DEFINITION OF REUSABLE CONCURRENT SOFTWARE COMPONENTS 1

S.Crespi Reghizzi G.Galli de Paratesi
Dipt. Elettronica - Politecnico di Milano, Piazza Leonardo, 32 - Milano, Italy 20133.

S.Genolini
TXT Ingegneria Informatica SpA
Via Socrate 41, Milano, Italy 20128

Abstract

In O0.0. languages with active objects, a constraint (or behaviour) on method activations
is needed to avoid inconsistencies and to meet performance requirements. If the constraint is
part of a class definition, the class population grows with the product of the number of
behaviours. As pointed out in [Goldsack and Atkinson 1990] this undesirable growth may
be controlled by separating the specification of the functional characteristics and the
behavioural characteristics of a class. This work extends the concept of behavioural
inheritance (b-inheritance) which provides a behaviour to a sequential class. Furthermore,
the interaction between b-inheritance and inheritance is discussed. Deontic logic notation
for specifying behaviour is extended to deal with the definition of more complex constraints
and to improve reusability characteristics of components. The proposal is formalized by
extended Petri nets and the translation into a concurrent language is outlined. The project
is under development within the O.0. ADA extension DRAGOON [Di Maio et al 1989].

1. Introduction

This work addresses the specification of software components, for concurrent systems in
the specific perspective of software reuse. A first, more conservative, approach to concurrent
component design assumes an existing collection of sequential components, which have to
be used in a concurrent setting; this can cause inconsistencies in state variables, saturation
of resources or other problems, unless suitable restrictions are imposed on concurrent
activations.

A second, more organic approach, not investigated in this paper, assumes that components
are designed from the beginning with concurrent use in mind. This approach is strongly
recomandable in the design of highly parallel systems, since the very structure of
algorithms differs from the sequential case.

A typical 0.0. language with classes, multiple inheritance, and objects is taken into
consideration; classes can be active, i.e. endowed with a control thread. Method invocation is
the protocol for communication betweeen objects. Because of the presence of many threads,
methods of an object can be concurrently calted causing unpredictable results: hence the

I"This work was initially supported by ESPRIT Project DRAGON, and is continuing under
project REBOOT. We also aknowledge support by Italian MURST 40% and CNR.



149

need to specify a constraint on their activations. Constraints are also motivated by the need
to control computer resource usage (e.g. by limiting the number of concurrent activations of
areentrant method).
There are essentially two basic strategies for introducing concurrency features [America
1989]. The first approach is to encapsulate sequential and concurrent features within the
same class specification. The second is to superimpose concurrency constructs as an extra
layer, orthogonal to the object-oriented paradigm. Specifying sequential and concurrent
features at the same time may raise two kinds of problems:
- First: there may be a conflict between the use of inheritance to support software
adaptability, and the inclusion of synchronization constraints in the class, to ensure
correctness. In fact, modification of a class functionality may involve adding new
methods or removing existing ones, thereby making the synchronization constraints
inconsistent w.r.t. the new class interface.
- Second: class population increases by a large factor. For instance a class
SymbolTableManager can have a variety of behaviours, such as mutual exclusion on all
methods, concurrent activation of methods performing a read operation but mutual
exclusion of methods involving updates, concurrency limited by a constant k in order to
avoid task proliferation, various priority constraints, etc. The definition of a separate
class for each combination of functional and behavioural specifications besides being
unpractical, moves in the opposite direction of software reuse.

As a consequence it was argued ([Goldsack and Atkinson 1990], [Di Maio et al 1989]) that
synchronization constraints, called behaviours, should not be a part of class specification,
but should be superimposed using an orthogonal construct. Class behaviour must be
specified separately and independently of functionality: a behavioural class (b-class) is an
abstract, generic, specification of behaviour. Multiple inheritance, called bekavioural
inheritance, is exploited to associate a synchronization constraint, specified by a
behavioural class, with the methods of a sequential class.

This approach is consistent with the hypothesis that the design of concurrent behaviours
and the reuse of existing classes are the concerns of two different kinds of persons dealing
with a software component base. The normal user is not expected to design new abstract
behaviours, but only to use library's b-classes, whereas the expert user can specify new
behaviours to be added to the component base.

This research focuses on the notation for specifying concurrent behaviour, on the
formalization of behavioural inheritance by extended Petri nets, and on the automatic
generation of concurrent code for behavioured objects.

In Sect. 2 the notion of concurrent behaviour, behavioural inheritance and its relation to
inheritance is discussed. Furthermore, a gamut of constructs for expressing generic
synchronisation constraints is analyzed using the method of deontic predicates (a notation
related to path expressions [Campbell and Habermann 1974]). For each construct.
expressive power, degree of reusability and runtime efficiency are evaluated. In Sect.3 the
formalization of the behavioural heir by means of Petri nets extended with firing predicates



150

is presented together with an implementation in terms of Ada tasks, with optimization
options.

The research is part of DRAGOON, an 0.0. variant of Ada designed to support reuse,
distribution and dynamic reconfiguration ([Di Maio et al 1989]), but the concepts, notation,
formal definition, and implementation are applicable to O.0. languages, such as C+ + or
Eiffel. The implementation can be adapted to other multi-task environment, e.g. Unix.

