuss some operational semantic aspects of multiple inheritance, with the
introduction of a concept named by multiplicity. After a presentation of some well-
known inheritance algorithms we propose two new algorithms based upon depth-first
search techniques and some particular classes of linear extensions, recently studied.

We end by applying these results in the case of inheritance with exceptions and
by setting a few problems. All these results are implemented in the frame-based
language YAFOOLL
Keywords : Object oriented language, multiple inheritance, partial ordered sets, linear exten-
sions, depth-first-search, inheritance with exceptions.

1 Yet Another Frame-based Object Oriented Language. YAFOOL was developped by
SEMA-METRA, with the participation of INRIA, under contract with the
"Centre de Programmation de la Marine", and is the basis of Y3®, the expert
systems toolbox of SEMA-METRA.

244

I INTRODUCTION

Nowadays the paradigms of object-oriented programming are very fruitful and
popular in software engincering for prototyping (see GOLDBERG and ROBSON [1983]
or BEZIVIN [1986]) or even in classical languages (namely ADA or EIFFEL (see
MEYER [1986])) and also in artificial intelligence for rcpresenting real-world knowledge
(see for example the notion of semantic networks in FAHLMAN [1979]). Among these
paradigms, inheritance is a way of sharing knowledge between objects : namely values,
attributes, methods and reflexs or deamons can be inherited.

We can distinguish three main aspects in an inheritance mechanism :
1. An interpretation.
2. An operational semantic. (How it works).

3. An inheritance algorithm. (How the inheritance is computed).

There exist many interpretations of inheritance, see BRACHMAN [1983] for a survey,
and LIEBERMAN [1986] for a discussion between inheritance and delegation, and
BRIOT [1985] for a discussion on the relationships between instanciation and inheri-
tance. We were mainly concerned with the second and third aspects of inheritance.
When inheritance is allowed it is quite natural to enlarge it to multiple inheritance.
Although with simple inheritance (where the hierarchy of an object is simply a path
and the inheritance graph only a tree), the inheritance algorithms are very simple and
well defined, it is not so clear when multiple inheritance is allowed.

In this paper we shortly present our results about multiple inheritance algorithms, in
the framework of partially ordered sets theory.

11 SOME USEFUL GRAPHS AND ORDERED SETS NOTATIONS.

Let X be a finite set and R a binary relation on X, we shall denote by
G = (X,R) the graph of this relation. Elements of X are called vertices and those of
R, denoted by (xy) are called arcs. Furthermore x and y are respectively the origin
and extremity of this arc, y is also called a successor of x and R(x) denotes the set of

all successors of x in G.
A path [xl,...,xk], of length k>1, is an ordered sequence of vertices such that

v ie [Lk-1}, (x;X;4+1) € R. This path is a cycle if x = x;.
An (xy) € R is a transitivity arc if there exists at least one path of length strictly
greater than one going from x to y in G. Such an arc is also called redundant.

When G is acyclic (without cycle) then its transitive and reflexive closure yields
a partial order (poset for short) denoted by =<p.
For Y ¢ X, R/Y denotes the restriction of R to Y, and G/Y = (Y,R/Y) the induced
subgraph. Finally, RY the dual of R, satisfies (xy) € R iff (yX) € RY,

245

II MULTIPLE INHERITANCE SYSTEMS AND POSETS.

From all the intcrpretations of inheritance systems (logical systems, set thcory, ..)
we can assume that an inheritance systems yields a partially ordered relation on the set
of objects. More precisely, we can define :

DEFINITION 1: An inheritance graph is a directed acyclic graph G = (X,H,w) where X
is the universe of objects, H the inheritance relation which transitive closure is a
partially ordered set and » which is the unique anti-root (or root in the inheritance
terminology) of H.

In object oriented systems terminology, « is called the universe root, and if
(xy) € H (resp. x =gy y), y is called a father (resp. an ancestor), and x, in both cases,
is called a descendant of y.

