Implementing Concurrency Control in Reliable
Distributed Object-Oriented Systems

Graham D. Parrington and Santosh K. Shrivastava
Computing Laboratory,The University of Newcastle upon Tyne,
Newecastle upon Tyne, NE1 7RU, U.K.

Abstract

One of the key concepts available in many object-oriented programming languages is that
of type-inheritance, which permits new types to be derived from, and inherit the capabilities of,
old types. This paper describes how to exploit this property in a very simple fashion to
implement object-oriented concurrency control. We show how by using type-inheritance,
objects may control their own level of concurrency in a type-specific manner. Simple examples
demonstrate the applicability of the approach. The implementation technique described here is
being used to develop Arjuna, a fault-tolerant distributed programming system supporting

atomic actions.

Key words and phrases: Object-oriented programming, Concurrency control,
Reliability, Atomic actions, Type-inheritance.

1. Introduction

A widely used technique of introducing fault-tolerance - particularly in distributed
systems - is based upon the use of atomic actions (atomic transactions) for structuring
programs [Gray 78]. An atomic action possesses the properties of serialisability, failure
atomicity and permanence of effect. A wide variety of concurrency control algorithms have
been proposed in the literature to ensure the serialisability property of atomic actions. This
paper proposes a practical implementation technique for such concurrency control
algorithms within the framework of an object-oriented system. The basic idea behind the
approach is quite straightforward. It is assumed that the underlying operating system
provides rudimentary synchronisation facilities, such as semaphores, for concurrent
processes. A type can then be constructed to provide a specific concurrency control
technique by exploiting these facilities. User-defined types can inherit this underlying
concurrency control facility by making use of the type-inheritance mechanism available in
object-oriented programming languages. If desired, the inherited concurrency control
mechanism can also be refined to provide a type-specific concurrency control mechanism.



234

This paper reports on simple experiments that have been performed to show that the
approach presented here does provide a very flexible means of implementing concurrency
control techniques for object-oriented systems. Other papers [Dixon and Shrivastava 87,
Dixon et al. 87] have shown how the same type-inheritance technique can be used to add the
properties of failure atomicity and permanence of effect to objects with equal ease.

The use of inheritance in this fashion has a number of advantages. Firstly, it is not
necessary to design and implement either a new language and run-time system, nor an
operating system kernel. Secondly, it enables experimentation with different concurrency
control and recovery techniques in a straightforward fashion, since the capabilities are not
tied into any particular system. This approach may be contrasted with that taken by other
systems in the same area including Clouds (Dasgupta et al. 85], Argus [Liskov and Scheifler
83], TABS [Spector et al. 85], and ISIS [Birman 861.

This paper is structured as follows. Section two reviews the main ideas on objects,
actions and some widely used concurrency control techniques such as two-phase and type-
specific locking. Section three introduces the inheritance-based concurrency control
implementation technique, after first describing the relevant features of the C++ object-
oriented language in which the implementations have been carried out. Sections four and
five discuss some specific concurrency control implementations to illustrate the feasibility of
the proposed approach. Finally, section six describes how this approach is integrated within
Arjuna - a distributed system supporting atomic actions.

2. Objects, Actions and Concurrency Control

An object is an instance of some type or class. Each individual object consists of some
variables (its instance variables) and a set of operations (its methods) that determine the
externally visible behaviour of the object. The operations provided by a type have access to
the instance variables and can thus modify the state of an object. Furthermore, the type of
an object determines what operations may be applied to it.

In a distributed system, an operation on an object is typically invoked via a remote
procedure call (RPC) (see [Liskov and Scheifler 83, Spector et al. 85, Birman 86, Dixon et al.
87] for some typical fault-tolerant, object-based architectures). Programs which operate on
objects are executed as atomic actions with the properties of (i) serialisability, (ii) failure
atomicity, and (iii) permanence of effect. The first property ensures that concurrent
execution of such actions is free from interference (that is, concurrent executions can be
shown to be equivalent to some serial order of execution [Eswaran et al. 76, Best and Randell
81]). The second property ensures that an action can either be terminated normally
(committed) producing the intended results, or aborted, producing no results. This property
can be obtained by the appropriate use of backward error recovery, which is invoked
whenever a failure that cannot be masked occurs. Typical failures causing an action to be



235

aborted are node crashes and communication failures such as lost messages. It is reasonable
to assume that once an action terminates normally, the results produced are not destroyed
by subsequent node crashes. This is the property of permanence of effect which ensures that
state changes produced are recorded on stable storage which can survive node crashes with a
high probability of success. A commit protocol is required during the termination of an
action to ensure that either all of the objects updated within the action have their new states
recorded on stable storage (normal or committed termination), or no updates get recorded
(aborted termination).