2. Specification of concurrent behaviour

In our reference model objects can be active. An active abject is an instance of an active
class, that is of a class which has a thread in addition to methods. A thread is similar to a
method, except that it cannot be invoked but is activated at object instanciation time. Here
we need not be concerned with object instanciation, but we can assume that in the system
there are several concurrent activities, which can simultaneously invoke the methods of an
object. This raises the issue of specifying a synchronization rule, also called a behaviour, for
the activation of methods. There are different scenarios in which the rule could constrain
the order of activation of methods:

-methods of a single object;

-methods of different objects of the same class;

-methods of any object of any class.

For simplicity we restrict the scope to the first case: in other words, we do not address the
issue of regulating the activations of methods belonging to different objects. The restriction
causes no loss of generality, at least in principle: in fact a semaphore can be easily defined as
an object with two methods signal and wait, and any concurrent system can be designed
using semaphores.

We call free a class (f-class) without constraints on method activations: this means that its
methods can be executed in parallel on behalf of different active calling objects. When no
other concurrent behaviour is indicated, what should the default be? Without a default no
class can be instanciated unless the designer provides a behavioural specification: a burden
for him when the system to be designed is purely or predominant sequential. The following
reasonable alternatives have been considered:

1 -default behaviour is free;

2 -default behaviour is mutually exclusive;

We assume that classes are free by default; this is sometimes a dangerous assumption, since
concurrent activation of methods originally intended for serial execution could cause critical
races or inconsistencies. But the opposite hypothesis 2 causes inacceptable penalty on run-
time efficiency, because every object must be implemented as a task. We prefer to leave to
the designer responsibility for the introduction of a mutex constraint when needed.

Concurrent behaviours are specified by special abstract classes, called behavioural
(shortly b-class). A class which can be instanciated, because all of its methods have a body,
is called concrete (c-class); otherwise it is an abstract class (a-class). In order to regulate the



151

concurrent behaviour of a free class, we use multiple (actually double) inheritance: the first
parent is a f-class (but see later for another possibility), the other is a b-class, and the heir is
the result of the prescribed regulation for the methods of the f-class. This heir class is called
behavioured or regulated (r-class), and this special form of inheritance is called behavioural
(b-inheritance).

For instance, consider (Ex.2 in Fig 2. ) the concrete f-class Buffer3 (with methods put, get
and size), and the b-class Mutex: the result of b-inheritance is an r-class, BufferMutex3. An
instanciation of BufferMutex3 is an object interfaced by mutually exclusive methods put, get
and size.

Combination of b-inheritance and inheritance

An important issue is the combination of concurrent and functional specifications within the
class hierarchy. In a sequential component catalogue, multiple inheritance relations link a
class to its parents and siblings (subclasses).

Moving down an inheritance chain, one usually finds an abstract class progressively made
concrete by method bodies, enriched by new methods, and specialized by method
redefinitions. Sometimes methods are canceled or hidden. Of course (partially) abstract
classes cannot be instanciated. The question is where the concurrent behaviour should be
specified, inside the inheritance graph (which is a DAG). The range of possibilities for b-
inheritance is presented in Fig.1. We comment each possibility.

Parent 1 (P1) Parent 2 (P2) Result (R)
1 f-class N a-class b-class r-class N a-class
2 f-class N c-class b-class r-class N c-class
3 r-class N a-class b-class r-class N a-class
4 r-class N c-class b-class r-class N c-class

Fig.1- Possible domains of parents in behavioural inheritance.

1 - b-inheritance can only be applied to a free class, i.e. at most once along a path in the
DAG. This means that the behaviour to be attached to a class P1 must be specified in a
single step. If P1 is abstract, the result R is not instanciatable.

2-same as 1, but in addition P1 must be a concrete class, hence R is instanciatable.

3 - P1 is a behavioured class (abstract), resulting from a previous b-inheritance. Thus an
r-class can be obtained by incrementally specifying its behaviour in several steps down the
DAG path.

Cases 1 to 3 are illustrated by the examples in Fig.2.

4 - same as 3, but P1 must be concrete; R is thus instan-iatable.

For simplicity and code efficiency we opted for 2, ruling out the possibilities of creating
abstract behavioured classes and of superimposing onto a behavioured class anothe:
behaviour. Other reasons for this choice are presented later.

Actually, in order to complete the picture, we need to consider (Fig.3) the allowed domains



152

Case 1-Example 1

Case 2 - Example 2

i Put
] Put ‘ \ BUFFER2 |ITut
BUFFERI1 ¥ MUTEX ! Get
Get t K Let
X »
e e .
.\—\—--.,’ P 7 .,
7 M BUFFER3 |Put / MUTEX
/ BUFFER |Put Get | ;
MUTEX1 |Get . .
- Size »
o .
l \\— .7
* . * h
BUFFER |Put BUFFER |Put
MUTEX2 MUTEX3 |Get
Qe_t < * .
Y ~ms | Size
Case 3 - Example 3 ~
Put /// . ™
BUFFER4 | / MUTEX
GEt N ;
v
7
\ e
'S >
BUFFER |Put
MUTEX4 |Get
- .
L3
b-class ------ I
r-class --- - A > Put eI o
[ cclass BUFFER |2UL | “ALTERNATION
f-class | ) w— § MUTEX5 |Get | J
a-class , .. »
t * e | Size S s -
% b 4
,/
\a- R
BUFFER |Put
MUTEX
ALTERN | Get
. #|Size

Fig.2 - Inheritance (solid arrows) and behavioural inheritance (dashed arrows)
Methods provided with a body are underscored.



