Modeling the C++ Object Model

An Application of an Abstract Object Model

Alan Snyder
Hewlett-Packard Laboratories
P.O. Box 10490, Palo Alto CA 94303-0969

Abstract

We are developing an abstract model to provide a framework for comparing the object models
of various systems, ranging from object-oriented programming languages to distributed
object architectures. Our purpose is to facilitate communication among researchers and
developers, improve the general understanding of object systems, and suggest opportunities
for technological convergence. This paper describes the application of the abstract object
model to the C++ programming language. We give an overview of the abstract object model
and illustrate its use in modeling C++ objects. Several modeling alternatives are discussed
and evaluated, which reveal anomalies in the C++ language. We conclude by characterizing
those aspects of the C++ object model that distinguish C++ from other object systems.

Introduction

Concepts ongmatmg in object-oriented programnung languages are appearing
in many variations in different technologies, ranging from distributed systems
to user interfaces. In previous work [9], we identified what we believe are the

essential concepts underlying these variations. Our current effort involves the
creation of an abstract object model, which provides more precise definitions of
the essential concepts. The purpose of the model is to serve as a framework for
comparing the object models of different technologies to identify common prop-
erties, highlight differences, and suggest opportunities for technological conver-
gence. The object model is being developed by applying it in turn to five major
technologies of interest to Hewlett-Packard. This paper reports on the first such
application, to the C++ programming language [5].

In this paper, we present an overview of the abstract object model and illustrate
its use in modeling C++ objects. The presentation concentrates on aspects of the
model where the application to C++ raises issues either about the model or
about C++ itself. We begin by reviewing the relevant aspects of C++.

A Brief Overview of C++ Objects

In this section, we review the object-related aspects of C++. (Readers familiar
with C++ should skim this section for terminology used in later sections.) For
brevity, we omit certain features of C++ that do not significantly affect the pre-
sented material: access control, virtual base classes, and references.! In this
section, all terms are C++ terms, not object model terms. For example, the term
object means C++ object, which is a region of storage. Note that our description
of C++ is abstract; it is not an implementation model.

1. For the purposes of this discussion, references are equivalent to pointers. They are called pointers herein.

The principal C++ construct related to object-oriented programming is the class.
A class serves two roles, as a lexical scope and as a type. As alexical scope, a
class defines a set of immutable bindings (called members) between names and
certain kinds of entities, which include data declarations and various kinds of
literals (Lypes, enumerations, and functions). The members of a class have dig-
tinct names, excepl for function members, which must be distinguishable by
their names and their declared argument types (functions distinguished only by
their declared argument types are called vverloaded functions). A class provides
lexical context for the definitions (bodies) of its function members and for nested
class and function definitions; the enclosed definitions can reference the mem-
bers of the class by name. Function members can be of several varieties; ordi-
nary, static, virtual, and pure virtual. Data declarations can be of two varieties:
ordinary and static.

A class also defines a type, which is a pattern for instantiating objects, called
class instances. A class instance is a compound object: it consists of multiple
subobjects, called components. (The C++ literature uses the term member for
these subobjects; we introduce the term component to avoid confusion with class
members.) The components of a class instance are determined by the class. For
a simple class (not defined using derivation), there is one instance component
for each data declaration, each ordinary function member, and each virtual
function member. Function components can be viewed as closures unique to the
instance: they have direct access to the components of that instance, and can re-
fer to the instance itself using the variable this.

Class members are named directly (in their scope) or using the notation
‘class::name’. Instance components are accessed using the notation
‘instance.member’, where instance is an expression denoting a class instance
and member names a class member. A complex example is a:A::B::x, where x is
a member of the class that is the B member of class A, and a is an instance of a
class (such as A::B) containing a corresponding x component. Within a function
component, components of this are accessed using the member name alone.
There are many restrictions on the use of class members and instance compo-
nents, but they are not important for this presentation.

For the purposes of the object model, we treat a pure virtual function as a virtual
function with a distinguished definition (that cannot be referenced). We ignore
the remaining kinds of class members (types, enumerations, static functions,

and static data declarations) henceforth, as they do not impact the object model.

Figure 1 shows a class named A that defines two members: a data declaration
(for an integer object) named x and an ordinary function named f. The second
line provides the full definition of f. The third line creates an instance of A
called a. It has two components, an integer object named x and a function
named f. The following lines access the components of a. Note that the compo-
nent function f of ¢ accesses both the x and f components of a by name. The di-
agrams illustrate the class A and the instance a. We use shaded boxes to denote
class members and unshaded boxes to denote instance components. We intro-
duce the notation A/f to refer to the function member f of the class A and the cor-

regponding function components. (Our examples will not involve overloaded
functions.)

A class can be defined by deriving from one or more base classes (we use the term
base class to mean direct base class, unless explicitly indicated otherwise). The
effect ol derivation on the derived class lexical scope is similar to nested scopes:
the derived class lexical scope includes not only the members it defines directly,
bul alko Any member of a base clags that is neither redefined in the derived class
nor ambiguous in multiple base clasges. The eflect of derivation on instances of
a derived class is composition: an ingtance of a derived class containg not only
the components corresponding to the members defined directly in the derived
claas, but also one unnamed instance component. of each base class. We call
these unnamed components base components.