In our applications we are only concerned by the following central problem :
For a given object, determine its inheritance.

DEFINITION 2: For an object a € X, its inheritance graph (also called its hierarchy) is
G(a) = (X H/Xp), where X, = {x € X, asy x }, the set of its ancestors (including a
itself). In partial order terminology X, is the upper ideal of a.

Now we can state our first inheritance principle :
PRINCIPLE 1: An inheritance mechanism must follow the inheritance partial order.
In particular, the root » is always the last vertex to be considered.

DEFINITION 3: An inheritance search is a total order ¢; on X,.

An object a inherits of a property P, with respect to an inheritance search ¢, in the
following way :

1. P(a) is the first value encountered following ¢,, in a vertex of X, that admits
this property, if there exists any.

2. If there is no such vertex, then a has not the property P. (This is our closed
world assumption).

This definition yields hidding effects, ie. if x and y admits a property P, and x = y,

then P(y) is hidden by P(x). This can be also understood in terms of default, each

property P of an object is a default value for all its descendants in the inheritance

graph, which admits this property.
DEFINITION 4 : The inheritance mechanism is a mapping : ¢ : a € X » ¢,

In the following, in order to build such mapping, we have to precise the operational
semantic of inheritance we play with.

PROPERTY 1: The inheritance searches must be stable under redondancy.

246

We notice that the above property is not essential, we could as well have chosen the
opposite and so used the redundancy arcs as a programming control tool.

PRINCIPLE 2: (uniformity) The inheritance is an uniform mechanism, and its searches
apply identically for all object propertics.

.1 MULTIPLICITY.

If an object a € X has two fathers b and then c in the inheritance graph, it is
natural to interprete this order as a priority : a inherits more from b than from c.

DEFINITION 6 : We define by u(a) the multiplicity relative to a the total order relation in
H(a), the set of fathers of a, and the multiplicity, the mapping : 4 : a € X » p(a).

This notion is implicit in every graph or poset representation in machine, and
moreover is used in every graph traversing algorithm, so we propose to use it as
another operational programming control tool (in some way there is an analogy with
the implicit ordering of the litterals of a PROLOG clause). Thus an inheritance graph
is G=(X,H,o,s), and moreover we denote by M, the union of all transitive closures of
the u(x) for x in X, and by M = (X;,M,) the resulting graph.

PRINCIPLE 3 : (inheritance versus multiplicity) In any case the inheritance relation excels the
multiplicity.

For an object a, we say that the multiplicity contradicts the inheritance when
the graph G(a)u=(X;,H/X,uM,) has a cycle. This may happen in many cases as can
be seen in figure 1.

&

: e '

a Mo
Fig. 1 : Contradictions between multiplicity and inheritance.
Remark : In all the figures, the decreasing multiplicity is drawn from left to right.

PRINCIPLE 4: When there is no contradiction between multiplicity and inheritance the
inheritance search must follow the partial order HuM, yielded by the graph

G(ayu=(X g, H/XuMy).

The above principle only generalizes the first principle to multiplicity. But it is still not
enough to completely determine the operational semantic of inheritance, we may add a
further constraint such as :

247

PROPERTY 2: For every object a e X, if b and ¢ are two fathers of a, with (b,c)eM,,
then a must inherit from Xp-X. before X.-Xj, with no condition on XpnX..

As well as property 1, this second property is also arbitrary and can be unders-
tood as a depth-first-search choice. We shall examine in detail this property in the
following section.

III LINEAR ALGORITHMS.

II1.1 SOME KNOWN INHERITANCE SEARCHES.

Most object oriented languages, which allow multiple inheritance, such as for
example Common Loops (BOBROW et al. [1986]), or Flavors (MOON [1986]), or
Le_Lisp, (CHAILLOUX et al. [1986]), use a depth-first search of the inheritance graph
as inheritance search. These traversing graph algorithms are well known since the work
of TARJAN [1972]. Some others use a breadth-first search technique like MERING
(FERBER [1983]) and even some use some composition of these two searches.