153

of parent classes for normal (non behavioural) inheritance. The cases of one parent or of
more than two parents can be treated similarly and are omitted. The central question here is
whether normal inheritance should be legal when one (cases 4,5,6) or more (cases 7,8,9)
parents have already a behaviour. In principle one could conceive an inheritance relation
between b-classes: for instance a b-class ReaderWriter with formal methods Read and Write
defines the usual rule (mutex between writing and between writing and reading); then this
behaviour could be specialized by inheritance, by means of a second b-class
ReaderWriterWithPrecedence imposing the constraint that no reading should be allowed
when a writing request is pending. These possibilities were excluded on the following
grounds: simplicity, code efficiency, the difficulty to treat suppressed methods, and the
opinion that composing the behaviours of two classes is not essential, because behaviours
are seldom so complex to justify an inheritance taxonomy. Besides, suppose class P12 is the
heir of two r-classes P1(M1A ,M1B) and P2(M2A,M2B), where MI1A, M1B, M2A and M2B
represent the corresponding methods. In order to regulate concurrency (e.g. by mutex) of the
methods originating from distinct parents, one should then define another class b-inheriting
from P12 (which is an r-class), and from a b-class mutex. This is case 3 (or 4) of Fig.1, that we
intended to exclude. Therefore only cases 1,2,3 of Fig.3 are legal.

In conclusion a behaviour can be attached by b-inheritance only to a concrete, free class.
This must be the last step in the chain, since normal inheritance can only be applied to free
classes. Since parent 2 of b-inheritance is concrete, we can refer to it as an object, rather
than a class, understanding by this term the instance of the P2 class to which behaviour is to
be attached. Experience will tell us whether this choice is too restrictive.

Parent 1 (P1) Parent 2 (P2) Result (R)

f-class N a-class

f-class N a-class

f-class N a-class

f-class N c-class

f-class N a-class

f-class M a-class

f-class N c-class

f-class N c-class

f-class N c-class

r-class N a-class

f-class N a-class

r-class N a-class

r-class N c-class

f-class N a-class

r-class M a-class

r-class N c-class

f-class N c-class

r-class N c-class

r-class N a-class

r-class N a-class

r-class N a-class

r-class N c-class

r-class M a-class

r-class N a-class

Nej e RSN =N S B VCH i G e

r-class N c-class

r-class N c-class

r-class N c-class

Fig.3 -Possible domains of parents in normal (non-behavioural) inheritance

Specification of behavioural classes

A b-class abstractly specifies constraints to be imposed on certain events (method
activations). It does so independently of the actual methods of any f-class, by referring to
formal method names, that will be bound to actual method names at b-inheritance time.



154

Several possible styles of specification could be adopted: a concurrent programming
language, Petri nets or path expressions [Campbell and Habermann 1974]. We chosed the
deontic logic, a predicative notation [von Wright 1980], which is similar in power to path
expressions and quite adequate for the job.

For each formal method parameter MF of a b-class there is a deontic axiom of the form:
permitted(MF) & deontic predicate. Activation of the corresponding actual methods MA,, ...,
MA, is permitted only when the predicate (right-hand side) is true. Notice that MF stands
for a set of actual methods, to be ruled by the same constraint.

Deontic expressions use a few historical operators returning the activation history of
methods. Fig.4 summarizes the basic and derived operators.

Operator Meaning

Deontic predicate head

per(MF) Activation of MF is permitted iff predicate is
true.

Historical operators | Historical operators count specific
occurrences of events since system start time

req(MF) No. of requests of method MF
act(MF) No. of activations of method MF

fin(MF) No. of terminations of method MF
State operators State operators return the number of items

currently present in run-time system queues

act.now(MF) --derived |No. of current activations of method:
act-now( MF)=act( MF) - fin( MF)

req-now(MF) --derived |No. of pending requests of method:
req-now( MF) =req( MF) - act( MF)

Fig.4 - Historical and state operators. When MF is a set of methods, the
operators return the aggregate result for all methods MA in the set.

Historical and state dperators can be extended in the natural way to a set of methods instead

that to a single one.

Mutex, mutual exclusion of methods (MF;, MFg, ...), is a common deontic expression:
per(MF)) & Vj: act.now(MFj)=0 --i=j prevents multiple activations of same method

It is convenient to shorten this expression with the notation (> <).

