The Design of an Integrity Consistency Checker (ICC)
for an Object Oriented Database System

Christine Delcourt(*), Roberto Zicari (**)
(*) Altair, France
(**) Politecnico di Milano, Italy
e-mail: relett15@imipoli.bitnet

Abstract

Schema evolution is an important facility in object-oriented databases. However, updates should
not result in inconsistencies either in the schema or in the database. We show a tool called ICC,
which ensures the structural consistency when updating an object-oriented database system.

1 Introduction

Schema evolution is a concern in object-oriented systems because the dynamic nature of typical OODB
applications calls for frequent changes in the schema . However, updates should not result in inconsis-
tencies either in the schema or in the database.

We present a tool which ensures the structural consistency of an object-oriented database system
while performing schema updates. The tool has been implemented to evaluate the correctness of schema
updates for the O3 object-oriented database system [Ban91][LecRic89a.

1.1 Preliminary O; concepts

In this Section we briefly recall the fundamental concepts of Oz which are relevant for our discussion.
The reader is referred to [LecRi89a),and {LecRi89b| for a formal definition of the O; data model and
to [Vel89)] for the description of the system architecture. O3 is an object-oriented database system and
programming environment developed at Altair. Classically, in object-oriented data models, every piece
of information is an object. In the O; data model, both objects and values are allowed. This means that,
in the definition of an object, the component values of this object do not necessarily contain only objects,
but also values. In O; we have two distinct notions: classes whose instances are objects and which
encapsulate data and behavior, and types whose instances are values. To every class is associated a type,
describing the structure of its instances. Classes are created using schema definition commands. Types
are constructed recursively using atomic types (such as integer, string, etc.), class names, and the set,
list, and tuple constructors. Therefore types can be complex. Objects have a unique internal identifier
and a value which is an instance of the type associated with the class. Objects are encapsulated, their
values are not directly accessible and they are manipulated by methods. Method definition is done
in two steps: First the user declares the method by giving its signature, that is, its name , the type
of its arguments and the type of the result (if any). Then the code of the method is given. In Og,
the schema is a set of classes related by inheritance links and/or composition links. The inheritance
mechanism of O; is based on the subtyping relationship, which is defined by a set inclusion semantics.

98

Multiple inheritance is supported. O3 offers a compile-time type-checker in an attempt to statically
detect as many illegal manipulations as possible of objects and values. Objects are created using the
"new” commuand. If a class is created ”"with extension” then a named set value is created which wi'l
contain every object of the class and will persist. O, allows object values to be manipulated by methods
other than those associated with the corresponding class. This feature is obtained by making ” public”
the type associated with the class.

Methods in O; can call other methods of the same class, or ” public” methods defined in other classes.
They may access directly a type associated to a class (besides the class to which they are associated) if
this type has been defined "public”. The inheritance scope of a method can be changed by application
of the "@” feature which allows a reference to a method from outside the scope of the method.

Ezample: Given two classes, C,C2 with C2 subclass of C, it is possible, in the body of method m2
defined in C2, to refer to a method m defined in C instead of method m redefined in class C2, as the
scope rule would normally imply (see Figure 1).

¢ m:(C->C*)
|
C2 m: (C2->C")
m2: (C2->C")
body.m2 : [...m@C...]

Figure 1

When a class inherits methods or types from more than one class (multiple inheritance) conflicts
with names for methods and attributes have to be explicitly solved by the designer. For example, two
methods with the same name defined in different superclasses will not be inherited by the common
subclass. The designer has two possible choices to solve the name conflict:

- either redefine the method in the subclass or

- specify which method he/she wants to inherit using a " from class " clause which specifies the
chosen inheritance path.

1.2 Schema Updates: What is the problem?

Informally, the problem with updates can be stated as follows: We want to change the structural and
behavioral part of a set of classes (schema updates) and/or of a set of named objects (object updates)
without resulting in run-time errors, ”"anomalous” behavior and any other kinds of uncontrollable sit-
uation. In particular, we want to assure that the semantics of updates are such that when a schema
(or a named object) is modified, it is still a consistent schema (object). Consistency can be classified as
follows {Zic90a]:

a. Structural consistency. This refers to the static part of the database. Informally a schema is
structurally consistent if the class structure is a direct acyclic graph (DAG), and if attribute and
method name definitions, attribute and method scope rules, attribute types and method signatures
are all compatible. An object is structurally consistent if its value is consistent with the type of
the class it belongs to.

b. Behavioral consistency. This refers to the dynamic part of the database. Informally an object-
oriented database is behaviorally consistent if each method respects its signature and its code does
not result in run-time errors or unexpected results.

99

In this paper, we will only consider the issue of preserving structural consistency.

We will consider ”acceptable” only those updates that do not introduce structural inconsistency,
while we will allow behavioral inconsistencies that do not result in run-time errors. Any kind of behav-
joral inconsistency that has been caused by an update will be reported to the user (designer). We have
implemented a tool, the ICC which guarantees such consistency.

1.3 Paper Organization

The paper is organized as follows: Section 2 defines more formally the notion of structural consistency
for the O, object-oriented database system. Section 3 presents the list of updates we allow on the
schema, and give a few definitions which will be used in the rest of the paper. Section 4 presents by
means of a selected example, the algorithms performed by the ICC to ensure structural consistency.
Section 5 gives some concluding remarks.