In object-based systems, the encapsulation properties of objects make it seem natural
to require that the implementation of each object type be made responsible for enforcing
concurrency control and for implementing properties such as backward error recovery. A
separate paper [Dixon and Shrivastava 87] has described how a type can implement
backward error recovery by exploiting the type-inheritance facilities of an object-oriented
programming language. This paper applies similar ideas to the problem of concurrency
control.

2.1. Object-Based Concurrency Control

A very simple and widely used concurrency control technique is to regard all
operations on objects to be of type read or write, which must follow the well known
synchronisation rule permitting concurrent read operations but exclusive write operations.
This rule is imposed by requiring that any action intending to perform an operation that is
of a read type (write type) on an object must first acquire a read lock (write lock) associated
with that object. To guarantee serialisability, all actions must follow a two-phase locking
policy [Eswaran et al. 76] . During the first phase, termed the growing phase, an action can
acquire locks on objects but must not release any acquired locks. The last phase of the action
constitutes the shrinking phase, during which time held locks can be released, but no new
locks can be acquired. It is also necessary to make the shrinking phase appear
instantaneous by releasing all of the held locks simultaneously, to ensure that an action can
be aborted unilaterally, without affecting other ongoing actions and thus avoiding the
possibility of cascade-rollback.

This policy of shared read but exclusive write represents a lock conflict rule for an
object: read-read locks do not conflict but read-write and write-write locks do. There are
situations where this conflict rule can be regarded as overly restrictive, from the point of
view of permissible concurrency. Consider a simple example.

Suppose there is some directory object providing the operations: addentry(...) (to add an
entry in the directory), rmentry(...) (to remove a specified entry from the directory), and
lookup(...) (to look for a given name in the directory). If addentry and rmentry operations are
taking place on different entries then there is generally no reason why these two operations



236

cannot be permitted to occur concurrently. This observation leads to the notion of type-
specific locking, whereby a type definition includes a type-specific lock conflict rule [Schwarz
and Spector 84]). Type-specific locking is a promising technique for increasing the
permissible concurrency in object-based systems supporting atomic actions.

3. Utilising Type-Inheritance for Concurrency Control

Several modern programming languages support the property of type-inheritance - the
ability for newly constructed types to acquire the properties and operations of the base types
out of which they have been constructed. This section examines how this property can be
used to implement object-oriented concurrency control. The approach is to construct an
appropriate concurrency control base type which can then be used to derive more specific
(user) types as required.

3.1. Type-Inheritance in C++

The language we will use to describe our objects is C++ [Stroustrup 86] largely
because of its ease of availability and its incorporation of the features we require. C++ isan
object-oriented superset of the language C, and includes facilities for type-inheritance, data
abstraction, and operator overloading. The data abstraction and type-inheritance facilities
are based on the class concept. Instances of a class are objects, with specific operations
provided for their manipulation. The type-inheritance mechanism of C++ works as follows:
given a base class Cj, another class Ca - a derived class of C; - can be defined so that it
inherits some or all of the operations of Cj.

Classes are defined in the manner shown in Figure 1(a) which is a skeleton declaration
of a class called baseclass. The variable and function declarations which occur before the
public label are private members of the class; the only operations which may access private
variables or invoke private operations are the member operations of the class itself (in this
example, baseclass, “baseclass, opl, op2 and op3). The variable and operation declarations
following the public label constitute the public interface to objects of the class (here, op2 and
op3 in Figure 1(a); the operations baseclass and “baseclass are special, see below). An
example of a class derived from the baseclass class is shown in Figure 1(b). This new class,
called derived, inherits the public operations op2 and op3 from baseclass. In this example
these inherited operations are also made public operations of the derived class by the use of
the keyword publicin the class header.