Several possibilities of increasing complexity for the deontic predicate are shown in Fig.5

and discussed on later. We now explain the syntax referring to Ex.1 of Fig.5. Formal method

parameters are introduced by the keyword "ruled", for each formal parameter there is

exactly one deontic axiom. This specification clearly imposes that the first method to be

activated is FOPS (i.e. one of the actual methods that will be bound to FOPS by b-

inheritance), since per(FOPS) is true when and only when act(FOPS) =fin(SOPS)=0 Once

FOPS has been activated, act(FOPS) becomes 1, hence per(SOPS) becomes true, and

per(FOPS) false, etc. Before discussing the other cases of Fig. 5 we present an explanation



155

Arguments Examples
1 -Historical and state |behavioural class ALTERNATION is
operators (see Fig.4) ruled FOPS, SOPS; -- formal methods are
applied to formal -- partitioned into two sets : F(irst)__OP__ Set and
methods - g(econd)_OP_Set
where
per(FOPS) & act(FOPS) = fin(SOPS)
Example : alternation of --FOPS activation is permitted iff the no. of past
activations of two sets of --activations of FOPS and SOPS are equal;
methods FOPS and per(SOPS) & fin(FOPS) > act(SOPS)
SOPS --SOPS activation is permitted iff the no. of
--finished activations of FOPS exceeds the no.
--of past activations of SOPS;
end ALTERNATION;
2- Generic b-class generic
w.r.t. a parameter NUM : POSITIVE;

behavioural class LIMITER is
Example:limits the max | ruled OPS;

number of active where
methods per(OPS) & act.now(OPS) < NUM;
end LIMITER;
3 -Generic b-class w.r.t | generic --a generic b-class
the number of method K : POSITIVE; -- the no. of priority groups;
groups behavioural class PRIORITY is
ruled OP enum; --enumeration of sets of formal

--methods in order of decreasing priority;

Example: methodsare |where

activated according to per(OP'FIRST) & (> <);--> < is mutex;

their priority per(OP) & per(OP'PRED) and

req-now(OP'PRED) =0;

--OP activation is permitted iff activation of the
--preceding (in the enumeration) formal set of
--methods is permitted, and there no pending
--requests for it;

end PRIORITY;

Fig.5 - Arguments of deontic predicatesin behavioural classes.

of b-inheritance.
A b-class is used in b-inheritance to provide a bhehaviour to a c-class. Consider the
examples of b-inheritance in Fig.6, which refer to the b-classes of Fig.5.
Case A (Fig.6): The f-class UNLBUFFER has three methods PUT, PUTLONG and GET, the
b-class is ALTERNATION (Fig.5), and the result is the r-class ALTERNATION.UNL
BUFFER. The syntax identifies the parent b-class by the keyword "ruled by". Two actual
methods, PUT and PUTLONG, correspond to the formal FOPS, and GET corresponds te
SOPS. Thus a possible activation sequence is: PUT, GET, PUT, GET, PUTLONG, GET, ....
Not all kinds of behaviour can be conveniently expressed by such b-classes: for instance
the constraint that the number of active methods should be less than a constant, NUM . The
generic parameter NUM is introduced in Ex.2 of Fig.5. in order to avoid the need of a
separate b-class for each different value of NUM.



156

Arguments Examples

4 -Formal Boolean functions generic
(guards) returning a truth value | with function FULL_GUARD return BOOLEAN;
depending on the state of the behavioural class GUARDED is

formal object. ruled PT, GT;
where
Example: activations of two sets | per(GT) & (> <) and act(GT) < fin(PT);
of methods (PT and GT) are -- no underflow
permitted in mutex, with per(PT) & (> <) and not FULL__GUARD;
additional constraints against --no overflow
underflow and overflow; size of per(FULL_GUARD) & (><);
buffer is unknown to the b- end GUARDED;

class, but a Boolean formal
function FULL__GUARD is
used to inspect the state of the
buffer. This function is
activated in mutex.

5 -Formal functions generic

returning the state of the formal | with function MAX return NATURAL;

object. behavioural class GUARDED__LIMITER is
ruled OP,SETUP;

Example: the max number of (MAX SETUP);

activations of OP is determined |where

at run-time. The number can be |per(OP) & act.now(OP) < MAX and

changed at run-time by calling act now(SETUP) = 0 and

the method SETUP req.now(SETUP) > 0;

per(SETUP) & act.now(MAX) =0 and
act.now(SETUP) = 0;

per(MAX) & act.now(SETUP) = 0 and
req-now(SETUP) > 0;

end GUARDED__ LIMITER;

6 -Parameters of formal generic
methods type OP_TYPEis (<>)

behavioural class MULTI__ QUEUE is
Example:determining the ruled A(OP_TYPE),
priority level on the value of where per(A()) & act(A(I)) = fin(A(D))
parameter I --Iisin the range of OP__TYPE

end MULTI__QUEUE

Fig.5 (continued) - Arguments of deontic predicates in behavioural classes.

Consider next the activation of methods according to their priorities. If the methods can be
partitioned in a fixed number k of priority groups, the deontic specification is:

per(MF) & (> <);
per(MF3) & (> <) and req.now(MF)=0;

per(MFk)) & (><)and req.now(MFy_1)=0and ...... req.now(MF1)=0;

This is verbose and strictly dependent on k¥ A different b-class would be required for
different numbers of priority groups. To solve the problem. generic b-classes have been
introduced. The use of recursive deontic definitions (case 3 of Fig. 5), permits a single
specification of priority behaviour, independently of the number of priority groups. In this
case the number of formal methods is determined at inheritance time. Correctness