2 Ensuring Structural Consistency

In this Section, we discuss one basic type of consistency relevant to the Oz system (but in general to
every object-oriented database system) , namely structural consistency.

Structural consistency refers to the static characteristics of the database.

We recall here some of the basic definition of O; as defined in [LecRic89a] which will help us to
define the notion of a consistent schema.

We denote T(C) the set of all types defined over a class C. T(C) includes atomic types, class names,
tuple, set and list types.

Inheritance between classes defines a class hierarchy: A class hierarchy is composed of class names
with types associated to them, and a subclass relationship. The subclass relationship describes the
inheritance properties between classes.

Definition 2.1 A class hierarchy is a triple (C, ¢ , <) where C is a finite set of class names, ¢ is
a mapping from C to T(C), i.e. ¢ (C) is the structure of the class of name C, and < is a strict partial
ordering among C.

The semantics of inheritance is based on the notion of subtyping. The subtyping relationship < is
derived from the subclass relationship as follows:

Definition 2.2 Let (C, o, <) be a class hierarchy, the subtyping relationship < on T(C) is the
smallest partial ordering which satisfies the following axioms:

1. e < ¢, forall ¢, ¢’ in C such that ¢ < ¢’. That is, a subclass is a subtype.

2. k[a1 t1,es8nt tnyeesBnsp © tnp) < (811 81,0, 8a |, for all types t; and s;, i=1,...,n such that
t; < 8;. This is subtyping between tuple types. We can refine tuples by refining some attributes
or by adding new ones.

w

. {8} < {t}, for all types s and t such that s < t. This is subtyping between set types.
4. F < s> < <t >, for all types s and t such that s < t. This is subtyping between list types.
5. t < any, for all types t. The symbol any is a type by definition.

As inheritance is user given, some class hierarchies can be meaningless.

In a class hierarchy an instance of a class is also an instance of its superclasses (if any). Therefore,
if class ¢’ is a superclass of class c, then we must have that the type of c is a subtype of the type of ¢’.
More formally:

100

Definition 2.3 A class hierarchy (C, o, <) is consistent iff for all classes ¢ and ¢’, if ¢ < ¢’ then ¢
(c) <o ().

Ezample: This is a consistent class hierarchy. Class Employee is a subclass of Person, (i.e. Employee
~ Person):

class Person
type tuple [name:string,
age: integer,
address: tuple [location: City,
street: string]]

class Employee
type tuple [name:string,
age: integer,
address: tuple [location:City,
street: string],
profession: string,
company: string]

A schema is also constituted of methods attached to classes. Methods have signatures.

Definition 2.4 A method signature in class C is an expression m: ¢ x ¢; x ...x t, — t, where m is
the name of the method, and ¢, ; ... t, are types. The first type ¢ must be a class name and is called
the receiver class of the method.

We are ready to define a schema.

Definition 2.5 An O; database schema is a 5-tuple S=(C, o, < ,M,N), where:

- (C, o, <} is a consistent class hierarchy (see def.3)
- M is a set of method signatures in C
- N is a set of names with a type associated to each name

A schema is therefore composed of classes related by inheritance which follow the type compatibility
rules of subtyping and a set of methods. Attributes and methods are identified by name. Within the
schema, type attributes and method names have a scope rule (see def. 7). When we do not want to
distinguish between a type attribute and a method name, we simply use the term property.
Now we are ready to define what we mean with structural consistency for a database schema.
Definition 2.6 A database schema S is structurally consistent iff it satisfies the following properties:

- if ¢ < ¢’ and the method m is defined in ¢ with signature m:c x t;...t, — t, and method m’ is
defined in ¢’ , and m and m’ have the same name, with signature m’: ¢’ x ty...tj, — t’, then t; <
t! and t < t’ (covariant condition)

- the class hierarchy is a DAG

- if there are classes cl and ¢2 having a common subclass c4, with a property name p defined in
both c1 and c2, but not in C4, then there is another subclass ¢3 of ¢1 and ¢2 in which the property
p is also defined and c4 is a subclass of ¢3.

The first property assures that method overloading is done with compatible signatures, the second
property constrains the structure of the class hierarchy, and finally the last property eliminates multiple

101

inheritance conflicts (also denoted as name conflicts). Definition 2.6 is important, because we will
always consider schemes which are structurally consistent. An update to a schema is a mapping which
transforms a schema S into a (possibly) different schema S’. Schemes S and S’ have to be structurally
consistent. The semantics of the schema update primitives will have to ensure at least that structurally
consistent schemes are produced as a result of an update. In our approach name or type conflicts
occurring as a consequence of an update will not be solved automatically by the system.

We also give an auxiliary definition which will be used in the rest of the paper.

Definition 2.7 Given a property name p and a class C, the scope for p in C, denoted scope(p,C)
is the set of C and all subclasses of C (recursively obtained) where p is not locally redefined plus all
classes where p is referred to with the ”p from C” clause. (The algorithm to construct a scope is given
in Def.3.5)

An existing method or attribute in a class C can be

e locally defined in C or,
¢ inherited from a superclass or,

o specified with the “from C,” clause, C, being the class where p is locally defined.