Figure 2 illustrates class derivation. The class D is derived from the class B.
Class B’s lexical scope has three members: x and y (both data declarations for
integer objects), and f (an ordinary function). Class D defines two members: x
(a data declaration) and f(an ordinary function). Class D’s lexical scope includes
x and f, but also includes y (which it inherits from B). An instance of class D
contains three components: x (an integer object), f (a function component), and
an unnamed instance of class B. The class B base component contains three
components: x and y (integer objects) and f (a function component). The diagram
illustrates the structure of an instance of class D.

X
A int l
class A { public: int x; void f {int);}; f
void A:f (int g) {x =g; f (g+1);}; the function A/f]
Aa;
ax=3; : a X
a.f(4); f 3 |
| the function A/f]
Figure 1. A class and a class instance.
e pb
class B { public: int x; y;-void f(int);};]
void B:f (int g) {x = 9; f (g+1);}; 3
class D :public B { public: int x; void f (int);}; g 4 |
void D::f (int g) {x = g; f (g+2);}; P
Dd; . \ the function B/f |
D* pd = &d; // create a pointer to d Qe 5 7
B* pb = pd; // type conversion
the function D/f |

Figure 2. A class defined using derivation.

A function component can access only the components of the instance of its de-
fining class. For example, the function B/f in Figure 2 can access only the com-
ponents of the B base component; its variable this is equivalent to pb. In
contrast, in the function D/f, this is equivaleat to pd. Although redefined base
class members are not part of the derived class lexical scope, they can be access-
ed from the derived class scope (and elsewhere) using explicit qualification. For
example, the function D/f in Figure 2 can access the x component of the B base
component using the name B::x,

An implicit type conversion is defined from type ‘pointer to derived class’ to type
‘pointer to base classg’, for each bage class. Its effect is to convert a pointer to the
derived class instance to a pointer to the corresponding base component, Figure
2 illustrates this conversion: the pointer pd to the D instance is converted to the
pointer pb to the B base component. This conversion achieves the effect of inclu-
sion polymorphism [3]: a pointer to a D instance can be passed as an argument
to a function expecting a pointer to a B instance.

A function member declared virtual produces a different instance structure. A
virtual function component overrides (takes precedence over) any direct or indi-
rect base class function components of the same name and type. (The actual
rules are more complex.) Figure 3 shows the effect of declaring f to be virtual:
in the lexical scope accessed from pb, f now denotes the component function D/f
(instead of B/f). Virtual functions allow specialization to be effective with inclu-
sion polymorphism: the derived class function component will be invoked even
from a context where the object is known as an instance of the base class. For
example, the function fest in Figure 3 invokes D/f when its argument is pb (or
pd), even though the variable p is of type ‘pointer to B’.

Explicit qualification has the effect of suppressing virtuality: the expression
d.B::f refers to the B/f component of d, not the D/f component. Thus, the :: oper-
ation is not simply a scoping operator.

class B { public: int x, y; virtual void f (int);}; Pl
void B:f (int g) {x = g; F(g+1);};

class D': public B { public: int x; void f (int};};
void D:f (int g) {x = g; f (g+2);}; :

4 |

| the function B/f |
5 |

pd
Dd; \
D* pd = &d; // create a pointer to d
B* pb = pd; // type conversion
void test (B* p) {p—-f(0);}

the function D/f |

Figure 3. Virtual functions.

The Abstract Object Model

In this section, we present an overview of the abstract ohject model. (A more
complete presentation of an earlier version can be found in [8].) We concentrate
on those aspects of the model that raise the most interesting issues when mod-
eling C++. Terms, such as vbject, used in this seclion refer to medel concepts,
as distinel [rom C++ concepts.

The meodel is based on the following concepts we deem the essential concepts of
objects (further information on these concepts can be found in [9]):

* An ohject explicitly emhodies an abstraction that is characterized by services.

* Clients request services; a request identifies an operation and zerv or more
objects.

* Opcrations can be generic: an operation can be uniformly performed on a
range of objects with visibly different behavior.

* Objects are distinguishable, and new objects can be created.

* Objects can be classified by their services, forming an interface hierarchy.

* Objects can share implementation, either in full (class instances) or in part
(implementation inheritance).

The abstract object model is a partial description of the behavior of a computa-
tional system. To model a particular system (such as C++), one defines a con-
crete object model for that system. A concrete object model may differ from the
abstract object model in several ways. It may elaborate the abstract object mod-
el by making it more specific, for example, by defining the form of request pa-
rameters or the language used to specify types. It may populate the model by
introducing specific instances of entities defined by the model, for example, spe-
cific objects, specific operations, or specific types. It may also restrict the model
by eliminating entities or placing additional restrictions on their use.

The abstract object model postulates a set of clients that issue requests for ser-
vice and a set of objects that perform services. (An object can be a client, but cli-
ents need not be objects.) A request is an event: a unique occurrence during the
execution of the computational system. A request has associated information,
which consists of an operation and zero or more parameter values. A value may
identify an object; such a value is called an object name. The operation identifies
the service to be performed; the parameters provide the additional information
needed to specify the intended behavior. A client issues a request by evaluating
a request form; each evaluation of a request form results in a new request. The
mapping of a request form to a request is called spelling.

The abstract object model takes the perspective of the generalized object models
found in the Common Lisp Object System [1] and the Iris database [6]. In a clas-
sical object model (as in Smalltalk), each request contains a distinguished pa-
rameter that identifies the target object of the request, which then controls the
interpretation of the request (called a message). A generalized object model al-
lows multiple parameters denoting objects to influence the interpretation of the
request. The generalized model includes classical models as a special case.