Each class may have a constructor which is a public operation with the same name as
the class (baseclass() and derived()), and which will be invoked each time an instance of the
class is created. There is also a complementary operation (“baseclass() and ~derived()),



237

class baseclass class derived : public baseclass
{ {
int vall; int val3;
int val2;
opl ()
public: public:
baseclass (); derived ();
"baseclass (); “derived ();
op2 (); dop4 ();
op3 (); dop5 ();
|3 b

(a) (b)

Figure 1: C++ syntax

called a destructor, which is invoked automatically when the object is deleted. The
constructor allows an object to perform type-specific initialisation, and the destructor
enables an object to tidy up before it is deleted. Both operations are special in that they will
be automatically invoked when objects are created or deleted and even though a part of the
public interface to the object, they cannot be directly invoked by a user of the object.

3.2. The Basic Concurrency Control Scheme

The basic concurrency control scheme relies on the inheritance features of the
language C++. Concurrency control is achieved by first defining an appropriate class (called
LockCC) which provides the basic concurrency control facilities that are required, and then
using that class as a basis from which to derive other specific user-defined classes. Given
such a class, Figure 2 shows how a user-defined type called File is defined so that it inherits
the capabilities of LockCC. Use of the operations provided by LockCC must be explicitly
coded as part of the code for the operations of the newly derived class (for example, the open
operation in Figure 2 should contain appropriate calls on the operations of LockCC). This
point will be explained further in a later section.

3.3 Representing Locks

In order to make the system as flexible as possible, locks are deliberately not made
special immutable system types (in contrast to systems such as Clouds and Argus). Rather,
in this system locks are simply another type that can be refined as required in the same
fashion as any other type. This approach has several advantages. Firstly, locks can be



238

class File : public LockCC

{
// private file data
public:
File ();
“File ();
open (...); // standard file operations
close (...);
}

Figure 2: The class File

created and manipulated in the same fashion as any other object in the system. Secondly,
we do not require any new language features or modifications to the run-time environment
to support them. Thirdly, the approach is very flexible, permitting different concurrency
control policies to be adopted with surprising ease.

In Figure 3 we show a skeleton declaration of the Lock class. Instances of this class are

class Lock: public Object
{

modetype lockmode;
Uid owner;

public:
Lock (modetype) ;
“Lock ();

modetype getmode () { return lockmode; }
Uid getowner () { return owner; }

virtual boolean operator! = (Lock+);

Figure 3: The class Lock

created as needed by the user and then passed as arguments to the setlock operation
provided by LockCC.

Since instances of the Lock class are simply objects, they obey the usual object-oriented
rules regarding encapsulation. Thus the Lock class provides operations to retrieve certain
parts of its internal state rather than allow public access to the actual instance variables.
Note that Lock is itself a derived class (of Object), and thus inherits the capabilities and
operations of that class. The reasons for this will be covered in section six.



239

The mode of a lock object is immutable. Thus having declared a lock object to be a read
lock, the object is always a read lock. If a write lock is required a new lock object with the
appropriate mode must be created. This restriction relates to the way in which locks are
expected to be used. It seems unlikely that having created a lock the programmer would
want to change its mode from say read to write (this process of lock conversion can be
handled in a different fashion in this system as will be explained in a later section),

The boolean operator /= defined for the Lock class is declared to be virtual so that it
may be redefined in any class that is derived from Lock. This operator is used by one of the
internal (private) operations of LockCC to ascertain whether two locks conflict; its use will
become clearer in the following section.

3.4 The Concurrency Control Class LockCC

The previous section outlined the basic Lock class that is supplied as a parameter to
the operations of the concurrency control class LockCC. In this section the LockCC class
itself is described, as is the manner in which it manipulates the locks that are passed to it.

Recall that, as mentioned in section 3.2, a user-defined class requiring concurrency
control is derived from the class LockCC which manages the concurrency control
information. So, if several instances of such a user-defined class are created, each instance
will possess the capability of maintaining its own concurrency control information on a
purely local basis.

The LockCC class provides two basic public operations; setlock, whose task is to set a
lock upon the user-defined object; and releaselock whose task is to unlock the object. The
private information maintained by the LockCC class includes a list of Lock objects that are
currently being held, which is used to determine whether any new lock can be set. Given
this information each object can determine whether a new lock request can be granted based
purely on its own local information without reference to the other objects in the system. In
addition, since multiple processes may be attempting to set locks upon an object
concurrently this private information is updated inside a critical section protected by the
semaphore mutex.