157

fclass b-class : .
(1st parent) (2nd parent) b-inheritance
A) ALTERNATION { class
class UNI__BUFFER is ALTERNATION_UNI_BUFFER
procedure PUT(ITEM : in is
ELEMENT); inherits UNI_ BUFFER;
procedure PUTLONG ruled by ALTERNATION;
(LONGITEM: where
in LONGELEMENT); PUT, PUTLONG = FOP;
procedure GET(ITEM : out GET = SOP;
ELEMENT); end
end UNI__ BUFFER; ALTERNATION__UNI_BUFFER;
B) PRIORITY class PRIORITY SERVER is
class SERVER is inherits SERVER;
procedure FIRST; ruled by PRIORITY;
procedure SECOND; where
procedure THIRD; K=3;
end SERVER; FIRST =0P[1];
SECOND=0P[2];
THIRD =0P[3];
end PRIORITY SERVER;
C) GUARDED class
classPOLY_BUFFERIis GUARDED_POLY_ BUFFERis
procedure PUT(ITEM : in inherits POLY_BUFFER;
ELEMENT); ruled by GUARDED;
procedure PUTLONG(ITEM : where
in LONGELEMENT ) ; PUT, PUTLONG = PT;
procedure GET(ITEM : out GET = GT;
ELEMENT); IS_FULL = FULL_GUARD:;
function IS__FULL return end .
BOOLEAN; GUARDED_POLY_ BUFFER;
end POLY__ BUFFER;
D) MULTI__ class Q_ MESSAGE__HANDLER
class MESSAGE_HANDLER |QUEUE is
is inherits MESSAGE__HANDLER
rocedure ruled by
END(M:MESSAGE; MULTI__QUEUE(PRIORITY)
C:PRIORIY) where
end MESSAGE__HANDLER A(I) = SENDM, C =1);
end Q_MESSAGE_HANDLER,;

Fig.6 - Examples of b-inheritance.

conditions of recursive definitions are presented in [Galli 1991].

A second solution uses universal quantification instead of recursion:

generic

K : POSITIVE; -- the no. of priority groups;

behavioural class PRIORITY is

ruled MF enum; -- keyword "enum" indicates that there is an ord

per(MFy)) € (><)and V1=i<k:req.now(MF;) =0

end PRIORITY;

ered set of method groups,

Going back to the priority problem, suppose now that priority does not depend on the method
name M, but on the method caller, and that the caller priority is encoded by a parameter of
the method: thus M(1) takes priority over M(2). The previous deontic specs are unsuitable



158

since they do not have visibility of actual parameters. A solution to this problem [Goldsack
and Atkinson 1990] is described in case 6 of Fig.5.

Next we consider the use of Boolean side-effect free methods (called guards) within
deontic predicates. Guards are used to inspect part of the private state of an object. The f-
class POLY__ BUFFER (case C of Fig.6) provides two methods for writing data and one for
reading. The behaviour is specified in Ex.4 of Fig.5: mutual exclusion, with the constraints
that writers activation must be blocked when the buffer is full; this condition is checked by
means of the guard FULL_ GUARD. In Fig.6, a correspondence between the guard and the
Boolean method IS_ FULL is established. Note that, in the case of guards (or more
generally state-inspecting functions), a formal method parameter cannot be bound to more
than one actual method (Case C of Fig.6).

A further step is represented by the use of non-boolean functions in deontic expressions.
Similar to guards, such functions could be used to inspect the state of the object.

Discussion

Fig.7 summarizes the pros and cons of each form of b-class specification. Case 1 suffers
from two limitations: any constant in the deontic predicates is fixed at b-class definition
time. If Ex.2 of Fig.5 were to be specified by a non generic b-class, different b-classes would
have to be written for each value of NUM. The same problem occurs w.r.t. Ex.3 of Fig.5
which requires a varying number of method groups, one for each priority level. The
advantages of case 1 are simplicity and reduced run-time overhead. Case 2 is perhaps the
optimum w.r.t. expressivity, efficiency and reusability. Case 3 adds expressive power at the
cost of increased abstraction and run-time overhead. Cases 4 and 5 permit to specify state
variable dependent behaviour, (Ex.4 Fig.5) which cannot be simulated by previous cases.
The use of state inspecting functions within the predicates makes somehow the b-class
dependent on the signature of the f-class, thereby reducing reusability. The translation for
this case is shown in section 3. Case 6 [Goldsack and Atkinson 1990] is also dynamic, since it
allows to specify behaviours wich depend on actual values of methods parameters before
they are stored into the object's state. Such message oriented specification is incomparable
with cases 4 and 5. We have not developed the translation because we feel that this case is
hard to understand in complex situations. In conclusion we recommend the use of genericity
for b-classes, but we defer until feedbacks from experimentation will be available a
judgement on the convenience of dynamic classes.

Notice that in b-classes guards, as other formal methods, are regulated by a deontic
predicate. The safest solution is to activate a guard in mutual exclusion, but weaker
conditions still ensuring consistency are proposed in [Galli 1991]. For instance in case 5 of
Fig.5 the function MAX can be activated in parallel with any method of the set OP.