When we do not want to distinguish between the above cases, we say that a property p “exists” in class
C.
Figure 2 illustrates the three different cases of inheritance.

c1 Cim Cim C2m
| | 4
c3
Cm c \ U
Cm from C2
m is locall C inherits
defined in m from C1 C inherits

the m from C2

Figure 2

2.1 The ICC: A Basic Schema Update Tool

The way the designer updates the schema is a dialogue with an interactive tool called the Interactive
Consistency Checker (ICC). The ICC is a basic update tool which, given a schema and a proposed
update, detects whether structural inconsistencies may occur. It then refuses those updates which
produce structural inconsistencies: the update is not performed. The reason for the refusal of the
update is always given to the user.

3 Schema Updates

We present in this Section the complete list of basic updates one can perform on an O3 schema.

Updates are classified in three categories: Updates to the type structure of a class, to methods of
a class, and to the class as a whole. This classification is fairly similar to the one of [Ba87a,Ba87b].
However, the semantics of some updates is different. Updates have parameters and their semantics
can be given in accordance to application’s requirements. For details the reader is referred to [Zic90a]
[Zic90b} where the syntax and semantics of the operators are defined.

SCHEMA UPDATES:

102

1. Changes to the type structure of a class

Because in O; types can be arbitrarily complex, we have different ways to modify a class type.
We can think of an update u which modifies the type structure T of a class C, as a mapping
between types, u : T — T". Updates of this kind can be broadly classified in two categories: those
for which 7' < T (we call them type-preserving), and those for which T' £ T (we call them non
type-preserving). Of all possible type updates we list here only the most elementary ones:

1.1 Add an attribute to a class type

1.2 Drop an existing attribute from a class type

1.3 Change the name of an attribute of a class type

1.4 Change the type of an attribute of a class type

Updates 1.1 and 1.3 are type-preserving. Update 1.2 is non type-preserving, while update 1.4 is
type-preserving if new- type < old-type.

2. Changes to the methods of a class

2.1 Add a new method
2.2 Drop an existing method
2.3 Change the name of a method

2.4 Change the signature of a method (this update may be also implied by a change to the class
structure graph as defined below)

2.5 Change the code of a method.
3. Changes to the class structure graph

3.1 Add a new class

3.2 Drop an existing class

3.3 Change the name of a class

3.4 Make a class S a superclass (subclass) of a class C

3.5 Remove a class S from the superclass (subclass) list of C
The list of updates defined above can be reduced: There exists a basic set of updates which can be used
to execute all other updates.

The basic set of updates is the following:
BASIC SCHEMA UPDATES:

1.1 Add an attribute to a class type 1.2 Drop an attribute from a class type

2.1 Add a method 2.2 Drop a method

3.1 Add a class 3.2 Drop a class

3.3 Change the name of a class 3.4 Make a class a superclass (subclass) of C

3.5 Remove a class from the superclass (subclass) list of C

The other updates in the previous list can be executed using sequences of basic updates.

103

(e.g. 1.3 =<1.2, 1.1>, this equivalence does not hold at
instance level

1.4 = <1.2, 1.1>, this equivalence does not hold at
instance level

2.3 =<2.2, 2.1>
2.4=<2.2, 2.1>
2.5 = <2.2, 2.1)
3.3 = <3.2, 3.1>, this equivalence does not hold at

instance level)

The sequence of basic updates corresponding to a non elementary update has to be atomic, to avoid
inconsistency.

3.1 Additional Definitions

We give a few more definitions which we will use through out the paper.

3.1.1 DAG

A DAG is the formal representation of the class hierarchy. It is defined as follows:

Definition 3.1 : DAG
A direct acyclic graph (DAG) is defined as a pair (E,, <) where

¢ E. is the set of nodes. Each node represents a class.

® < is a partial order with class Object as root.
VC,C € E.xE,, C’ < C & Cis a direct superclass of C’
& C’is a direct subclass of C.
C’ < C represents an edge between C and C’, C being higher than C’ in the hierarchy. O

Definition 3.2 V C, C’ € E, x E,, we can define a:

e Path between two classes
C<Ce(C=<C)Vv(IACy,..,Ch€E./(C<C,), (Cn < Cn-1)y-, (C2 < Cy), (C1 < C)).
C’ < C indicates that a path exists from C’ to C going up: C and C’ are related, C being higher
than C’ in the DAG. In this case, C is called a superclass of C’ and C’ a subclass of C. [

o Set of all direct subclasses of a class
direct_subclasses(C) = {C; / C; € E. A (C; < C)}.
direct_subclasses(C) is the set of all direct subclasses of the class C. (O

e Set of all direct superclasses of a class
direct_superclasses(C) = { C; / C; € E. A (C < C;)}.
direct_superclasses(C) is the set of all direct superclasses of the class C. 0

e Set of all subclasses of a class
subclasses(C) = direct_subclasses(C) U (U(Ciedirect subclasses(c)) subclasses(C;)).
subelagses(C) is the set of all subclasses of the class C. O

e Set of all superclasses of a class
superclasses(C) = direct_superclasses(C) U (U(C;Edirect superclasses(c)) Superclasses(C;)).
superclasses(C) is the set of all superclasses of the class C. O

104

Example:

Given four classes Cy, C;, C3, Cs, with Cz, C3 subclasses of C;, C; subclass of Cp as shown in figure 3, we
have C;<Cy, C3<Cy, direct_subclasses(Co)={C1}, direct_superclasses(C3)={C;}, subclasses(Co)={C;,
Cz, Cs} and superclasses(C2)={Cj, Co, Object}.