Given the above basic deseription an outline of how the setlock operation works is
illustrated in Figure 5*. As shown here, setlock attempts to determine whether a conflict
exists by calling the private operation lockconflict. If this returns the result TRUE then a
conflict exists between the requested lock and (at least) one of the other locks currently set
on the object, in which case the mutual exclusion semaphore is freed and the call blocks.

* We show a simple implementation of setlock where the calling process simply keeps on trying (after a brief
pause) until the lock is granted. Clearly optimisations are possible, but are not discussed here.



240

class LockCC: public Object

{
Lock__List locks__held;
Semaphore *mutex; // and other private concurrency
// control information
boolean lockconflict (Locks+);
public:
LockCC ();
“LockCC ();
lockstatus setlock (Locks+);
lockstatus releaselock (Uid+);
}

Figure 4: The concurrency control class LockCC

lockstatus Lock CC::setlock (Lock *reqlock)

{
boolean conflict = TRUE;

do
{

P(mutex);
if (conflict = lockconflict(reqlock))

{
V(mutex);
sleep(); // wait for a while

}
} while (conflict);

locks__held.insert(reqlock); //add to list of locks

V(mutex);
return (GRANTED);

Figure 5: The setlock algorithm

When the call resumes, the conflict check is again performed to see if the requested lock can
now be set.

Releaselock is not intended to be called directly by the programmer, rather it is called
automatically when the atomic action using the object terminates (hence the unusual
parameter type). This ensures that the two-phase policy is always followed. It occurs in the
public interface because in Arjuna atomic actions are themselves objects (instances of the
class Action, see section 6), not part of the underlying system, and thus have no special



241

privileges to access objects, instead they can only use the same public interface that any
other object in the system could use.

The operation of checking whether two locks conflict is more sophisticated than simply
allowing lockconflict to compare the modes of the lock objects, since in the case of type-
specific locking extra information may be used to allow greater concurrency. Instead the
Lock objects themselves are required to ascertain whether a conflict exists. This check is
performed by utilising the / = operation provided by the Lock type. This operation is defined
such that if L1 and L2 are two instances of the Lock class, then execution of the comparison
operation LI /= L2 returns the value TRUE if the two locks conflict, and returns FALSE
otherwise.

Using this approach leads to the implementation of lockconflict as shown in Figure 6.

boolean LockCC::lockconflict (Lock sreqlock)

{
Lock__Iterator next (locks_ held);
Lock+* heldlock;

while ((heldlock = next()) != Null)

{
if (+heldlock != reqlock)
return TRUE;

t
return FALSE;

Figure 6: The lockconflict algorithm

This implementation makes use of an iterator next which when called returns the next lock
from the list of currently held locks. The implementation of the conflict check between locks
is obviously type-specific, however, it is assumed that the conflict operator of the basic Lock
type supports the traditional multiple reader, single writer policy, thus giving the
implementation shown in Figure 7.

3.5. Extensions for Type-Specific Locking

The basic locking scheme of the previous section may be extended to take advantage of
more knowledge about the semantics of individual types. Not only can derived classes
inherit operations from a base class unchanged, they may also modify those operations to
make them more suitable for their individual needs. This property can be utilised to allow
new types of lock to be derived from the basic Lock type. Using this approach, the new lock
type can provide its own version of the conflict operator /=. By doing this the user-defined
type can determine what level of concurrency it will support since the programmer of the



242

boolean Lock::operator! = (Lock sotherlock)

{
if (otherlock—getowner() ! = owner) //no conflict if locks from same action
switch (lockmode)
{
case READ: // holding read
if (otherlock—»getmode() != READ)
return TRUE;
break;
case WRITE: // holding write
return TRUE;
}
return FALSE;
}

Figure 7: The basic conflict check of Lock

individual operations decides the type of lock that needs to be passed to the concurrency
controller of the object. Thus type-specific locking is handled in this scheme in an extremely
simple manner. All that is required is the derivation of a new type of lock from the basic
Lock type and an appropriate redefinition of the conflict operation. Obviously this conflict
operator can take advantage of any extra information available about the new lock type to
provide additional concurrency. The examples in the next section should help to make this
clear.

