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Zusammenfassung. Das Ziel des FORK-Projekts besteht in der Implementierung
eines primar objekt-orientierten WissensreprSentationssystems und seiner Anwendung
auf den Entwurf und die Fehlerdiagnose technischer Systeme. Wahrend der Kern des
Repriasentationssystems FORK vollstindig objekt-orientiert ist, soll das System als
Ganzes eine Vielfalt von Pfogra.mmierstilen unterstiitzen. Im folgenden beschreiben
wir eine Erweiterung zur regél—orientierten Programmierung, die die sprachliche Aus-
druckskraft von FORK {ber diejenige von LOOPS hinaushebt. Als eine Anwendung
der regel-orientierten Komponente wurde eine Constraint-Sprache (relations-orienterter
Programmierstil) implementiert, die ein wichtiges Werkzeug im Rahmen unseres An-
satzes zum Entwurf und zur Fehlerdiagnose technischer Systeme darstellt.

Der nachste Schritt im FORK-Projekt schliefit die Entwicklung eines allgemeinen

logischen Rahmensystems ein, wozu eine logische Rekonstruktion objekt-zentrierter Re-
prasentationen, Zugriff auf komplexe Beschreibungen mittels Unifikation und Deduk-
tionen dber strukturierte Objekte gehdren. Das Problem der Nicht-Monotonitat wird
durch einen DeKleers ATMS ahnlichen Modul behandelt werden. Weiterhin erhof-
fen wir Fortschritte durch einen neuen allgemeinen Ansatz zur Darstellung zeitlicher
Verhaltnisse bei der Modellierung technischer Systeme, was u.E. eines der wichtigsten
Themen in diesem Bereich ist.
Abstract. We describe progress made within the FORK project, whose goals are the
implementation of a primarily object-oriented knowledge representation system and its
application to the design and fault diagnosis of technical systems. Whereas the kernel
of the FORK representation system is completely object-oriented, the system as a whole
is supposed to integrate a variety of different programming styles. In the following, an
extension for rule-oriented programming is described, which raises the descriptive power
of the FORK system beyond that of LOOPS. As an application of the rule-oriented
component, a constraint language has been implemented which plays an important rule
in our approach to the design and fault diagnosis of technical systems.

The next steps in the FORK project will include the development of a general lo-
gical framework, comprising a logical reconstruction of object-centered representations,
retrieval of complex descriptions by unification, and deductions on structured objects.
The problem of non-monotonicity will be dealt with on the meta level by a module
similar to DeKleer’s ATMS. Further progress shall be achieved by concentrating on a
general treatment of the problem of time in modelling technical systems which is to our
opinion one of the most important issues.
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1 FORK: A Flavor-Based Object-Oriented Know-
ledge Representation System

1.1 Knowledge Representation and Object-Oriented Program-
ming

Knowledge-based systems differ from other software systems in that they contain an
explicit encoding of the respective domain knowledge. There are at least two kinds
of prerequisites for knowledge representation: methodological (i.e. epistemological and
logical) and technical (in a sense linguistic) ones. In the following we concentrate on
the second aspect in presenting a knowledge representation framework which is easy to
use, extensible, and in particular suitable to represent the kinds of knowledge required
for designing and diagnosing technical systems.

Under the technical aspect, representing knowledge in a computational system is
nothing else than a special kind of programming. For programming seen as a lingui-
stic activity, questions of expressiveness of the programming language and of adequacy
and suitability of its means with respect to the field(s) of application are of immediate
importance. Within the last twenty years, a broad variety of knowledge representation
languages has been proposed ranging from more or less direct derivatives of first-order
logic to schemata based on cognitive psychology or applied computer science like associa-
tive networks, production systems, or procedural languages. One of the most advanced
approaches along this line were Minsky’s [14] frames. Minsky tried to find a synthesis
between declarative and procedural systems with an emphasis on object-centered re-
presentations. With a few exceptions, most of these systems were very experimental in
character and could not achieve wide usage.

In the meantime in the field of programming languages a new programming “para-
digm” emerged: the object-oriented style. The ideas of object-oriented programming
were realized in various ways, either as programming languages in their own right, like
Smalltalk-80, or as extensions to already existing languages.