An operation is simply an identifiable entity. Its purpose is to characterize sets
of requests with similar intended semantics. To allow operations to have asso-
ciated semantics in a computational system, we believe it is necessary to allow
developers to create operations (i.e., uniquely allocate an operation for a partic-
ular use). An operation is named in a request form using an operation name.

A generic operation is one that can be uniformly requested on objects with dif-
ferent implementations, producing observably different behavior. Intuitively, a
generic operation is implemented by multiple programs, from which a single
program ig selected dynamically for each request.

A request is performed by transforming it into a method invocation. This trans-
formation is called binding. A method invocation identifies a method, a collec-
tion of method parameters, and an execution engine. A method is a program.
The method parameters are values, possibly from a different space than request
parameters. The execution engine interprets the method in a dynamic context
containing the method parameters; upon completion, a result is returned to the
client. Execution of a method may alter the state of the computational system.
The input to binding consists of a request (an operation and parameter values)
and a request context. The request context supports the option of client-specific
behavior.

To review, a client issues a request by evaluating a request form, which contains
an operation name. The request form is mapped to a request by a process called
spelling. The request identifies the operation and some parameter values,

which may be object names. The request is mapped to a method invocation by a
process called binding. This two-stage processing model is shown in Figure 4.

The intermediate stage of requests serves to capture the essential information

provided by a client when requesting a service. Spelling and binding serve dis-
tinct purposes. Spelling is a convenience for clients: it provides flexibility in how
things are written. Binding captures a fundamental property of object system:

the provision of multiple implementations for a single semantic abstraction.

o §
D
& \
-
.

: print

i spelling

read 5 ' o
L

operation names

Print (thing printer)

method invocation

request form

Figure 4. Spelling and binding.

The model defines the concept of a meaningful request to caplure the notion that
not all possible requests are sengible, (Many systems formalize this notion in a
type system and verify Lype correclness using static or dynamic type checking,)
Meaningful is a hoolean predicate on requests that 18 defined in each model of n
particular object system,

For convenience, several aubsidiary concepls are defined: An operation signa-
ture ig a deseription of the parameter values that are meaningful in requests
thaot identify a particular operation. Effectively, operation signatures are a fac-
toring of the meaningful predicato by operation. An operation signature may
also constrain the results of the corresponding requests, A type is a boolean
predicate on values that can be used in operation signatures. A relation called
subtype ia defined over Lypes: a Lype a is a subtype of a type b if any value that
satiafien Lype a necessarily satisfies type b. An inferface is a (partial) description
of an object that describes circumstances under which it is meaningful for an ob-
ject to be named as a request parameter; in effect, an interface describes valid
uses of an object, from a client perspective. An interface can be a type, called an
interface type.

Examples: The signature of the push operation might specify that the first pa-
rameter must be a stack (an object name that satisfies a type stack) and the sec-
ond parameter must be an integer (a value that satisfies a type integer). The
stack interface (which describes stack objects) might specify that a stack can ap-
pear as the first parameter to the push and pop operations.

Using the Abstract Object Model

Using the abstract model to describe an existing system is a subjective process.
The modeler makes choices that can be evaluated only using subjective criteria,
such as simplicity, comprehensiveness, and utility. For example, consider a
model in which there is exactly one operation, identified in every request. In
this model, the operation conveys no information; the identification of the re-
quested service would have to be communicated either as a parameter value or
via the request context. We consider this model poor because it fails to use op-
erations effectively to characterize sets of requests.

One aspect of our work has been to accumulate a set of more specific evaluation
criteria. The criteria were developed as a way of justifying and explaining choic-
es that were made intuitively. They are guidelines, not absolute requirements.

The criteria are:

* A typical request form should have the property that all evaluations of the
request form issue requests that identify the same operation. In other words,
most request forms statically identify an operation. This criterion reflects
the intuition that each request form has an associated semantics that corre-
sponds to the expectations of the client.?

2. We expect the primary exception to this criterion to be request forms that involve an operation variable. An
operation variable is a distinct subform whose evaluation results in the identification of an operation and
whose evaluation is independent of other parts of the request form.

* There should be generic operations (operations with multiple methods invo-
cable from a single request form). Qur intent is to exclude a model in which
operations are identified with methods: such a model would incorporate bind-
ing into evaluation.

» Operation signatures should be useful (i.e., not too permissive); they should
reflect inherent system structure. (The model with a single operation fails
thig eriterion because the signature of the universal operation permits any
collection of parameters.)

* Operations should distinguish request forms whose potential hehaviors are
digjoint. For example, two methods that can never be invoked from the same
request form should be implementations of distinct operations.

* Operations should characterize objecta, in terms of their legitimate use in re-
quests. For example, in most object systems, an object supports a specific set
of operations, meaning that it can appear as the target parameter in requests
that identify those operations.

* The use of the request context in binding should be minimized.

Modeling C++ Objects

In this section, we present a model of C++ objects using the abstract object mod-
el. We concentrate on four aspects of modeling: identifying the objects, opera-
tions, values, and types. We discuss several issues that arose in developing the
model, and their implications both on the abstract object model and on C++ it-
self. In this section we must refer to both abstract object model concepts and
C++ concepts, some of which have the same terms. Where context is inadequate
to avoid confusion, we will use terms like “C++ object” to refer to the C++ concept
and “object” to refer to the abstract object model concept.