Since a guard is usually defined only for synchronization purposes and is not invoked by
other objects, the question is when it should be evaluated. Conceptually a guard value



159

b-class

Limits

Pros/Cons

Non-Generic b-class

Number of method groups:
fixed at b-class definition

Low reusability
High run-time speed

method groups

fixed at b-inheritance time;
Number of methods within a
group fixed at b-inheritance
time;

Deontic predicates
parametric w.r.t. a generic
parameters

time; Simplicity
1 -Historical and state | Number of methods within a
operators (see Fig.4) group fixed at b-inheritance
applied to formal time;
methods Deontic predicates non-
parametric;
Generic b-class
2- with respect toa Number of method groups: High reusability
parameter fixed at b-class definition High run-time speed
time; Simplicity
Number of methods within a
group fixed at b-inheritance
time;
Deontic predicates
parametric w.r.t. a generic
parameters
3- enumeration of Number of method groups: Highest reusability

Low run time speed
High abstraction reduces
readibility

Dynamic b-class

4,5- Formal functions
(guards) returning the
state of the formal
object.

Number of method groups:
fixed at b-class definition
time;

Number of methods within a
group fixed at b-inheritance
time;

Deontic predicates non-
parametric

Lower reusability. The b-
class is closely coupled to the
features of the c-class.

Some overhead introduced by
the evaluation of the guards
Possibility of run-time
varying behaviour

Parametric b-class

6- Parameters of
formal methods

Number of method groups:
fixed at b-class definition
time;

Number of methods within a
group fixed at b-inheritance
time

Deontic predicates -
parametric

Lower reusability

High run-time speed

The b-class is strictly coupled
to the signature of the f-class.

Fig.7 - Analysis of features of b-classes. Combinations of cases are also possible.

should be continously monitored. In practice. evaluation is only required when the state of

the object may change, that is each time a method activation terminates.




160

3. Translation of behavioural inheritance

Semantics of behavioural inheritance

The semantic of behavioural inheritance can be expressed using high level Petri Nets (E/R
nets (Ghezzi et al 1991]). Tokens can have values associated to them. A transition is enabled
depending on the value of a predicate associated to the input tokens. Thus we associate to
each transition a predicate, and some actions that specify the value of the output tokens. If
no actions are specified, a dummy (without a value) token is created.

In the initial configuration (Fig.8) there are several valued tokens denoted Y, but no dummy
tokens. For instance we consider the b-class 4 of Fig.5, and b-inheritance with c-class (C of
Fig.6) POLYBUFFER exporting the methods PUT, PUTLONG, GET and IS-FULL. The E/R
net of b-inheritance is represented in Fig.8. The historical operators are translated into
places containing a token with an associated value. The values are updated according to the
actions when a transition fires. A bidirectional arrow stands for two simple ones. The places
containing dummy tokens are used to represent the state of the graph and to enable the
correspondent transitions. In Fig 9 we list the predicates and actions for the transitions in
Fig.8. Notice that the resulting net has a behaviour which depends on the state of the
sequential class, through the marking of the place STATE GUARD. For simpler, unguarded
b-classes there is no such dependency. For further examples and discussion of E/R models of
behaviour refer to [Galli 1991].

Translation into ADA

For Ada translation of a b-class, we examined the following options:

- Ada code is produced separately for b-classes, and for free c-classes and at b-inheritance
time the two parts are linked together.

- at first only the Ada code for the free c-class is produced, and at b-inheritance time the
code for the r-class is produced; no code is produced for the b-classes, which are not presentin
the library.

To compare thé options, suppose that the c-classes C1 and C2 have to be regulated by the
same b-class B, producing the r-classes R1 and R2. With the first option, there is one Ada
component B®Ada for B (using tasks and possibly generics). There are no Ada components
for R1 or R2, and each instance of R1 (or R2) is the link of C1€Ada (a purely sequential code)
and BeAda.

With the second option, there is no Ada component for B, but only a descriptor. After b-
inheritance, two different Ada components for R1 and R2 are created.

Advantages of the first option are: consistency with the library organisation of DRAGOON;
economy of components, since there is only one component per b-class; and reduced number
of Ada compilations. The basic advantages of the second option is that code is more specific,
hence more efficient. The decision is stil open, but we present an example of the first option,
which has been analyzed in more detail. Notice that the hypotheses on domains of parents



161

Behavioural Class (b-class)

AN

\
GT PT GUARD
ACT | REQUEST REQUEST REQUEST
| ‘ ? CF
PT

A
GT GUARD
T1 | ACTIVATION ACTIVATION |T3 I5 | ACTIVATION

ACT B ¥ 4 l
NOW GT ACT ACT NOW|
Q / c \:\Jow PT GUARD X
\ ‘.
T @_’ PT GUARD
TERMINATION TERMINATION T6 | TERMINATION
FIN
T2 T4
v ‘\PT/v
D
GUARD 1
o '

STATE
GUARD - T8

7

_

T10

PUT

Sequential Class (c-class)

Fig.8 -Modeling a guarded behavioural class with Petri nets (see Ex.4 fig.5).

in behavioural inheritance (vs Fig.1 and 3 and previous discussion) are based on the first
option.