Which are the salient features of the object-oriented programming style? Object-
oriented systems offer an integrated view of the concepts of abstract date types and
generic functions (see [17]). The underlying processing model is characterized as a
system of communicating objects which pass messages among each other. Each object
has a set of acquaintances, which are denotations of objects it “kmows of”, i.e. it
can send messages to. Messages themselves are also objects; each message contains
(a reference to) the addressee, (a denotation of) an operation, and — optionally —
argument objects. Each object has a protocol which is a set of methods; these are the
procedures or operations contained in messages it can process. The internal state of an
object — a set of attributes — as well as its internal processing cannot be inspected from
the outside. An object may be in an active or passive state, and its activities consist
in sending, receiving, and processing of messages. Processing a message can cause the
sending of other messages. Furthermore, most object- oriented systems offer means for
structuring the object world through a class system by accumulating objects with the
same protocol in one class. There are distinct class objects which generate instance
objects as the result of processing a particular message ("instantiate"). Classes can
usually be ordered in generalization hierarchies, along which inheritance relations with
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respect to their attributes — declarative or procedural, the latter being methods —
hold.

So object-oriented systems offer a lot of features which are desirable for the purpose
of knowledge representation. Even some features like the distinction between classes and
instances and the inheritance mechanism are introduced in a methodologically cleaner
and clearer way than in most knowledge representation systems. For these reasons, the
FORK system [1] has been based on an object-oriented framework.

Primarily for its flexibility and extensibility LISP was chosen as the host language.
Its essential advantage is that it does not enforce a particular programming style, but
instead allows various programming styles based on different processing models, e.g.
the imperative, functional and object-oriented styles. Because there is no fundamental
distinction between program and data in LISP, the integration of object-oriented pro-
gramming is facilitated by employing the dualism between “passive” data and “active”
procedures.

One of the best known object-oriented extensions of LISP is the so called Flavor
system [19], a portable reconstruction of which was the starting point for the FORK
system. For the Flavor system, there are two kinds of objects: Classes, which are also
called “Flavors”, and their instances. Classes represent generic objects; they describe in-
stances by specifying sets of declarative (variables) and procedural (methods) attributes
and inheritance relations:

e local variables: the so called instance variables,

o class variables: variables, which are owned by the class, but can be referred to by
its instances; this is an extension to the original Flavor proposal,

o component classes, which themselves provide variables and methods through in-
heritance mechanisms,

¢ methods: procedures to process messages: the protocol.

In FORK classes as well as instances are able to process messages: Whereas classes
can process messages immediately, instances pass messages to their class they have been
instantiated from.

With classes, a generalization hierarchy can be built, which is also called the flavor
graph. By referring to other classes (“superflavors”) within the definition of a new class,
attributes of the superclasses are inherited. The root of this — in general directed —
graph is denoted by the most general class VANILLA which owns those methods which
are valid for all classes. For the construction of the protocol of a new class, inherited
methods can be combined in predefined ways (for “primary” methods and “before/after-
demons”). So, starting from VANILLA successively more specialized object classes can
be defined with the possibility of multiple inheritance.of attributes.

The Portable Flavor system does not require — in contrast to the original — any
modifications to the LISP interpreter. The only requirement to the underlying LISP
system is full functionality of the closure mechanism. Presently versions for InterLISP
and CommonLISP exist.
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FORK as an Extension of Flavors for Knowledge Repre-
sentation

Although there is a close resemblance between an object-oriented system like Flavors
and object-centered knowledge representation languages like Frames, the latter ones
provide a repertoire of specialized constructs which are particularly useful for know-
ledge representation. Therefore the Portable Flavor system has been extended with the
following features to constitute the FORK kernel:

A type concept has been introduced such that restricting ranges of values and the
definition of modalities for attributes like optional or obligatory are possible.

FORK automatically supervises structural relations (integrity constraints) over
whole objects as defined by the user.

Set-valued variables are supported such that besides type constraints for their
elements also cardinality is checked automatically. Special methods to handle sets
are provided.

In addition to instance variables there are also class variables, as mentioned above.

FORK has a versatile interface to the snheritance mechanism which allows different
ways to control and influence inheritance. With respect to the descriptors of
variables it is possible to differentiate inheritance according to specific roles, to
refuse inherited attributes, or to transform inherited attributes (e.g. to rename
variables).

FORK allows the expression of multiple perspectives.

The following example, defining a class MOVING-0BJECT and a method SPEED for it, may
illustrate some of these features:

(DEFFLAVOR MOVING-OBJECT

(X~P0S Y-POS X-SPEED Y-SPEED MASS)
:gettable-instance-variables
(:settable-instance-variables

X-P0S Y-P0OS X-SPEED Y-SPEED)
(:initable-instance-variables MASS)

(DEFMETHOD (MOVING-OBJECT SPEED) ()

(aqrt (+ (square X-SPEED)
(square Y-SPEED))))

Now we define a CAR as a particular MOVING-OBJECT:

(DEFFLAVOR CAR

(FRAME-NUMBER
(NO-WHEELS :MOD OBL
:DEFAULT 4)
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(AGGREGATES :MOD OBL
:DEFAULT '0K)
(FUEL :MOD OPT
:RESTR (ONE-OF EMPTY FULL)
:DEFAULT °'FULL)
(0IL :DEFAULT °MAX)
(BATTERY :RESTR (AN ACCU)
:DEFAULT BAT-4B5AH)
(TYRE-PRESSURE :MODE OBL
:DEFAULT 'HIGH)
(DRIVER :RESTR (A PERSON)
:DEFAULT DUMMY))

(MOVING-0BJECT)
(:settable-instance-variables NO-WHEELS AGGREGATES

FUEL OIL BATTERY TYRE-PRESSURE DRIVER)
(:gettable-instance-variables FRAME-NUMBER)
(:initable-instance-variables FRAME-NUMBER)
(:required-flavors ACCU PERSON)
(:documentation The flavors ACCU and PERSON should

also be defined at time of first instantiation))

The instance variable FUEL is restricted by ONE-OF to the values EMPTY and FULL,
which is the default. The variable BATTERY does only accept instances of the class ACCU
as values. Defining CAR as a subclass of MOVING-O0BJECT enables access to MOVING-0B
JECT’s instance variables (with the aception of MASS) and methods, i.e., in addition to the
instance variables defined in CAR, each instance of CAR has also the inherited instance va-
riables X-P0S, Y-P0OS, X-SPEED, Y-SPEED. Furthermore a class variable SELLING-COM
PANY is defined, which participates with the instance variable OWNER (an instance of
PERSON) in an integrity constraint.

Volkswagens are a brand of CARs:

(DEFFLAVOR VW ; instance variables:
((CAR-TYPE :RESTR (ONE-OF PASSAT POLO GOLF)
(OWNER :MOD OBL
:DEFAULT (SEND-SELF ’GET ’SELLING-COMPANY))
(ID :MOD OBL))
(CAR) ; superclass
(:class-variables (SELLING-COMPANY
:DEFAULT VOLKSWAGEN-AG
:RESTR (A COMPANY)))
(:initable-instance-variables CAR-TYPE)
(:settable-instance-variables OWNER ID)
(:gettable-instance-variables CAR-TYPE OWNER ID))

Now we create an instance of the VW class:

(SETQ MY-CAR (SEND VW 'CREATE-INSTANCE
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*(CAR-TYPE POLO
OWNER BECKSTEIN
DRIVER TIELEMANN
ID ERH-E-536
BATTERY  BAT-46AH)))

Of course, the implementation of FORK includes tools for debugging, editing, and
handling objects (e.g. an interface to the file package).

2 Rule-Oriented Programming in FORK

2.1 Rulesets, Rules, and Rule Interpreters

The first extension to the kernel of the FORK system introduces a new kind of methods:
Besides methods wrjitten in the traditional procedural or functional style, they can also
be defined in the form of rule systems. To be precise, a method may be given as a
forward-chaining, i.e. data-driven production system. In its present form, the rule-
oriented component of FORK [18] is more powerful then that of LOOPS [4], because it
offers additional means for conflict resolution and for processing vague information.

Each method written in the rule-oriented style is a ruleset, which consists of rules
of the form

{rule-name} IF premise THEN action {! meta-info}

Fach ruleset has its own rule-interpreter associated with it which executes the ru-
les under a forward chaining control regime, which in turn may use different control
structures varying among rulesets for the selection and processing of rules.

Because rulesets are ordinary methods of objects, they can be inherited (also as
“before-” and “after-methods”), so that large rulesets can be structured according to
an object hierarchy. As ordinary methods, rulesets are activated by message passing.
Since the control structure (meta-knowledge) for processing rules is associated to a
ruleset, a clear separation between control and domain knowledge can be achieved.
Each rule interpreter has the following structure:

1. Preselection of a subset of rules within the ruleset thrbugh comparison of rule
specific scores with a threshold value which is local with respect to the ruleset.
This mechanism allows prescreening of the ruleset at runtime.

2. The preselected rules are checked for applicability and then one applicable rule is
selected. For this phase three control strategies are possible:

o FIRST or ALL: In this case the ruleset is assumed to be ordered and the
check for applicability is performed in the given order. With FIRST the first
applicable rule is selected, with ALL each applicable rule.

e PRIO: The value calculated by the evaluation of the premise at runtime is
used to rank the rules, and the one with the highest value is selected.