A fundamental modeling issue is tension between accuracy and expressiveness.
Although C++ supports object-oriented programming, it is not a pure object-ori-
ented language. It is not surprising, therefore, that we sometimes had to choose
between a model that describes the full semantics of C++ and one that better
captures the ‘spirit’ of objects, but fails to handle certain corner cases of the lan-
guage. We have taken the latter option. We argue that this approach is better
for the purpose of characterizing the C++ object model and comparing it to the
object models of other systems. We would not take the same approach if our goal
were to create a formal definition of C++.

What are the Objects?

The first issue: what are the objects? There are two independent choices. The
first choice is whether all C++ objects are objects, or just class instances. We
have chosen to model only class instances as objects, because (as we will de-
scribe) only class instances support generic operations.

The second choice is whether an instance of a derived class is modeled as a sin-
gle object, or whether each base component is modeled as a separate object. This

choice 1s more significant, and deserves n fuller explanation. (In both cases, a
named instance component is modeled as a distinct object.)

The multi-object model (shown in Figure 5a) models each basc component as a
distinct object. The implication is that n pointer to a base component like ph is
a different value than a pointer o the derived clags instance like pd. These val-
ucs have different types. Bacauses Lhey are different values, they can affect bind-
ing. For example, if class B and class 1) hoth define an ordinary function
member £, then the [act thal a request (f pb) invokes B/f and a request (f pd)
invokes D/f can be understood as a ¢cousequence of the two requests identifying
the same operation, but different parameter values.

The monoelithic object model (shown in Figure 5b) models base components as
lacking a separate identity, The implication is that a pointer Lo a base compo-
nent like pd is modeled as the same value as a pointer to the derived class in-
stance like pd. The fact that these pointers have different semantics cannot be
explained based on values, but must be explained based on static types of ex-
pressions. Specifically, we use the static type of the target object expression to
map the operation name f into distinct operations, which we will label as B::f
and D::f. Arequest (B::f pd) invokes B/f and a request (D::f pd) invokes DIf.

The monolithic object model forces us to model B/f and D/f as distinct operations.
We argue that this modeling is appropriate, because in C++ no single request
form can invoke both of these functions (ignoring pointers to class members,
which are operation variables). We prefer the monolithic object model, both be-
cause it is simpler, and because it is more consistent with the “mainstream” con-
cept of object. (In most object systems, instances of classes defined using
inheritance do not reveal themselves as consisting of distinguishable parts.)
Furthermore, modeling pb and pd as the same value is consistent with C++
pointer comparison, which reports these pointers as being equal after an implic-
it type conversion.

The disadvantage of the monolithic object model is that it fails to handle a cor-
ner case of the language where an object visibly contains more than one base
component of the same type. Clearly, multiple base components of the same
type cannot be distinguished by type, but only by value. This situation involves
a distinctive use of C++ multiple inheritance, illustrated in Figure 6. Class D is
derived from classes B and C, each of which are derived from class A. A D in-

B
po —————
D D
pb., pd———
pd —————p

Figure 5a. Multi-object model. Figure 5b. Monolithic object model.

10

gtance contains two base components of class A, Using two levels of type con-
varsion (one of which must be explicit), a client holding a pointer to the D
instance (pd) can obtain pointers Lo either A instance (pal or pa).

To reflect this case accurately, we must either model the A components as sep-
arate ohjects, or we must extend the abstract obhject model to include a concept
of object port (where a single ohject can have multiple ports). Our position is
that the extra complexity needed to handle this case is not justified. This posi-
tion rests upon an assumption that the above situation 18 unusual, which we de-
fend based on the fact that the client must use explicit type conversions to obtain
access Lo Lhe component instances,

To summarize, we model only C++ class inatances as objects, and we madel in-
stances of derived classes as monolithic (base components are not separate ob-
Jjects).

What are the Operations?

The second modeling issue is to determine the space of operations. One possi-
bility is to model only virtual function members as operations, because (as we
will show) they correspond to generic operations. Alternatively, one could model
all nonstatic function members as operations, or all function members. Our
choice is to model all C++ functions as operations. This choice is consistent with
the generalized object model approach. The abstract object model does not re-
quire that all operations be generic. Having made this choice, we model all C++
function invocations as request forms (one exception is introduced below); the
various cases are shown in Figure 7.

How do C++ functions map to operations? The primary modeling issue is to de-
fine operations that are (potentially) generic. Recall the key characteristics of a
generic operation: (1) it can have multiple methods selected based on request
parameters, and (2) the methods of a generic operation can be invoked from a
single request form. To model generic operations, multiple functions should
map to the same operation: they are modeled as different methods for that op-
eration. C++ provides two candidates for generic operations: overloaded func-
tions and virtual function members.3

pAl————p A A +— pa?2
A’ pal = (B") pd;
A*pa2 = (C') pd; B C
d
Pd ————» D

Figure 6. Repeated inheritance example.

3. Other kinds of functions, such as non-virtual member functions, cannot be generic operations because they
are statically identified in all request forms (ignoring pointers to functions).

1

C++ overloaded functions are functions that have the same name in the same
lexical scope, but are distinguished by their formal argument types. For each
invocation that names a set of overloaded functions, a specific function is select-
ed from that set at compile-time baged on the static types of the argument ox-
pressions. Therefore, a single request form always invokes the same function,
which contradicts the key characteristics of generic operations, Thus, we do not
maodel uvarloaded funclions as generic operationa. Specifically, we model esach
function in a set of overloaded functions as a distinet operation. Wa model over-
loaded function resolution as part of spelling: it is a convenience for program-
mers, not support for object-oriented programming.?