I11.1.1 Depth-first search according to multiplicity.

Such a technique always violates our principle 1, since the root « is not consi-
dered last, as can be seen in figure 2.

I1.1.2 Breadth-first search according to multiplicity.

Similarly in the right graph of figure 2, by adding a new vertex d, we obtain
a counter-example for this search.

w w
b c L ¢
d
o [-
0,=[a,b,0,¢] ¢ =[ab,du0,c]

Fig. 2 : contradictions of "naive" searches.

248

IT.2 LINEAR EXTENSIONS.

Following TOURETZKY [1986] and AIT-KACI and NASR [1985] we think that
it is worth to dig inside partially ordered theory in order to analyze inheritance
problems. It js not the only possible approach that can be done, see DUGERDIL

[1986] for a completely different point of view.

Let us now, to this aim, introduce a few algorithmic concepts in posets.

DEFINITION 8: Let P=(<p,X) be a poset :
1. A total order r on X, is a linear extension of P, if x <p y = X <. V.

2. A linear extension r of P is greedy (resp. depth-first greedy (dfgreedy for short)) if
it can be obtained by application of the following rules :

a) Choose for x; any minimal element of P.

b) If xq,..x; is greedy (resp. dfgreedy), then choose for x;,1 any minimal
element of P; = P - {xy,...Xj} covering x;, (resp. covering X, where k =< i is
the greatest subscript possible), if there exists one, otherwise choose any
minimal element of P;

In other words the rule “take @ minimal element and climb as high as you can” yields
the greedy linear extensions. These linear extensions were introduced by COGIS and
HABIB [1979], and have now been very well studied (mostly for scheduling problems).
Dfgreedy linear extensions were recently introduced by PRETZEL [1985], and
BOUCHITTE et al. [1985] have studied some of their algorithmic properties. Figure 3
gives some examples of such linear extensions.

w

o-

[a,b,chegwf,d] is not a linear extension.

[abecdefghwe] is a linear extension but not greedy.
[abfchedgw] is a greedy linear extension but not dfgreedy.
[a,b,f,d,,c,h,e,g,w] is a dfgreedy linear extension.

fig. 3 : greedy and dfgreedy linear extensions.

249
Let us now formulate our inheritance problem in this framework :

Principle 1 : @, is a linear extension of H/X,.
Principle 4 : @, is a linear extension of H/XjuM,.

Property 2 : ¢, is a dfgreedy linear extension of H/X, according to multiplicity.

Furthermore the algorithms we are looking for, in order to build those linear exten-
sions, must be of good algorithmic complexity (if possible linear-time algorithms).

HL3 TWO INHERITANCE ALGORITHMS.

DEFINITION 9: A depth-first in a graph G = (X,U) yields two total orderings of the
vertices, namely : dfi(G) (resp. dfo(G)) which is, for every vertex xe X, defined by
dfi(x) = i (resp. dfo(x)= i) if x enters (resp. quits) the stack of the depth-first search at
the i rank.

The following theorem relates depth-first search and dfgreedy linear extensions.

THEOREM : BOUCHITTE et al. [1986]. Let P be a poset with a unique minimal
element a, and G(a) be the diagram of P (ie. the graph of the relation P with no
transitivity arcs) then there is an isomorphism between the set of dfgreedy linear exten-
sions of P and the set of dfod orders ylelded by depth-first searches on G(a) starting
from the vertex a.

This immediately yields our first inheritance algorithm.

ALGORITHM 1:

1. Perform a depth-first search of G(a), according to w9, starting from the vertex a.
2. 61, = dfod(G(a));

(i.e. in the depth-first search that gives dfo(G(a)) in each vertex b its successors are
explored following the decreasing values of the total ordering p(b) , from right to left
in our figures).