Object
Co
|

Ct

[T—

C2 Cs

Figure 3

3.1.2 Virtual edge

We introduce the notion of virtual edge to represent a "from” clause in the DAG. All definitions here
will be helpful in the detection of name conflicts and type incompatibility in the schema.

Definition 3.3 : A virtual edge represents a “from” clause

Given a property p and two classes C’ and C*, if p in C’ is defined using the “from C*” clause this
requires that p is locally defined in C*. This reference is represented by a virtual edge in the DAG.
This virtual edge is added between C* and C’, it is labeled by the property with name p and it is
denoted by: virtual_edge(C*, C’, p). O

Example: Consider three classes C, C’, C* with C and C* superclasses of C and a property m in
C1 defined using the from clause (see figure 4).
This corresponds to the virtual edge virtual_edge(C*, C’, p) which is equivalent to p in C’ from C*.

|

Cc’ p from C* c?

Figure 4

Note: A virtual edge is “stronger” than ordinary DAG edges. Given a virtual_edge(C*, C’, p) to
determine the inheritance of p in C’ , only this virtual edge is considered and not the ordinary edges.
In our example, C’ inherits p from class C* and not p from class C or another class.

105

In fact, a “from” clause it is used to “force” the inheritance of properties to avoid name conflicts.

Note: In the actual implementation of Oz, the notion of virtual edge is constrained as follows:
A virtual edge virtual_edge(C*, C’, p) exists if and only if there exists a path C’<C".
Our definition of virtual edge is more general than this and allows a reference to a class C* even if it is
not connected to C’.

Definition 3.4 : Set_virtual edge
Consider a property p existing in a class C, we have :
set_virtual_edge(p, C) =
{V / virtualedge(C, V, p) exists} in case p of V is locally defined in C.
otherwise.
The set set_virtual_edge(p, C) contains all classes of C which have a virtual edge going from the class C
where p is locally defined. O

3.1.3 Scope

Inheritance of properties is based upon the scope and use concepts which are defined in this section.
These arising concepts will be helpful in the detection of possible name conflicts arising after a schema
update.

Each property existing in a class has an associated scope. A scope is defined as follows.

Definition 3.5 : Scope of a property in a class
The scope(p, C) of a property p in a class C is the set of classes (including C) which inherit this property
by inheritance or by a virtual edge. O

We now show the algorithm to define the scope of a property p for a class C.
Scope constructive algorithm

Given a class C in which the property p exists, the algorithm is used to build the set scope(p, C).
Begin
temp = @.
For each C’ € direct_subclasses(C)
if p is inherited then temp = temp U scope(p, C’) endif
endfor
For each C’ € set_virtual_edge(p, C)
temp = temp U scope(p, C’}
endfor
scope(p, C) = {C} U temp.
End

Example:

Consider the classes Cy, Cy, Cz, Cs, C4 of figure 5 and the property p locally defined in Cy, C; and Cs.
In C,, p is defined with the “from Cy” clause.

We have scope(p, Co)={Co, Cz, Cs, C4}, scope(p, Cs5)={Cs}, scope(p, C1)={C1}, scope(p, C:)={Ca,
Cs}, scope(p, Cy4)={Cy}.

C; P 'CO P
P
C; p from Co Cs
Cs G p
Figure 5

Definition 3.6 : A name conflict in a class
A name conflict occurs in a class C for a property p
<> there exist two classes C; and C; where p exists and is not locally defined in a common
ancestor class and C € scope(p, C1) N scope(p, Cz)

Note: If a class inherits at least twice a property p locally defined in the same ancestor class then this
property will exit in C only once.

Example: Consider the classes Cp, C;, Cz, C of figure 6 and the property p locally defined in Co.
C inherits the property p locally defined in Cq twice (by path Cy, C;, C and by the path Cq, Ca, C)
but p is considered in C only once. No name conflict occurs since those two p inherited are equal; they
have the same local definition.

Figure 6

Definition 3.7 : A name conflict in a schema.
A name conflict in a schema occurs for a property p
4> there exist at least one class C in the schema where a name conflict occurs for p. O

To express how a property p is defined in a class, we introduce the notion of use.