C++ virtual function members are appropriately modeled as generic operations
because they satisfy the key charncleristics of generic operations: a single re-
yuest form naming a virtual function member can invoke function components
that correspond to different function definitions. For example, as shown in Fig-
ure 3, an invocation of f using a pointer of type ‘pointer to B’ might invoke either
Bff or D/f, depending upon whether the pointer points to an instance of B or an
instance of D, respectively.

We model a generic operation as a single operation with multiple methods. In
the simple case exemplified by Figure 3, the two functions B/f and D/f both cor-
respond to a single operation ¢; they are two methods for the same operation. A
request form naming either function member issues a request for operation ¢.
The request (¢) is bound to the appropriate function based on the parameter
value o, which is an object name that identifies an instance of B or a class di-
rectly or indirectly derived from B.

A more challenging example is shown in Figure 8a. Class E is a derived class
with two base classes B and D, which are derived from classes A and C, respec-
tively. Each of the five classes defines a virtual function member f with no ar-
guments. There are five functions named f; how many operations are there?

ordinary functions f(e1,e2,...)
pointers to functions efel,e2, ..)
static function members C:uf(el,e2, ...)
nonstatic function members of(el,e2 ..)
pointers to class function members oefel, e2 ...)
f e identifier

C e class name

e € expression — identifier

et, e2 e expression

0 e expression (denoting a class instance)

Figure 7. C++ request forms.

4. As an aside, if we wanted to model overloaded functions as generic operations, we would be forced to aban-
don the monolithic object model. Overloaded function resolution is based on static expression types. To model
overloaded function resolution as part of binding, the parameter values must capture the static type informa-
tion. The monolithic object model of values discards the static type information associated with pointers to
base components.

12

Based on the previous example, it is clear that A/f and B/f are une vperation (1)
and that C/f and D/f are onc operation (2). Furthermore, we argue that opera-
tions 1 and 2 are distinct: no single request form can invoke both A/f and C/f (ig-
noring pointers Lo class members). However, the logic of the previous example
also argues that E/f is the same operation as hoth A/f and C/f: an invocation us-
ing a ‘pointer to A’ can invoke E/f (if the pointer denotes an E instance); an in-
vocation using a ‘pointer to C’ also can invoke E/f,

Qur solution to this problem is to model E/f as a method for fwo operations. (One
can imagine that E actually defines two equivalent functions.) A potential prob-
lem with this solution is that an invocation of f using a ‘pointer to E’ is ambigu-
ous: which operation does the request identify? Fortunately, the ambiguity is
unimportant: either operation could be identified; the rules of C++ exclude as
ambiguous any case where the choice would make a difference in the code that
is executed (e.g., the following example).

A related example (shown in Figure 8b) illustrates an anomaly in C++ that was
exposed during the creation of the model. We have changed the example by re-
moving the definitions of f members in classes B and E. The name fis now am-
biguous in class E, because it might refer to either A/f or D/f; an invocation of f
using a ‘pointer to E’ is illegal in C++. The anomaly is that using the class scop-
ing operator to disambiguate the two operations has undesirable effects, be-
cause explicit qualification suppresses virtuality. Although an invocation of B::f
using a ‘pointer to E’ will invoke A/f, the client code is not resilient: if a definition
of fis added to E, the invocation will still invoke A/f, not E/f. A better solution
is to disambiguate using type conversion: converting a ‘pointer to E’ to a ‘pointer
to B’ yields a value upon which the name fis unambiguous. This anomaly is not
a problem for the object model; it is a shortcoming of C++ that in the lexical
scope of class E there is no way to spell either operation.5

Modeling virtual function members as generic operations again fails to model
the full semantics of C++. Specifically, it fails to model the ability of clients to
use explicit qualification to name individual functions (such as A/f, C/f, and D/f
in Figure 8b). For example, an invocation that names C::f cannot be modeled as
a request form in this model: the operation corresponding to C::fis the same op-

A |virtual 1) |®D C |virtual) |®@ A |virtual 1) |@D C |virtual 1) |@
B |virtual () ® D |virtual f() @ B @ b |virtual () @
E | virtual () |D @ E
Figure 8a. Virtual function members. Figure 8b. An anomalous example.

5. Proposals to correct this shortcoming were rejected by the ANSI C++ committee because a programmer can
work around any problems by defining additional classes.

13

eration corresponding Lo D/f; the operation doss not provide enough information
Lo allow the client to invoke aither function on the F instance (in distinct invo-
cations). Although we could use the request context to provide the necessary in-
formation, we prefer to model such invocations as direct method invocations,
rether than as request forms. We believe this choice is consistent with the apirit
of the language, based on the reeommeandation of the language designer that
guch invocations be used only within methods, and not in client code [6, p. 2101

The modeling of C++ functions as operations is summarized as follows: Each
C++ function (executable or pure) is a distinct operation, except for a virtual
function member that overrides one or more base clags virtual function mem-
bers, which instend provides an additional method for each of the original oper-
ations. An operation in C++ is identified by a triple: a lexical scope (such ag a
file or a class definition), a function name, and the formal argument types (suit-
ably canonicalized to reflect C++ overloaded function resolution). For an oper-
ation corresponding to a virtual function member, the identifying lexical scope
is the “most base” class defining the virtual function member, i.e., the root of the
class derivation tree where the virtual function member is introduced.