4. Examples of Object-Oriented Concurrency Control

In this section some simple examples are considered to illustrate the scheme in action.
In the first example a simple class that implements a file type is described. It makes
available the usual file operations to the client and uses the basic capabilities it inherits
(from LockCC) to provide simple file locking.

The second example illustrates how the basic facilities can be overridden to increase
concurrency using a type-specific approach. The technique adopted of deriving a new type of
lock allows this to be undertaken with surprising ease.

4.1. A File Class

Consider a File class that allows the usual operations of read, write, open, close, etc.
Such a class was illustrated in Figure 2. With this organisation Figure 8 illustrates how the
open operation might be implemented. All that is required is the creation a new instance of
the Lock class (which is automatically initialised to contain the correct information by its



243

File::open(mode)
{

setlock(new Lock (mode));

// now actually open file and do other housekeeping

Figure 8: The implementation of open for the class File

constructor), and to pass that instance to setlock. The standard implementation of the lock
conflict operator is used to determine whether the requested lock can be applied and the
open operation only proceeds when the lock has been granted.

4.2. A Directory Class

This second example illustrates a directory class that uses a type-specific locking
scheme for concurrency control. A new class - a type-specific lock (T'ypeSpecLock (Figure 9))

class TypeSpecLock : public Lock

{
Instanceld Id; // some identifier that
// identifies this lock
public:
TypeSpecLock (mode, 1d); // TypeSpecLock constructor
“TypeSpecLock ();
Instanceld getld () {return1d;} // A means of accessing the Id
virtual boolean operator! = (Lock *);
}

Figure 9: The class T'ypeSpecLock

is created, derived from the basic Lock class and it therefore inherits all of the attributes of
the Lock class. However, this class has one important addition - a new field by which it can
be identified and an operation by which that field can be interrogated.

Given this class, a directory type might be implemented as shown in Figure 10. Then
in a similar fashion to the open operation for the File class, the addentry operation of the
Directory class might be coded as illustrated in Figure 11 (assuming that the operations
addentry and rmentry require write locks, while lookup requires a read lock). As was noted
earlier both the addentry and the rmentry operations may proceed concurrently providing
that they both manipulate different directory entries. So, to increase concurrency the
implementations of addentry and rmentry construct and pass instances of the new lock type



244

class Directory : public LockCC

{

// private directory information
public:

Directory ();

“Directory ();

addentry (char +Name ...);

rmentry (char «+Name ...);

lookup (...);
}

Figure 10: The class Directory

Directory::addentry (char sName ...)

{
// first set an appropriate lock...
setlock(new TypeSpecLock(mode, (Instanceld)Name));
// then actually manipulate the directory

}

Figure 11: The implementation of addentry for the class Directory

(T'ypeSpecLock) to the concurrency controller via setlock. The implementation of the conflict
operator for T'ypeSpecLock is shown in Figure 12.

boolean TypeSpecLock::operator! = (Lock *otherlock)

if (otherlock—getowner() ! = owner)
switch(lockmode)
{
case READ:
if (otherlock—getmode() == WRITE)
return TRUE; //Read conflicts with Write
case WRITE:
if((otherlock—getmode() == READ) i}
(Id == ((TypeSpecLocks)otherlock—getld() ))
return TRUE; //RW or WW conflict on same entry

}
return FALSE;

Figure 12: Lock conflict check for the class T'ypeSpecLock



245

5. Alternative Approaches To Concurrency Control

Most concurrency controllers assume that lock requests emitted by the same action do
not conflict, thus an action holding a read lock will be permitted to acquire a write lock
providing no other action holds a conflicting lock. This process is often termed lock
conversion, since its effect is to convert a weaker mode lock into a stronger mode lock. Lock
conversion can be handled in the system described in this paper simply by arranging that
Lock objects with the same owner do not conflict (as determined by the conflict operator / = ).
This simple test was included in the conflict operation ! = in both Figures 7 and 12.