Definition 3.8 : Use of a property in a class.
The use of a property p in a class C, denoted use(p, C) can be:

1. well_defined: if p exists in C and there is no name conflict in the class for p or,

2. undefined: if p does not exist in C or,

107

3. not.well_defined: a name conflict exists for p in C. O

We now give the algorithm to detect whether the use of a property is well defined, undefined or not
well defined.
Given a class C and a property p, the algorithm returns: well_defined, undefined or not.well.defined.
These correspond to the three values of use (see definition 3.8).
Algorithm
Begin
Case 1: p is locally defined or is derived with the “p from” clause in C.
if there exist at least
- two local definitions for p in C, or
- two ”from” clauses for p in C, or
- a local definition and a “from” clause for p in C
then use(p, C) is not well defined, a name conflict appears. Return not_well defined.
else use(p, C)is well defined. Return well defined.
endif
Case 2: otherwise
Look at all superclasses of C (recursively) -until p is locally defined in each path
leading from C to Object. Note: going up from a class to its direct superclasses
takes only the virtual edge for p if one exists.
Case 2-1: If p is not encountered in at least one path then Return undefined.
Case 2-2: If a unique local definition for p is encountered in those paths
then Return well_defined.
Case 2-3: If at least two local definitions for p are encountered in two different classes
for two different paths (and the definitions of p are not the same)
then a name conflict appears, return not_well defined.
End

Example:
Consider figure Figure 7. We have C,;, C,, C3, C4, C;, Cg, Cy, Cs classes. A property p is locally
defined in C3, Cs and in Cg and p is defined using the “from C3” clause in Cs.
We have use(p, Cy)=undefined, p is undefined in Cy4,
use(p, Cr)=well_defined, p is defined in C7 and no conflict appears in C7, and
use(p, Cg)=not_well_defined, p is not well defined in Cg because p of Cg is defined in Cg
and in C3. A name conflict exists in Cg.

/ObjOCt

C, C; p Cs p
Cq Cs p from C;
CVC7

Ce
Figure 7

108

Definition 3.9 : Scope without conflict

In our system name conflicts are forbidden and all scopes need to be without name conflict. Given a
class C and a property p, scope(p, C)is “without conflict” if and only if V C’ € scope(p, C), use(p,
C’)#“not_well_defined” .

Property 1 :
Given a class C and a property p locally defined in C, if scopefp, C) is “without conflict” then
VYC’cscope(p, C), scope(p, C’) is “without conflict”

Property 2 :
Given two classes C and C’ (C#C’) and a property p existing in those two classes,
if C’ € scope(p, C) then scope(p, C’) C scope(p, C).

Property 3 : Name conflict detection

Given a property of name p, by property 1 and 2 we have:

No name conflict occurs in the schema for p <> V C’ € E; such that p is locally defined in C’, scope(p,
C’)is “without conflict”.

3.1.4 Scope frontiers and type incompatibility

In this section, we introduce the notion of frontiers of a scope. We will see that this notion is of interest
for the verification of type compatibility after a schema update is performed.
Let us first define the root of a scope.

Definition 3.10 : Root of a scope
Given a property p existing in a class C, scope(p, C) has an associated root. This root is denated root(p,
C) and it corresponds to the class where p is locally defined. O

Given a property p existing in a class C, scope(p, C) has two kinds of frontiers, top and lower adjacent
limits.

Definition 3.11 : Top of a scope
Given a property p existing in a class C,
the top of scope (p, C) corresponds to the set of classes belonging to this scope which contains, the class
for which p is locally defined and the classes for which p is defined with the from clause. This set is
denoted top(p, C) and is defined by:
top(p, C) = {C} in case virtual_edge(S, C, p) exists

= 0 in case root(p, C)#C and Avirtual_edge(S, C, p)

in fact, p is inherited in C.
= set_virtual_edge(p, C) U {C} otherwise O

We define here the leaves which allow the definition of the lower adjacent limits (see definition 3.13) for
a given scope.

Definition 3.12 : Leaves of a scope

Given a property p existing in a class C,

the leaves of scope (p, C) correspond to the bottom classes of this scope. The set of those leaves is
denoted leaves(p, C) and is defined by:

leaves(p, C) = {C; / C; € scope(p, C), (A C; € scope(p, C) | C; € subclasses(C;))}. O

109

Definition 3.13 : Lower adjacent limits (lal) of a scope

Given a property p existing in a class C,

the lower adjacent limits (lal) of scope (p, C) correspond to the direct subclasses of its leaves. This set
is denoted lal(p, C) and is defined by: lal(p, C) = Uc€teaves(p,c){Ci / Ci € direct_subclasses(C’)} O

Example:
Consider figure 8. We have Cy, C;, C3, Cy4, Cs, Cg, Cr, Cg Co classes. A property p is locally defined
in Cz, Cs and in Cy and p is defined using the “from C3” clause in Cg and Cy.
We have top(pl CZ):{CZ; CGr C7}
leaves(p, C;)={Cj3, Cq, Cs}
lal(p, C2)={Cs, Cq}

Object
I
Cil
C; p
Cs C4 C; p from C;
| !
Cs P Ce p from Cs N
Co P
Figure 8

To have type compatibility between classes in the DAG, all properties in the DAG need to be type
compatible as defined below. Notation: typing(p, C) is the signature or the type of p, p being a method
or an attribute in a class C.

Definition 3.14 : Type compatibility for a property p in a class C:
A property p existing in a class C is type compatible <>
(V C; € direct_superclasses(C) such that p exists in C;, typing(p, C) < typing(p, C;))
A (V C; € direct_subclasses(C), typing(p, C;) < typing(p, C)). O

As we will see, because a type modification will affect the scope of the entire DAG and not only of a
single class, it is interesting to define a type compatibility notion for a scope. Let us first define a well
typed scope.