Operations are values in C++: they may be used as request parameters. Oper-
ations that correspond to ordinary functions and static function members are
values whose types have the form ‘pointer to function ...’ (the elision describes
the argument and result types); these operations have exactly one method each.
Operations corresponding to nonstatic function members are values of type
‘pointer to class ... function member ..." (the first elision names a class, the sec-
ond describes argument and result types). Pointers to class function members
identify a class member, not an instance component; an instance must be sup-
plied when the function is invoked. (A pointer to a function component would be
a closure, a concept not currently supported in C-like languages.) Pointers to
class function members correspond exactly to operations in our model of C++:
such pointers cannot distinguish between individual methods for the same op-
eration (in the case of pointers to virtual function members).%

The operation model is summarized in Figure 9. The illustration assumes that
class D is derived from class B, that fis virtual, and that class X is unrelated by
derivation to either class B or class D. Spelling maps operation names to oper-

pb—of —_—] . B/f
___>.<\
pd-of — | = D/f
spelling binding
px—f —» — X/f
operation names operations methods

Figure 9. Operations in C++.

6. It is somewhat of an anomaly therefore that pointers to class function members are created using the syntax
of explicit qualification, which in invocations is used precisely to make such distinctions!

14

ations; it involves lexical scoping and overloaded function resolution (both stat-
ic), ar well ag evaluation (dynamic) in the case of operation variables (as
discussed in the previous paragraph). Binding maps operations to methods, and
involves a dynamic lookup based on request parameters (types) in the case of
virtual operations (operutions corresponding to virtual function members).

Using the access control feature, u C++ class can allow direct client access to a
data component of its instances, We can model a client-accessible data compo-
nent as an operation that returns a pointer to the component. This operation is
like a non-virtual member function in having a single method., However, the
method is defined by the implementation of C++, not by the class. Thus, use of
this feature of C++ makes clients dependent on the implementation of ohjects.

What are the Values?

The abstract object model specifies that requests include parameters, called val-
ues. The values denote the information transmitted from the client to the ser-
vice provider. The question of how C++ function invocations map onto this
model of requests deserves some discussion. (Note that we need to be particu-
larly careful in our use of terms in this discussion.)

C++ argument passing is based on these key concepts: A C++ object is a region
of storage. The contents of a C++ object is an immutable data element called a
C++ value. Both C++ objects and C++ values are ¢yped: the types of a C++ object
and its contents are identical. The formal argument of a function is bound upon
the invocation of the function to a new local variable, which is a C++ object of
the declared type. The initialization of this C++ object is based on information
provided by the client in the function invocation. The modeling issue is how to
denote this information as a value.

The initialization of a formal argument that is not a class instance is straight-
forward. (Note that this case includes the case of a formal argument that is a
pointer to an instance, i.e., an object name.) The actual argument expression is
evaluated to produce a C++ value of the designated type, which becomes the con-
tents of the formal argument; the evaluation may include an implicit type con-
version selected based on the static type of the expression. We model this C++
value as the request parameter; thus, any implicit type conversion is modeled
as happening prior to issuing the request.

An alternative model is that the request parameter is the C++ value that is the
input of the implicit type conversion. This model is viable, but has two disad-
vantages: (1) The signatures of operations can change over time as new classes
with conversion functions are defined. For example, if a new class C is defined
with a conversion function to int, then every operation with a formal argument
of type int is extended to accept instances of class C. (2) Because conversion
functions are selected based on static expression types, request parameters
would have to encode the static type, which implies use of the multi-object model
of derived class instances.

15

The initialization of a [ormal argument that is a class instance ia more complex.
The new class instance ia created implicitly, then initialized by a copy construe-
tor defined by the class. A conatructor is a special kind of invocable entity, aim-
ilar to a function; an implicit formal argumenl this nllows the constructor to
initialize the components of a new instance. The copy constructor takes a gingle
argument of type ‘pointer to C’, where C ia the declared class. (A class can define
other constructors with different numbers or types of arguments.)

There is a special case, which we refer Lo below ns the optimized case. A client
can creale a temporary ohjact by explicitly invoking u constructor. Tf the actual
argument expresgion is a constructor invocation, an implementation of C++ has
the option of using that temporary object directly as the formal argument object
(eliminating the uge of the copy constructer), rather than passing a pointer to
the object to the copy constructor. In all cases, however, the [urmal argument
object is initialized by a constructor.

Three modeling possibilities come to mind for a formal argument of class type C:

1. The request parameter is a C++ value of type C, which becomes the contents
of the formal argument instance. The value can be thought of as being the
“output” of the copy constructor (or the explicitly invoked constructor in the
optimized case). This choice is appealing because it is analogous to the model
for non-instance formal arguments. However, the notion of copying the “out-
put” of the constructor into a new instance is inconsistent with the semantics
of C++, because the constructor can observe the identity of the formal argu-
ment instance (using this).

2. The request parameter is the pointer argument to the copy constructor, or the
pointer to the temporary in the optimized case. This choice is closest to the
actual language semantics. It is inconsistent with the model for non-instance
formal arguments in that, in the optimized case, the formal argument is mod-
eled as created by the client (i.e., prior to issuing the request). There is also
a possible confusion between these implicit pointer parameters (for formals
of a class type) and explicit pointer parameters (for formals of a pointer type),
although this confusion is not important for binding, which examines only
the request parameter corresponding to the target object.