A second choice that has been investigated concerns the assignment of a value to the formal
parameters of a generic b-class; we examined the following options:



162

PT3:

PTI1: : _ PT5:

AY<E.Y and not D.Y =True B.Y= Oand

B.Y= 0Oand BY= 0 C.Y= Oand
— .Y= Oand -

C.Y= 0Oand CY= 0and FY= 0

ACTI1: AC ,1;3,— B.Y:=B.Y;
AY:=AY+1; DY=D.Y: CY:=C.Y;
B.Y:=B.Y+1; B.Y~_—B.Y" FY:=FY+1;
C.Y:=C.Y; cY: - C.Y’+ 1
F.Y:=F.Y; vi_m~v.

EY:=EY+1; F.Y:=F.Y;

ACT2: ACT4: ACTé6:
D.Y:=G.Y; D.Y:=G.Y; F.Y:=F.Y -1;
B.Y:=B.Y -1; C.Y:=CY -1;

G.Y:=G.Y; G.Y:=G.Y;
EY:=E.Y+1;

ACT7: PT9: PT10:
G.Y:=False; H.Y <Buffer.dim H.Y =Buffer.dim
HY:=HY -1; ACT9: ACT10:

G.Y:=False; G.Y:=True;

ACTS: H.Y:=H.Y; H.Y:=H.Y;

HY:=HY+1;

Fig.9 - Predicates (P) and actions (AC) in the E/R net of Fig.8.
Transition without predicates are assumed TRUE by default .

-Assignment of values at b-inheritance time.

-Assignment of values at creation time of an instance variable of the corresponding

r-class.

The second solution is attractive because it permits to have, after b-inheritance, one library
component (generic Ada package) for every r-class. This component is customized w.r.t. the
values of the formal parameters of the b-class (e.g. NUM in Ex.2 Fig 5) at object creation
time. On the other hand, this forces the normal user to consider the structure of the b-class
at every object creation action. Consider b-class PRIORITY (Ex.3 Fig 5) and a c-class C with
methods that must be grouped into three priority groups. When creating an instance of C
regulated by PRIORITY, the user must correctly specify the value 3 for the number of
groups. Due to this drawback, we chose the first alternative, which increases the number of
library components, but not the size of object code.

Next we describe the structure of the code. First recall the translation of sequentiaf
classes. As usual in 0.0. languages, the translation of a method call, say PUT, for a free
concrete class must account for run-time selection of the method body. In DRAGOON this
takes the following form (called a shell):

rocedure SHELL PUT(...)is
egin



163

PUT(...);
end SHELL_ PUT;

where SHELL__PUT is a runtime system procedure which takes care of dynamic binding
(polymorphism). Next consider the translation of the r-class:

class ALTERNATION UNI_ BUFFER s
inherits UNI__ BUFFER;

ruled by ALTERNATION; --see Fig. 5 Ex.1
where

PUT, PUTLONG = FOP;

GET = SOP;

end ALTERNATION__UNI__BUFFER,;

For r-classes, the previous scheme has to be modified, by enclosing a method call between
two statements: the first is a call to a system procedure START__METHOD, the last one is a
call to a system procedure END__ METHOD.

procedure SHELL _PUT(...)is
begin

GUARDED.START__ METHOD(PT, ... );
PﬁT( w);

GUARDED.END_METHOD (PT, ... );
end SHELL__PUT;

The code is organized as a generic package (since the b-class ALTERNATION is generic)
GUARDED, defining the following major entities:

A procedure START _METHOD that interfaces to the entry of each method, via
evaluation of the deontic predicate.

A procedure END__ METHOD which is invoked by a method upon termination.

A task type BEHAVIOUR; an instance of the task is created at object creation time, for
each instance of the r-class. The task offers two kinds of entries. In order to achieve
synchronisation, the entries belonging to the first group are invoked by START__ METHOD
and the entries belonging to the second group by END__ METHOD.

generic
with FULL__GUARD return BOOLEAN;
package GUARDED is
type METHOD__SET is (PT, GT, FULL__GUARD);
procedure START _METHOD(OP: METHOD _ SET, REF: in DUMMY );
procedure END__ METHOD (OP: METHOD_SET, REF: in DUMMY );
private
task type BEHAVIOUR is
entry START__PT;
entry START _GT;
entry START FULL__GUARD:
entry END_PT;
entry END__ GT;
entry END__FULL__GUARD:;
end BEHAVIOUR;
end GUARDED



164

package body GUARDED is
procedure START _METHOD(OP:METHOD_ SET,-......) is
begin
caseOPis
when PT => REF.START__PT;
when GT => REF:START__ GT
when FULL_GUARD = > REF. START FULL__GUARD;
end case;
end ;
procedure END__METHOD(OP:METHOD_ SET,....) is
begin
caseOPis
when PT => REF.END__PT;
when GT => REF.END_ GT
when FULL__GUARD = > REF. END _ FULL__GUARD;
end case;
end;

task body BEHAVIOUR is
ACT_GT :NATURAL :=0; --the numbers correspond to the
FIN _PT :NATURAL :=0; --historical functions
ACT-NOW : NATURAL :=0;

FULL GUARD FLAG: BOOLEAN : = FALSE;
begin

accept INIT(....... ydo

end;

FULL__GUARD_ FLAG:= FULL__GUARD;

loop

select

when ACT-NOW=0and ACT__GT < FIN__PT = > --translation of the first axiom
accept START GTdo