Definition 3.15 : Well typed scope
Given a property p existing in a class C,
scope(p, C) is well typed if and only if V C’ € scope(p, C), p in C’ is type compatible (see definition 3.14).
O
We introduce the predicate scope_compatibility(p, C)=True to express that the scope(p, C) is well typed.
scope_compatibility(p, C) = true <

(R1): (¥ C;€top(p, C),V Cicdirect_superclasses(C;) with p existing in C;, typing(p, C)<typing(p,
C))

A

(R2): (¥ Cielal(p, C), typing(p, C;) < typing(p, C)).

Thus, the type compatibility problem for a property p is equivalent to the well typed scope problem.

110

Property 4 : Type incompatibility detection for a property
No type incompatibility occurs in a schema for a given property p <=> ¥ C € E¢ such that p is locally
defined in C, scope(p, C) is well typed.

This shows that using the definition of a well typed scope, the number of comparisons between signatures
or types when a modification is done, can be limited to the frontiers of the modified scopes. In fact, for
a given scope scope(p, C), all classes have the same p, thus the same type; therefore only the frontiers
are of interest.

Moreover, we have:

Property 85 1. If the signature (type) of a property p is replaced by o superior signature (supertype)
then the scope affected is well typed if (R1) is satisfied.

2. If the signature (type) of a property p is replaced by an inferior signature (subtype) then the scope
affected is well typed if (R2) is satisfied.

3.2 Basic and Parametrized Updates

The updates presented at the beginning of Section 3 are parametrized updates (see [Zic90a] for details).
We can consider them still high level updates. In fact, among these updates, there exists a basic set
of updates such that their corresponding structural check can be used to do the structural check of the
other ones.

Therefore, we decided to define lower level schema updates. This level is composed of the following
basic updates: (Note: The schema structural check is the same for the attributes and methods updates:
we will in the following speak of property updates.) Thus we have defined a set of lower level updates

Changes to the properties of a class

« add a property local definition e drop a property local definition
¢ add a “from” clause for an existing property e drop a “from” clause for a property

o replace a local definition into a new local defi- e replace a from clause into a new local definition
nition or a from clause for a property or a from clause for a property

Changes to the type structure of a graph

¢ add a node e drop a node
e add an edge e drop an edge
e change the name of a node

which can be used to implement all possible semantics of the updates (the ones of the high level) as
indicated by the user.

In [DeZi91] it is shown the correspondence between user-parametrized updates and the basic updates.

When the user submits to the ICC a high level update u, this update is translated into a sequence of
basic updates. For each of the basic updates the ICC performs a consistency check. If all basic updates
composing the high level update are validated, then the high_level update is also validated. If one of
the basic updates composing the high_level update induces structural inconsistency in the schema, the
high_level update is refused and a warning is given to the user.

111

The ICC checks if a schema S after an update u is structurally consistent.
By definition, a schema S is structurally consistent iff the following invariants are satisfied:

Definition 3.16 : Invariants for a structural consistency

o Class lattice invariant:
~ All classes must be connected in the DAG
— The root of the DAG is the class Object
— The name of a class must be unique in the DAG
¢ Name conflict invariant: use(p, C) must be well_defined for all properties p existing in a class C.

o Type compatibility invariant: All classes in the schema have to be compattble.
a

The ICC is a basic tool; it only detects inconsistencies introduced by an update. It does not solve
them automatically.
Given a schema and an update as an input, the ICC detects whether structural inconsistencies occurred
or not. If a structural inconsistency arises the tool refused the update and provides all the detected
inconsistencies to the user. If no structural problem occurs the update is done.

A study of a more sophisticated tool is considered in {De90a).

4 Schema structural consistency check

This section describes by means of a selected example some of the algorithms used by the ICC to verify
schema structural consistency.

Notation:In the example, for each updates we consider an initial state and a final state. To represent
those, each concept will be marked with the after or before marks. For example, given an update.
acope(..) = scopey.fore(..) before the update, and scope(..) = scopeg s, (..) after the update.

While performing an update, the ICC check its effects on the schema to ensure structural consistency.

The structure of the checks is similar and include the following steps:

Algorithm:

1. C_check: A set of constraints are checked.

2. The DAG structure is checked.

3. NC_check: Name conflicts are detected.

4. TI.check: Type incompatibilities are detected.
5. CD_check: The dependency problem is studied.

If one problem occurs the update is refused otherwise it is performed.
end

4.1 An Example

We present in this section the algorithms to detect structural inconsistencies when performing a specific
update: Adding a property in a class. The description of the algorithms for the other update primitives
defined in Sect. 3.2 is reported in [DeZi91].

112

4.1.1 Property addition

Let us consider the addition of a property p in a class C. This addition consists of adding a local defi-
nition of p in C using the add_local_property(p, C, <signature, type>) update.

AddJocal property: add_local_property(p, C, <signature, type>)
e Semantics:

1. The DAG structure is not affected.

2. We consider two cases :
— Case 1: usey.por. (p, C)="“undefined” (p did not exist in C)
— Case 2: uses.fore (p, C)=“well defined” (p existed in C).