3. The request parameter is a structured value that describes the information
needed to select and invoke the appropriate constructor(s). The advantage of
this choice is that the creation of the new C++ object is local to the service pro-
vider in all cases (this model might be the most appropriate for a distributed
system based on the C++ object model). The disadvantage is the need to in-
vent a kind of value that has no relation to any C++ type.

Although each choice has disadvantages, we prefer the second alternative (the
request parameter is a pointer, i.e., an object name). One effect of this choice is
that it conceals the fact that C++ passes instances “by value” when the formal
argument is a class type. However, strictly speaking, the only guarantee is that
the formal argument is a new instance. The copying of the contents is controlled
by the copy constructor, whose behavior can be arbitrary; furthermore, in the
optimized case, no copying is performed.

16

We model default arguments as a notational convenience: the client effectively
calls an auxiliary function (associated with the operation) to compute the re-
quest parameter for an omitted argument. This choice is motivated by the fact
that defaull arguments do not affect the type of a function in C++.

What are the Types?

In the abstract object model, types characterize values that are legitimate re-
quest parameters. Based on the previous discussion, a class instance can never
be a request parameter, unlike a poinler to a class instance, Therefore, we mod-
el only C++ non-class types as types in the object model.

The only subtype relation defined over typer in our model of C++ is between a
type ‘pointer to class I¥ and a type ‘pointer to class B’, where B is a direct or in-
direct base class of D. This relation is a consequence of the monolithic object
model: a value of type ‘pointer to class I’ is legitimate as a parameter in a re-
quest that identifies an operation whose signature requires a value of type
‘pointer to class B’. C++ implicit type conversions (such as the conversion from
char to int) do not define subtype relations, because of our decision to model such
conversions as taking place prior to issuing a request.

A C++ class whose members are all pure virtual functions is an interface. Such
a class defines how certain objects can be used, without constraining how those
objects are implemented. A pointer type to such a class is an interface type. A
C++ function type is an operation signature: it can be used to define legitimate
request parameter values that identify operations.

A Formal Model of Spelling and Binding

A formal model of spelling and binding in C++ is sketched in Figure 10. This
model emphasizes the transformations performed by spelling and binding; it
does not attempt to model the semantics of C++. For example, the model does
not represent the state of the computational system. Also, the treatment of
overloaded function resolution handles only invocations; C++ also resolves over-
loaded function names in expressions based on context.

The first two cases for spelling handle invocations of explicitly named functions.
The second two cases handle invocations using pointers to functions and point-
ers to class member functions, respectively: we assume that such values are op-
erations (i.e., spelling analogous to the first two cases is performed when pointer
values are created). For convenience, we model the type of an argument list as
a signature type, for overloaded function resolution. As described above, an ex-
pression of a class type evaluates to an object name. The binding model assumes
that functions serve as methods, and that nonstatic function members have
been transformed to take an explicit this argument.

17

Spelling:
raguest form reyuest

flal02,) (op{Flcf, Typele,(e1,e2,...)1 Ele,e1] Ele,e2] ..)

ntel.e2..) (opIMF[Typele,0l.f, Typele,(@1,62,.. 1] E[e.0] E[e.81] E[e.82])
wiel,ud,..) (Cl¢.®] E[¢.01] E[¢,e2] ...)

ne(ele2...) (Elv,8] E[#,0) E[z,n1] F[,82])

£ e environmant

f e identifier

e & axprassion —identifier

e1, e2 & expression

o e expression (denoting a class instance)

E: environment x éxprassion —» value (avaluation)

F: environment x identifier x signature - function (lexical scoping and overloaded function resolution)
Type: environment x expression — type (static type analysis)

MF: class x identifier x signature — function (class scope lookup for overloaded functions)

op: function — operation
signature c type

class c type

function c value

Binding:
request method invocation

non-virtual operation:
(oviv2..) op ol viv2..)

virtual operation:
(onviv2..) (VF[¢.ninviv2 ..)

¢ € operation

v1, v2 e value

n e object name

op™': operation —» function

VF: operation x object name — function (method lookup)
OType: object name — class (dynamic typing)

VF[¢,n] = the most “specific” function f such that f.class = OType[n] and op|f] = ¢

Figure 10. Spelling and binding in C++.

18

Summary

Our model of C++ objects 18 summarized by the following points (object model
terms are italicized):

* Class instances are objects.

s Pointers to class instances are object names.

» Pointers reveal object identity to clients,

* Base components of derived class instances are not ohjects,

* Public data members correspond to special operations that return pointers,

+ All function invocations are request forms, except for invocations that sup-
preas virtual function lookup, which are direct method invocations.

* ixcept for virtual functions, each function ia a distinct operation.

* An overriding virtual function is a new method for one or more existing oper-
ations.

¢ Virtual functions are generic operations; overloaded functions are not.

¢ C++ values of non-class types are values (request parameters).

* C++ non-class types are types.

* Subtyping is defined between pointer types based on class derivation.

* A class whose members are pure virtual functions is an interface.

* A pointer type to an interface class is an interface type.

® Operations are values.

* A C++ function type is an operation signature.

Observations

In developing this model of C++ objects, we discovered (as have others) that C++
is a complex language that is difficult to master. Over a period of months, we
repeatedly discovered new examples that forced us to reconsider our model. We
cannot state with absolute confidence that we have found the last such example!
Furthermore, we found several cases whose behavior did not appear to be de-
fined by the existing language definition. We have advised the ANSI C++ com-
mittee that a more precise language definition is needed. A specific contribution
of the abstract object model is the clear distinction between operations (which
clients are expected to name) and methods (which should be hidden from cli-
ents); the existing C++ literature fails to clearly distinguish these concepts, us-
ing the term virtual function for both (the implementation term vtable entry is
sometimes used for the operation corresponding to a virtual function).