ACT-NOW := ACT-NOW + 1; --update of the historical functions
ACT_GT:= ACT_GT + 1;

end;

when ACT-NOW =0 and not FULL_ GUARD__FLAG = > --translation of the
accept START PTdo

--second axiom
AET‘NOW - ACT-NOW + 1; --update of the historical functions
en

or
when ACT-NOW=0 => --translation of the third axiom
accept START FULL_ GUARD do
ACT-NOW := ACT-NOW + 1;

; --update of the historical functions
end;
or
accept END_ GTdo --termination of the method GET
ACT-NOW := ACT-NOW - 1; --update of the historical functions
FULL__GUARD_ FLAG:= FULL_GUARD'
end;
or accept END_ PT do --termination of the method PUT
ACT-NOW := ACT-NOW - 1; --update of the historical functions
FIN_PT:=FIN_PT + 1;
FULL GUARD_FLAG:= FULL_GUARD;
end;

or

accept END _FULL_ GUARD do --termination of the evaluation of
ACT-NOW := ACT-NOW - 1; --the guard
end;

end select;



165

end loop;
end BEHAVIOUR;
end GUARDED;

Historical operators (see Fig.4) are naturally mapped onto counters. For each method group
in the b-class there is an entry for START and another for END. Each entry of kind START
is guarded by a deontic predicate; upon acceptance, historical counters are updated. Entries
of kind END are called when a method finishes; no predicate is needed, but only historical
counters are updated and values returned by guards or state-inspecting functions (if any)
are updated. Notice that the task accesses FULL_GUARD without going through the
method selection shell.
The previous translation present a serious problem for run-time performance: the task is
always busy waiting inside the loop containing the select statement. This causes much
overhead for systems with many behavioured objects, since each one corresponds to an
active task. To avoid the problem, the select statement is expanded with an else branch,
which is entered when no other entry call is accepted. The else branch put the task to sleep.
The task is awakened by the next incoming call to START or to END a method.
The translation of behaviours with a generic number of method groups (e.g. Ex. 3 in Fig.5) is
more complex, and the reader should refer to [Galli 1991] for more details. Essentially, for
each group there are two families of task entries in the task BEHAVIOUR. An analysis of
the translation for the various b-classes (Fig.7) shows that generic b-classes with a varying
number of formal method groups introduce the highest run-time overhead.
The above translation is not essentially dependent on the Ada tasking model, and a similar
solution could be worked out for other multi-task systems (e.g. Unix).

4. Conclusion

In our opinion the separate specification of functional aspects and method synchronization
constraints (behavioural aspects) is necessary for the orderly construction of large, reusable
collections of components. Behavioural inheritance provides a coherent, "divide and
conquer” approach. We have investigated a range of abstract notations for expressing
behaviour which differ in genericity, degree of reuse, and run-time efficiency; they are all
based on deontic logic, a rigorous yet not too cryptical notation which we found suitable for
the representative cases we considered.

The proposal needs now to be validated by experience. In particular the cost effectiveness of
the deontic notations incorporating guards or method parameters has to be assessed. In fact
on one hand it certainly enlarges the range of expressible behaviours, but on the other hand
it introduces a tighter coupling with the functional class interface. In the worst case this
could defeat the very objective of having reusable abstract behaviours.

Another critical issue to be further investigated is performance of implementation. The
generated code attempts to minimize tasking overhead, but this could prove insufficient for
large, heavily constrained real-time systems.

Finally we mention a problem to be considered: specification of time constraints.



166

Aknowledgement

Most of the ideas presented have emerged from joint work on DRAGOON. In particular we
thank C.Atkinson, R.Bayan, M.De Michele, C.Destombes, A.Di Maio, S.Goldsack;
S.Morasca for the E/R net model, and M.Paci for helpfull suggestions.

5. References

America P. : "POOL-T: A parallel object oriented language", in Object oriented concurrent
programming, MIT Press, pp. 199-220, 1989

Atkinson C. : "An object-oriented language for software reuse and distribution”, Ph.D.
Thesis, Imperial College, London, 1990.

Campbell, R.H. and Habermann A .N. : "The specification of process syncronisation by path
expression," ACM Computer Survey,17(4), 1974.

Cardigno C. et al : "Object Oriented Concurrency and Behavioural Inheritance”, Proc.
ECOOP 89 Workshop on Object-Based Concurrent Programming, Nottingham, July,1989.

Di Maio A. et al. : "Dragoon: An Ada-Based Object Oriented Language for Concurrent, Real-
Time, Distibuted Systems", Proc. Ada-Europe Conference, Madrid 1989.

Galli de' Paratesi G. : "Specifiche di concorrenza per ADA orientato ad oggetti", Thesis
Dipartimento di Elettronica - Politecnico di Milano(Draft), 1991.

Ghezzi C. et al. : "A unified high level Petri net for time-critical system", IEEE Transaction
on Software Engineering, February 1991.

Goldsack S.J.,Atkinson C.: "Separating concerns for synchronisation and functionality in an
Object-Oriented Language", submitted for publication, 1990.

Von Wright G.H.: "Problems and Prospects of Deontic Logic: A Survey", in Modern Logic - A
Survey: Historical, Philosophical and Mathematical Aspects of Modern Logic and its
Applications, (Agazzi E. ed. ), Reidel Publishing Company, 1980.