If neither a name conflict nor a type incompatibility occurs then
— case 1: scope(p, C) is created.
— case 2: scopesfier(p, R) = scopesesore(p, R) - scope(p, C) with R=rooty.fore(p, C).
A definition for p is locally added in class C. This property p is then propagated

to the subclasses of C until a redefinition of p occurs.
else the update is refused.

We need to check name conflicts and type compatibilities. We first define the algorithm
for name conflict detection then the one for type incompatibility detection.

o Name conflict detection:
A conflict can occur only in classes of scopeagier(p, C).

— case It usey fore (p, C)=“undefined”
usea feer (p, C’)=“not_well_defined” for C’ € 8copeafier (p, C) (C'#C)
<> p was inherited in C’ before the update.
— case £ useyofore (p, C)=“well defined”
* usey i, (p, C)="“not.well.defined” <« CEtopye fore (P, R) with R=rooty, rore (p, C)
* usegfrer (p, C’)="“not_well_defined” for C’ € scopeasier(p, C) (C'#C)
+ ((3Xedirect_superclass(C’)/
(X¢scopesgier(p, C) A p exits in X before the update)
o (XEscopeapte (3, C) A aster (p, X)="not.well defined®))).

Example: Let us look at figure 9 which gives two examples of name conflict after a property
addition.

Algorithm: NC_add_prop(DAG, p, C)

Goal: This algorithm searches for the classes where a name conflict for p occurs after the addition
of p in class C.

Input: the schema (DAG), the property p and the class C where P has to be added.

Output: the set of classes where a name conflict occurs for P

Procedure:

- if usepefore (P, C)="undefined”

113

Object Object
/\
C: p ¢ |R P
cl C3 P C
—
Case 1: Icl
We add a property p in class C
A conflict occurs in C; C
Case 2:

We add a property p in class C
A conflict occurs in C; and C;

then for each class C’ € scope, .- (p, C) (C'#£C) do
if usespier(p, C’)="“not_well defined” (see name conflict detection: case 1)
then return CONFLICT in C’ endif
endfor
endif
- if usep, for (P, C)="“well defined”
then if use, s, (p, C)=“not_well_defined” (see name conflict detection: case 2)
then return CONFLICT in C and exit
else for each class C’ € scopeqsier (p, C) (C’#C) do
if useqgier (p, C’)=“not_well_defined” (see name conflict detection: case 2)
then return CONFLICT in C? endif
endfor
endif

endif
Endprocedure.
Remark: To improve this algorithm, only the first conflict encountered for each path of scope, ster (P>
C) going down by width has to be given: the others are implied by the upper one. Thus, to be
more efficient the best way is to order the classes of scopeasicr(p, C). The order should be the
order of its building when the hierarchy is traversed by width from C going downward.
Example: Let us look at figure 10. We have classes C, R; Rz, Cj, C;, Cs and a property p is
locally defined in R, and in Rz. The addition of a property p in class C results in a conflict in Cj,
Cz and Cs. The reason for the conflict in C; and Cg is the same: it is the existence of p in R;.
Thus, the detection algorithm would have to warn of the conflict in C; and C; and that is all.

Type incompatibility detection:

The classes which may be affected by type incompatibility are those of scope(p, C); thus we have
to verify that the scope frontiers are well defined after the update.

Type compatibility will be satisfied after the update if scope_compatibility(p, C) = true (see defi-
nition 3.15).

By hypothesis, after the update we have: top,ss.,(p, C) = {C}. We have two cases:

— case I: usey.sor. (p, C)="“undefined”
We just have to check type compatibility for the lower adjacent limits of scope, rter(p, C).
That means to verify rule (R2) for the definition of scope_compatibility(p, C). The reason is
because top,ster(p, C) = {C} and C has no superclasses where p exists.

— case 2: usey.for.(p, C)="“well defined”
Type compatibility for scopeas., (p, C) has to be verified for all its frontiers (see section 3.14).
Rules (R1) and (R2) of scope_compatibility(p, C) needs to be verified.
Algorithm: TI_add.prop(DAG, p, t, C)

Goal: This algorithm searches for the type incompatibilities which occur in the schema after the
addition of a property p in a class C.

Input: the schema (DAG) which is modified, a property name p with its signature or type ¢
(t=typing,se.r (P, C)) and the class C where p has to be added.

Output: the classes where a type incompatibility occurs for the property of name P-
Procedure:

if usep.forc(p, C)=“well_defined” with R = 100ty fore (P> C)
then we are in case 2
- if t = typing(p, R) then Return No_incompatibility, Exit endif
- if tLtyping(p, R) (see definition 2.3)
then Return Incompatibility in C, Exit
else for each class C’ € laly s, (p, C) do
if typing(p, C’)£t then return Incompatibility in C? endif
endfor
endif
else we are in case 1
for each class C’ € lal, ., (p, C) do
if typing(p, C’)£t then return Incompatibility in C? endif
endfor

115

endif
Endprocedure.