The FIRST and ALL modes correspond to DO1 and DOALL in LOOPS, With each
control strategy, rulesets can also be processed iteratively by means of a WHILE
option.
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The following method CONTROL for CAR is defined as a ruleset of three rules:

(DEFRULESET (CAR CONTROL) () ; no local variables
((C-FUEL ; rule set
IF (EMPTY FUEL-LEVEL)
THEN (SIGNAL "no fuel"))
(C-0IL ‘
IF (EQ OIL-LEVEL °'MIN)
THEN (SIGNAL '"no oil")
(SEND ME ’STOP-ENGINE)
(STOP! - ' EMERGENCY-OFF))
(C-BATTERY
IF (LESSP (SEND BATTERY 'VOLTAGE) 6)
THEN (SIGNAL "low voltage")
! (:USAGE ONE-SHOT-BANG)) )~
(:DOC ruleset for controlling ...)
( :CHECK-MODE ALL)
(:WHILE (ON IGNITION)))

As soon as this method is activated, the rule C-BATTERY is checked for applica-
bility only once (ONE-SHOT-BANG), and never checked again during eventually
subsequent iterations, i.e. as long as the ignition is turned on.

In contrast to the FIRST and ALL modes, for PRIO no static order criterion holds.
Instead the ordering of rules is determined dynamically by priorities which are
determined by the rule premises. To achieve that, first of ‘all a transition from
qualities to quantities has to be made by which a measure of evidence (Certainty
Factors CF) is determined from the values of premises:

(not NIL) & (not (NUMBERP X)) =--> CF := MAXCF
X = NIL --> CF :=0
(NUMBERP X) --> CF :=X

with CF € [0,MAXCF] C No.

Boolean combinations of premises are calculated by special methods ($AND, $0R,
$NOT).

The priority calculated in this way is used to schedule the respective rule in a
multilevel agenda, from whxch afterwards the first rule from the level with highest
priority is selected.

3. After selection, the action part of the respective rule is executed by the rule
interpreter. The working memory (context) within the execution is performed is
the FORK object to which the ruleset method belongs :

It should be noted that using the PRIO control stra.tegy MYCIN-hke rules can be expres-
sed imediately with FORK’s rule formalism.
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2.2 Implementation of the Rule-Oriented Component

For the implementation of rulesets and rules, the kernel language of FORK has been
used as a metalanguage, i.e., the whole rule component of FORK itself is expressed
by means provided by the FORK kernel. Rulesets as well as rules are represented
as FORK objects with appropriate methods. Rulesets are instances of a class RULESET
which includes parameters and local variables as static components (instance variables),
methods with defaults for conflict resolution and control- and meta-information (the
rule interpreter) as dynamic attributes and rules as component flavors. In the same
way rules are instances of a class RULE with appropriate methods. The programming
environment of FORK has been augmented for rule-oriented programming with methods
for debugging, editing, and handling rulesets, and rules which interface to particular
attributes of the RULESET and RULE classes.

2.3 A Rule-Based Implementation of a Constraint Language

To demonstrate the versatility of rule-oriented programming in FORK; it has been used
to implement a constraint language (after [16]. Constraint languages are a tool for
relation-oriented programming and, therefore, play an important role in our approach
to the diagnosis problem (see section 3). What a constraint language has at least to offer
are means to represent objects which express elementary relations (“constraints”) and
connections between these objects. So, e.g. a constraint representing an ADDER has two
input connectors A and B and an output connector S such that the following relations
hold: 8 = A + B, and, at thesametimeB = S - AandA = S8 - B. Connecting objects
of this kind leads to the construction of constraint networks in which computations are
performed by propagation of values. In constraint languages, the term propagation
covers local computations satisfying local dependences (as expressed by the equations
for ADDER) as well as spreading values through connectors within a network.! In general,
there is no preferred direction for spreading values.
So a minimal constraint language has at least to provide constructs to express

¢ definitions of constraints,

o construction of constraint networks,

e integration of new constraints into an already existing network,
» communication with the network interface (input and cutput).

With FORK, there is a straightforward approach to implement that by expressing
constraints and connectors as objects and networks as aggregates of those. The propa-
gation of values, which is locally restricted, is specified by rules belonging to constraint
objects. For the case of electronic circuits, there are prototypic building blocks, like
ADDER, of which instances are generated, which in turn are then combined to descrip-
tions of network by attaching their connectors with each other. As a benefit of the
object-oriented representation, such a description of a complex network is nothing else
than one object on a higher descriptive level.