PROPOSITION 1: ¢l satisfies principle 1 and when G(a) has no transitivity arcs it also
satisfies property 2. Furthermore its complexity is in O(n+m) with n = |[X,| and m =
[B/X,|.

Proof : From TARJAN [1972], we know that dfod((G(a)) is a linear extension of H/X,,

and from theorem 1, we know its a dfgreediness. This algorithm is obviously linear,
since we only use a depth-first search in the inheritance graph.

250

Unfortunately, ¢l does not satisfy principle 4, as can be seen in figure 4.

o-

ela gives [a,b,c,d,g.ef] and the unique linear extension of H/X,uM, is [a,b,c,d,efig).
Fig. 4 : an example where ¢l contradicts principle 4.

In the case where multiplicity and inheritance do not contradict themselves, we can
obtain a second algorithm using local modifications, which satisfies principle 4. More
precisely let us call contradiction arc an arc (xy) € M, such that dfod(y) < dfod(x).
(For example (f,g) is a contradiction arc in figure 4).

When performing algorithm 1, we can detect such arcs and then change their
status from M, to H/X,. Let us call this operation a setfing. Then we obtain the
following algorithm.

ALGORITHM 2:
1. CA « My My « My;

2. While CA # @
Perform a depth-first search on G(a), according to yd, starting from a.

CA « {contradiction arcs of this search} n Mp;

If dfod(G(a)) is a linear extension of H/X,uM, we have finished;
Else perform the setting of all contradictions arcs.

H/X, + H/X,uCA; Update also M,;

3. 62, = dfod(G(a));

PROPOSITION 2: When there is no contradiction between multiplicity and inheritance, ¢2
yields a dfgreedy linear extension of H/XjuM,. Its complexity is O(k(n+m)) where k
denotes the number of iterations in the above procedure.

Hints for the proof : Clearly this algorithm gives a linear extension of H/X,uM,. The only
problem is the on-line characterization of the contradiction arcs. Happily this can be
done by noticing that the example of figure 4, is a characteristic one. This yields the
annonced complexity.

251

Thus we finally have obtained an inheritance search that satisfies principles 1,4, and
property 2. Furthermore, we can imagine an algorithm ¢ which first perform the poset
H/X,uM, and then apply on it the algorithm 1. But the resulting complexity is analo-
gous to those of tranmsitive closure algorithms. A discussion on this algorithm as well as
a study of the contradiction between the multiplicity and inheritance is presented in
DUCOURNAU and HABIB [1986].

IV SOME CONCLUSIONS

These two algorithms presented has been implemented in the frame-based language
YAFOOL (see DUCOURNAU and QUINQUETON [1985]). The first one is now the
standard inheritance algorithm of this language. The second one is much more time
consumer and will be only used for special applications that need it.

Furthermore since the great challenge for representing real-world knowledge is
to be able to support various exceptions and commonsense reasoning (see
CHOURAQUI et al. [1985] or KAYSER [1984]), we have also investigated the
problems yielded by multidimensional inheritance as well as that of carrying exceptions
in . our inheritance algorithms (see. DUCOURNAU and HABIB [1987] and
DUCOURNAU [1987]). In our framework, we have obtained algorithmic results (genera-
lizations of the algorithms ¢l and 02) on exceptions problems very similar to those
studied by ETHERINGTON and REITER [1983], FAHLMAN [1979], FAHLMAN et al.
[1981], or TOURETZKY [1986].

In fact, a kind of multidimensional inheritance is used in Le_lisp
(CHAILLOUX et al. [1986]), for the primitives SEND2 and GETFN2, and is also used
in YAFLOG (DUCOURNAU [1986]) which is a PROLOG-like inference engine written
in YAFOOL. So, we are convinced that we have only made the first observations
about the following problem : What are the linear extensions involved in inheritance
systems, and how to compute them ? Much work is still to be done, and it seems to
be a very promissing research area, for example to determine properties analogous. to
property 2, which found semantically inheritance and are easy to compute.

V REFERENCES.