An alternative approach, adopted in ISIS, requires that conversion is only possible if
the original lock had been a promotable read lock. Such locks are easy to implement with
the approach adopted in this paper. A new type of lock - the PLock (derived from Lock) - is
created and provided with an appropriate conflict operator (Figure 13) which checks all

boolean PLock::operator! = (Lock *otherlock);

{
switch (lockmode)

{
case READ:

if (otherlock—>getmode() == WRITE)
return TRUE;
break;
case PREAD:
if (otherlock—getmode() == READ)
break;
if (owner ! = otherlock—getowner())
return TRUE;
case WRITE:
if (owner ! = otherlock—>getowner())
return TRUE;

}
return FALSE;

Figure 13: The PLock conflict algorithm

locks for conflict regardless of ownership.

A radically different approach to locking, which enforces a pessimistic concurrency
control policy, is the optimistic concurrency control policy [Kung and Robinson 81] where
actions are allowed to execute without any synchronisation. At termination (commit) the
action is validated by analyzing read/write conflicts with other ongoing actions. The
validation succeeds if the committing action preserves the serialisability property,
otherwise the action is aborted. Just as it is possible to define a conflict rule for type-specific



246

locking, so is it possible to define a type-specific validation rule [Herlihy 86]. By providing
another base class (OptCC), objects can utilise this type of concurrency control by being
derived from it rather than from LockCC (for further details see {Parrington 88]).

6. Integration with Atomic Actions

This section describes how the concurrency control implementation technique
described earlier is integrated into a reliable distributed programming system called
Arjuna currently being developed at the University of Newcastle upon Tyne.

Not surprisingly, the type-inheritance mechanism is also employed for making user-
defined types recoverable [Dixon and Shrivastava 87]. A base class Object provides the basic
capabilities that allows a type to be recoverable. Thus a user-defined type inherits
properties of recoverability from the class Object and concurrency control capability from
the class LockCC. The overall class hierarchy of Arjuna is shown below as Figure 14 (see
{Dixon et al. 87] for more details) .

User
defined ) "~

ﬁ Abstract__Record
objects
Lock__Record Object_ Record

Figure 14: The basic Arjuna class hierarchy

Arjuna is novel with respect to other such systems in taking the approach that every
major entity in the system is an object. Thus, just as locks are objects, the management of
atomic actions is handled by instances of another type of object (called Action).

Atomic actions are available through the use of the class Action, which provides the
operations normally associated with atomic actions, such as Begin_ Action,
Commit__Action, etc. Action manages information provided to it by Object and LockCC to
ensure that the atomic action abstraction is maintained (for example, locks are released at
action commit). See [Dixon 88] for more precise details.

User-defined objects which have been derived from LockCC are treated as persistent,
and are normally stored in local (to a node) object stores. An object without any locks held
on it (which implies that no action is currently accessing it) is treated as passive and its state



247

is stored in the object store. When an action is granted a lock on an object, that object is
made active (if it is not already so) by copying its state from the object store and associating a
server process capable of receiving operation invocation requests with the object. If the
client action aborts the object state held in the server process is discarded. If the action
commits, the state is placed back in the object store using the capabilities provided by the
class Object (see [Dixon et al. 87]).

Actions in Arjuna may be nested in the normal way which requires that the lock-based
concurrency controller implemented by LockCC only finally releases locks when the top-
level action commits. When a nested atomic action commits locks are propagated to the
parent action [Moss 81]. Further details of this and the implementation of other
concurrency controllers can be found in [Parrington 88].

7. Conclusions

The use of type-inheritance has enabled the design and implementation of a
concurrency control scheme that is highly adaptable and flexible without resorting to
designing a new language or system. Using this approach programmers have control over
what level of concurrency a type supports. Of course, this flexibility is not without its
potential penalties, since careless programming could lead to chaos as objects are
manipulated without being supervised by a concurrency controller. The Arjuna system
employs type-inheritance for incorporating the serialisability, recoverability and
permanence of effect properties of atomic actions.

Of the other comparable robust object-based systems described in the literature only
Avalon [Herlihy and Wing 86] is exploring using type-inheritance as opposed to
constructing an entirely new language and/or system. However, the approach adopted in
Avalon is different from that presented here in that control over concurrency is based on the
concept of hybrid atomicity [Weihl 84] and providing user-defined operations for the commit
and abort of actions. Nevertheless, its aims are similar. Their work enforces our belief that
type-inheritance provides a very powerful concept for incorporating fault-tolerance in
systems.