5 Conclusions and future work

We have specified and implemented a tool (ICC) for schema evolution ensuring schema structural
consistency.
This tool provides two levels of updates.

¢ The lower level is a set of basic updates. This level ensures the completeness of the tool since its
provides all possible updates to obtain every consistent schemes.

o The higher level is composed of parametrized updates which are expressed using the lower level
updates.

® The tool ensures the structural consistency of a schema while performing an update: the invariant
properties for schema structural consistency are checked when an update is performed therefore
only valid schemes are produced.

The ICC provides the basic mechanism for schema evolution. It has the advantage being flexible.
The higher level updates can be redefined or completed by new parametrized updates. The ICC can be
used to built on top a more sophisticated tool: an adviser helping the schema designer and providing
the facility to define update transactions. So far, we have implemented two running prototypes of the
ICC tool. The ICC prototypes are intended as experiments towards realizing a more powerful schema
designer tool. The ICC tool has been developed independently from the O product, and therefore,
there is no direct relationships with the schema designer provided by the forthcoming O; product.

As future work, we plan to:

1. build a more sophisticate tool on top of the basic one described in this paper.

2. ensure behavioral consistency when updating the schema.A first proposal which uses a data-flow
technique is reported in [CLZ91].

Acknowledgments
We thank the anonymous referees for valuable comments.
Luca Breveglieri provided invaluable support in consulting for LaTeX.

References

{CLZ91] Coen A., Lavazza G., Zicari R.,“Updating the Schema of an Object-Oriented Database”
IEEE Data Engineering bulletin,July 1991, to appear.

[Ng&Ri88] Gio-toan Nguyen and Dominique Rieux, “Schema Evolution for Object-Oriented
Database Systems”, INRIA Research report, 1988 December.

ORION

[Ba&AlB7a] J. Banerjee et al, “Semantics and Implementation of Schema Evolution in Object-
Oriented Databases”, ACM SIGMOD 1987.

[Ba&Al8Tb]
[Kim&Cho88]

[Ki&Al88)

[PendzStei87)

[Skad&:Zdo(a)]
(Ska&Zdo(b)]

[2do87]

(Ban91]

[Ben&Algg)
[De90a)

(De90b]

[Dezio1]

[Gams9]
[LecRic89a)
[LecRic89b]

[VelAl89)
[Wal89)

116

J. Banerjee et al., “Data Model Issues for Object-Oriented Applications”, ACM TOOIS,
vol.5,No.1, January 1987.

W. Kim, and Hong-Tai Chou, “Versions of Schema for Object-Oriented Databases”,
Proc. 14th VLDB, 1988, Los Angeles.

W. Kim et al., “Integrating an Object-Oriented Programming System with a Database
System, ACM OOPSLA , September 1988.

GEMSTONE

D.J. Penney, J. Stein, “Class Modification in the GemStone Object-Oriented DBMS”,
ACM OOPSLA October 1987.

ENCORE

A.H. Skarra,S.B. Zdonik, “The Management of Changing Types in an Object-Oriented
Database”, ACM OOPSLA, September1986.

A.H.Skarra,S.B.Zdonik, “Type Evolution in an Object-Oriented Database”, in Research
Directions in Object Oriented Systems, MIT Ppress.

S.B. Zdonik, “Can Objects Change Types? Can Type Objects Change? (extended
abstract)”, Workshop Roscoff September 1987.

02

F. Bancilhon, C. Delobel, P. Kannelakis, (eds.) “The Oz book”, Morgan Kaufmann
publisher 1991 to appear.

V. Benzaken et al.,“Detail Design of the Object Manager”, Altair, October 1988.

C. Delcourt, “The schema update problem for the O, object oriented database system”,
July 1990.

C. Delcourt, “Schema updates: Integrity Consistency Checker for O2 Object Oriented
Database System”, July 1990.

. DelCourt, Zicari R.,“The Design of an Integrity Consistency Checker (ICC) for an
Object-Oriented Database System”, Politecnico di Milano; Report 91-021, November
1990.

S. Gamerman, “Detailed Specifications of the Type and Method Manager V04”, Altair,
January 1989.

C. Lecluse,P. Richard, “The O2 Database Programming Language”, Altair Report 26-89
January 1989. Also in Proc. VLDB , Amsterdam, 1989.

3
C. Lecluse,P. Richard, “Modeling Complex Structures in Object-Oriented Databases”,
in proc of the PODS 89 Conference, Philadelphia, March 29,31, 1989.

F. Velez et al., “The O2 Object Manager: an Overview”, Altair, February 1989.

E. Waller, PhD Thesis in preparation.

117

[Zic90a) R. Zicari, A Framework for Schema Updates in an Object-Oriented Database System,
in the O2 book, (F. Bancilhon, C. Delobel, P. Kanellakis, eds.), Morgan Kaufmann
publisher, 1991 to appear. A short version in Proc. IEEE 7th Data Engineering Conf.,
April 8-12, Kobe, Japan 1991.

{Zic90b] R. Zicari, Primitives for Schema Updates in an Object-Oriented Database Sys-
tem, in Proc. OODBTG Workshop of the accredited standard committee, X3,
SPARC,DBSSG,00DBTG, October 23, Ottawa, 1990.