The following piece of code defines an ADDER:

1Spreadsheet programs are a special kind of ‘constraint syﬁtems.
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(DEFCONSTRAINT ADDER (A1 A2 SUM)
NIL : local variables
(A1-A2 ; rule set
IF (ALL-KNOWNT Al A2)
THEN (SET-VALUE! SUM
(PLUS (GET-VALUE! A1)
(GET-VALUE! A2))
&ME))
(A1-SUM
IF (ALL-KNOWN? A1 SUM)
THEN (SET-VALUE! A2
(DIFFERENCE (GET-VALUE! SUM)
(GET-VALUE! A1))
&ME) )
(A2-SUM
IF (ALL-KNOWN? A2 SUM)
THEN (SET-VALUE! A2
(DIFFERENCE (GET-VALUE! SUM)
(GET-VALUE! A2))
&ME)))

A constraint network then can easily be constructed in the following Way:

(DE CONSTRAINT-NET ()

(SETQ A (MAKE-CONNECTOR)) ; generate new instances of
(SETQ B (MAKE-CONNECTOR)) ; CONNECTOR

(LET ((X (MAKE-CONNECTOR)) ‘
. ; now generate new instances of
e : constraint ADDER
(MAKE-CONSTRAINT *ADDER °A1 A 'A2 B 'SUM X)
e ) ‘

3 Future Work

In parallel to the implementation of the FORK system, a first study in the field of dia-
gnosis has been conducted, aiming at a clarification of the basic problems and represen-
tational needs (cf. [3,13,10]). After considering more traditional rule-based approaches
to the diagnosis problem, we concentrated on an approach known as “based on structure
and behavior” (cf. [6,9]). Starting with an algorithm to diagnose multiple failures in
electronic circuits, considerable extensions had to be made for the more complicated
case of electromechanical systems. The kernel of the resulting diagnosis system, DIAG-
TECH, has been implemented in the object-oriented style. In fact, DIAGTECH is a
hybrid system, because it also supports the rule-based style of diagnosis, for which our
logic-based “expert system shell” DUCKITO [12] is used as a subsystem.
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In DIAGTECH, the treatment of conflicts, or inconsistency, as well as particular
diagnostic heuristics, were embedded into one algorithm. To guarantee the usefulness
of the chosen approach in the long run, it has to be generalized in a way that the
recording and processing of inconsistency is performed by a separate general module.
Indeed, as DeKleer [7] points out, most problem solvers search; if otherwise, a direct
algorithm would solve the task. Then, two important problems are to be solved, namely,
how the spaces of alternatives can be searched efficiently, and how the problem solver
should be organized in general. DeKleer’s solution is convincing: On the one hand it
is a consequent continuation of the “Truth Maintenance Systems” (TMS) line, which
forces a clean division within a problem solver between a module solely concerned with
rules of the domain and another module concerned with recording the current state
of the search. While the first module draws inferences, the second, the TMS, records
inferences (“justifications”). So, the TMS serves three roles:

1. It serves as a “cache memory” for all inferences in that inferences, once made,
need not be repeated. Inconsistencies, once detected, are avoided in the future.

2. It allows the problem solver to draw non-monotonic inferences. If non-monotonic
justifications are present, the TMS has to use a constraint satisfation procedure
to determine what data are assumed to be valid.

3. It assures that the data base is contradiction-free. The procedure of dependency-
directed backtracking identifies and adds justifications to remove inconsistencies.

DeKleer’s ATMS (Assumption Based TMS) [7] is a very efficient TMS module. In
particular from our experience with DIAGTECH, but also from general considerati-
ons about a logical extension to our object-oriented representation system, we decided
to realize such a module within our framework as the next step of the FORK pro-
ject. We believe this will be a mandatory prerequisite to address the perspective of
logic programming, namely (predominantly descriptive) representation and processing
of relations (constraints) and implications in the object domain, and, in particular, the
representation and treatment of time in a more general way. The gap between a logical
reconstruction of object-centered representations (cf. [15,11]) and logic-based represen-
tation systems with their inferential properties is still to be closed. Retrieval of complex
descriptions requires a powerful extension to the well-known unifcation algorithms. The
direction of this research is also influenced by our previous experience with DUCKITO,
which contains a truth maintenance module and an explanation component on the basis
of data dependences.

As far as the problem of representing time and temporal relations is concerned, we
are currently investigating approaches which reach beyond the one used within DIAG-
TECH. The latter one has been constructed in the spirit of Doyle’s [8] JACK system.
The main problem we encountered with it is not a lack of expressive power, but a fun-
damental discrepancy between constraint-based representations on the one hand and
the directionality introduced by temporal expressions on the other. Constraint systems
assume simultaneous propagation of values in all possible directions of a constraint net-
work, i.e. non-directionality of components and multiple values. A temporal order does
not allow to consider all “possible worlds” at once, but enforces an order on propaga-
tion. We hope to find a synthesis of the advantages of both by means of a modal logic
approach.
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