The construction of the C++ object model helped us to identify several problems
in the design of C++ itself: the inability of a class definer to prevent client access
to overridden methods, the unfortunate inconsistent use of explicit qualifica-
tion, and the inability to name ambiguous (virtual) operations in a class with
multiple base classes.

19

The C++ object model helps to clarify the aspects of C++ that distinguish it from
other object-oriented programming languages:

* Operations in C++ are lexically scoped; a common lexical scope (i.e., a com-
mon base class definition) is required for generic operations, (Many object-
oricnted programming languages, ¢.g. Smalltalk, define a global name space
for operations. Lexically scoped operations are advantageous for program-
ming in the large, as they reduce the probability of accidental name colli-
gions, However, C++ provides inadequate flexibility in naming its lexical
scopes to take full advantage of this feature: at the top level, class names
share a single global name space. The disadvantage of lexically scoped oper-
ations is the need to share a common class definition to permit communica-
tion between modules, such as between a client module and an object
implementation module; the typical implementation of C++ exacerbates this
situation by requiring recompilation after most changes to a class definition.)

* An object in C++ defined using multiple inheritance can have inherited parts
that are visible to clients as distinct entities. (In most object-oriented pro-
gramming languages, instances of classes defined using inheritance do not
reveal inherited substructure.)

* Using multiple inheritance, a derived class can “link together” operations so
that individual methods implement multiple operations.

* Clients in C++ can directly invoke specific methods for an operation. (In
many object-oriented programming languages, specific methods cannot even
be named. Method combination in such languages is performed using special
syntax, such as super in Smalltalk. The ability to invoke specific methods is
less a concern than the inability to control such access.)

* C++ ordinary function members are operations associated with objects that
have exactly one method each.

* In C++, a class instance can have state variables that are directly accessible
to clients.

* C++ supports overloaded functions, based on static type analysis. Overload-
ed functions are a naming convenience.

* C++ request forms are transformed by the insertion of client-specific type
conversions, based on static type analysis.

Related Work

Several researchers have developed formal models of objects. Cook [4] devel-
oped a model of inheritance for classical object systems using denotational se-
mantics, which has been used to compare inheritance in several object-oriented
languages [2]. Reddy independently developed a similar model [7]. In both
models, objects are modeled as records indexed by message keys, which are
equivalent to our operations. However, neither Cook nor Reddy discuss the
mapping from programming language constructs to operations (spelling).

20

Wand [11] developed a formal model of objects that is closer in breadth to our
work. Although there are gimilarities between the two models, there are signif-
icant differences. Wand’s model of object includes client-visible state, called at-
tributes. More significantly, Wand’s model lacks the concepts of request,
operation, and binding. Instead, ohjects change state in response to other atate
changes, as specified by constraints called laws. Wand excludes notions like
binding and mecthods as implementation details. Our model intentionally in-
cludes these concepts to allow comparison of implementation features (which af-
fect the ability of an object system to support reuse). Wand identifies meggages
and methods as a source of confusion; our definitions of operation and method
resolve this confusion.

Conclusions

We found the process of modeling C++ objects challenging, in part because C++
has many differences from other object-oriented systems. Nevertheless, we con-
clude that the abstract object model is useful for identifying and explaining the
distinctive characteristics of the C++ object model. During the modeling pro-
cess, several problems in the design of C++ were identified. Although we devel-
oped several evaluation criteria during the modeling process, the modeling
process remains a subjective one: the ultimate evaluation of a model is its use-
fulness. This paper has emphasized specific aspects of the abstract object mod-
el. Other aspects, such as the model of object implementations, are being
developed as we apply the model to additional systems.

References

1. D.G. Bobrow, L. G. DeMichel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A. Moon. Com-
mon Lisp Object System Specification X3J13. SIGPLAN Notices 23, 9 (1988).

2. G. Bracha and W. Cook. Mixin-based Inheritance. Proc. OOPSLA/ECOOP-90, 303-311.

3. L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction, and Polymor-
phism. Computing Surveys 17, 4 (Dec. 1985), 471-522.

4. W. Cook. A Denotational Semantics of Inheritance. Ph.D. Thesis, Brown University,
1989.

5. M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

6. D.H.Fishman, et al. Iris: An Object-Oriented Data Base System. ACM Transactions on
Office Information Systems 5, 1 (1987), 48-69.

7. U.S.Reddy. Objects as Closures: Abstract Semantics of Object-Oriented Languages.
Proc. ACM Conference on Lisp and Functional Programming (1988), 289-297.

8. A.Snyder. An Abstract Object Model for Object-Oriented Systems. Report HPL-90-22,
Hewlett-Packard Laboratories, Palo Alto, CA, April 1990.

9. A. Snyder. The Essence of Objects: Common Concepts and Terminology. Report HPL-91-
50, Hewlett-Packard Laboratories, Palo Alto, CA, May 1991.

10. R. M. Soley, ed. Object Management Architecture Guide. Document 90.9.1, Object Man-
agement Group, Inc. Framingham, Ma., November 1990.

11. Y. Wand. A Proposal for a Formal Model of Objects. In Object-Oriented Concepts, Data-
bases, and Applications. W. Kim, F. H. Lochovsky, eds. ACM Press, 1989, 537-559.