Acknowledgments

Discussions with Graeme Dixon were helpful in formulating these ideas, as were
comments by Pete Lee on an earlier draft of this paper. This work was supported by an
SERC/Alvey grant in Software Engineering.



248

References

Best and Randell 81
Best, E., and B. Randell, “A Formal Model of Atomicity in Asynchronous Systems”,
Acta Informatica, 16, pp. 93-124, 1981.

Birman 86
Birman, K.P., “Replication and Fault Tolerance in the ISIS System”, Proceedings of
10th Symposium on the Principles of Operating Systems, ACM Operating Systems
Review, Vol. 19, No. 4, pp. 79-86, 1985.

Dasgupta et al. 85
Dasgupta, P., R.J. LeBlanc Jr., and E. Spafford, “The Clouds Project: Designing and
Implementing a Fault Tolerant, Distributed Operating System,” Technical Report
GIT-ICS-85/29, Georgia Institute of Technology, 1985.

Dixon 88
Dixon, G.N., “Managing Objects for Persistence and Recoverability,” Ph.D Thesis,
Computing Laboratory, University of Newcastle upon Tyne, in preparation.

Dixon and Shrivastava 87
Dixon, G.N., and S.K. Shrivastava, “Exploiting Type-Inheritance Facilities to
Implement Recoverability in Object Based Systems”, Proceedings of 6th Symposium on
Reliability in Distributed Software and Database Systems, Williamsburg, pp. 107-114,
March 1986.

Dixon et al. 87
Dixon, G.N., S.K. Shrivastava, and G.D. Parrington, “Managing Persistent Objects in
Arjuna: A System for Reliable Distributed Computing,” Proceedings of the Workshop
on Persistent Object Systems, Persistent Programming Research Report 44,
Department of Computational Science, University of St. Andrews, August 1987,

Eswaran etal. 76
Eswaran, K.P., et al., “On the Notions of Consistency and Predicate Locks in a
Database System”, Communications of the ACM, Vol. 19, No. 11, pp. 624-633, 1976.

Gray 78
Gray, J.N.,, “Notes on Data Base Operating Systems”, in Operating Systems: An
Advanced Course, eds. R. Bayer, R.M. Graham, and G. Seegmueller, pp. 393-481,
Springer, 1978.

Herlihy 86
Herlihy, M.P., “Optimistic Concurrency Control for Abstract Data Types”, Proceedings
of the Fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 206-
216, Calgary, Alberta, August 1986.

Herlihy and Wing 86
Herlihy, M.P., and J.M. Wing, “Avalon: Language Support for Reliable Distributed
Systems,” Digest of Papers FTCS-17: Seventeenth Annual International Symposium on
Fault-Tolerant Computing, pp. 89-94, Pittsburgh, July 1987.



249

Kung and Robinson 81
Kung, H.T., and J.T. Robinson, “On Optimistic Methods for Concurrency Control”,
ACM Transactions on Database Systems, Vol. 6, no. 2, pp. 213-226, June 1981.

Liskov and Scheifler 83
Liskov, B., and R. Scheifler, “Guardians and Actions: Linguistic Support for Robust
Distributed Programs”, ACM Transactions on Programming Languages and Systems,
Vol. 5, No. 3, pp. 381-404, 1983.

Parrington 88
Parrington, G.D., “Management of Concurrency in a Reliable Object-Oriented
Computing System,” Ph.D Thesis, Computing Laboratory, University of Newcastle
upon Tyne, in preparation.

Schwarz and Spector 84

Schwarz, P.M., and A.Z. Spector, “Synchronizing Shared Abstract Types”, ACM
Transactions on Computer Systems, Vol. 2, No. 3, pp. 223-250, August 1984.

Spector et al. 85
Spector, A.Z,, et al., “Support for Distributed Transactions in the TABS Prototype”,
IEEE Transactions on Software Engineering, Vol. SE-11, No. 6, pp. 520-530, 1985.

Stroustrup 86
B. Stroustrup, The C + + Programming Language, Addison Wesley, 1986.

Weihl 84
Weihl, W, “Specification and Implementation of Atomic Data Types,” Ph.D Thesis,
MIT/LCS/TR-314, MIT Laboratory for Computer Science, Cambridge, Mass., March
1984.