1. H. AIT-KACI, R. NASR, "LOGIN : a logic programming language with built-in inheritance”, The
Journal of Logic Programming, n®3 (1985) 185-215.

2. J. BEZIVIN, “"Langages objets et prototypage”, Rapport de Recherche N©86-9, Lab. Informatique
de Brest, 1986.

3. D.G. BOBROW, K. KAHN, G. KICZALES, L. MASINTER, M. STEFIK, F. ZDYBEL,
"Common loops merging Lisp and object-oriented programming’, OOPSLA Conf, ACM (1986)
17-29.

4. V. BOUCHITTE, M. HABIB, M. HAMROUN, R. JEGOU, "Depth-first search and linear exten-
sions”, Rapport de Recherche N©86-5, Laboratoire Informatique de Brest, 1986.

5. RJ. BRACHMAN, “What IS-A is and isn’t: an analysis of taxonomic knk in semantic
network”, Computer, Vol. 16, N°10 (1983) 30-36.

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

252

JP. BRIOT, ‘Instanciation et héritage dans les langages objets” These de 3°ME cycle, Paris
1985.
J. CHAILLOUX et al, "Le_Lisp, version 15.2%, INRIA 1986.

E. CHOURAQUI, H. FARRENY, D. KAYSER, H. PRADE, "Modélisation du raisonnement et
de la connaissance”, TSI 4:4 (1985) 391-399.

O. COGIS, M. HABIB, “Nombre de sauts et graphes série-paralléles”, RAIRO, Informatique
Théorique / Theoretical Informatics, vol. 13, n®1 (1979) 3-18.

R. DUCOURNAU, M. HABIB, "De Ihéritage multiple dans les langages orientés objet”, Working
Paper N© 87-1, Laboratoire Informatique de Brest, janvier 1987, submitted.

R. DUCOURNAU, J. QUINQUETON, "YAFOOL, encore un langage objet @ base de frames”,
Rapport Technique N°®72, INRIA, aodt 1986.

R. DUCOURNAU, "YAFLOG, une implémentation de PROLOG en YAFOOL®, Rapport interne,
SEMA-METRA, novembre 1986.

P. DUGERDIL, “A propos des mécanismes d’héritage dans un langage orienté objet”, CIIAM 86
Intelligence Artificielle, Marseille (1986) 67-77.

D.W. ETHERINGTON, R. REITER, "On inheritance hierarchies with exceptions”, Proc. AAAI
(1983) 104-108. ;

SE. FAHLMAN, °"NETL : a system for representing and using real-world knowledge’, MIT Press,
Cambridge, MA, 1979.

J. FERBER, "MERING : un langage d’acteur pour la représentation et la manipulation des
connaissances”, Thése de Docteur Ingénieur, Université Paris VI, 1983.

A. GOLDBERG, D. ROBSON, "SMALLTALK:@ the Ilanguage and its implementation,
Addison-Welsey, 1983.

D. KAYSER, "Examen de diverses méthodes utilisées en représentation des connaissances”, Actes
RFIA 4, tome 2, Paris (1984) 115-144.

H. LIEBERMAN, “Delegation and inheritance : two mechanisms for sharing knowledge in object-
oriented systems”, Journées Langages Orientés Objet, Bigre+Globule, N48 (1986) 79-89.

B. MEYER, "EIFFEL, user’s manual”, Software Engineering inc., Santa Barbara, 1986.

D.A. MOON, "Object programming with FLAVORS®, in Object Oriented Programming Languages
Conference, OOPSLA Proceedings, ACM SIGPLAN Notices (1986) 1-8.

O. PRETZEL, Problem presented at Oberwolfach Conference on Ordered Sets (1985).

R.E. TARJAN, “Depth-first search and linear graph algorithms”, SIAM J. of Computing 1:2
(1972) 146-169.

DS TOURETZKY, "The mathematics of inheritance systems”, Research Notes in Artifical
Intelligence, Pitman 1986.

