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QOZE, which stands for “Object Oriented Z Environment,” is a generalized wide spectrum object oriented
language that builds on the notation and style of Z. OOZE supports requirements, specifications, inter-
pretable programs, and compilable programs. The OOZE system is based on OBJ3, and provides rapid
prototyping and theorem proving facilities over a module database. OOZE modules can be generic, can
be organized hierarchically, and can be used for structuring and reusing requirements, specifications, or
code. Modules can be linked by views, which assert relationships of refinement. Module interfaces can be
precisely specified using theories. Abstract data types, multiple inheritance, complex objects, overloading
and dynamic binding are supported. Data types, objects, classes and modules are clearly distinguished from
one another, and the entire language has a precise and relatively simple semantics based on order sorted,
hidden sorted algebra.
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1 Introduction

OOZE, which stands for “Object Oriented Z Environment,” is primarily intended for the require-
ment and specification phases of the system life cycle. It uses the graphical notation and comment
convention of Z, formalizes its style, and adapts it to fit the object oriented paradigm, allowing
declarations for classes, attributes and methods within modules. Attributes can be class-valued, i.e.,
complez objects are supported. Also, unlike other object oriented adaptations of Z, objects (which are
instances) are carefully distinguished from class declarations (which serve as templates for objects).
Objects are also organized into meta-classes, for ease of identification and iteration. Multiple inher-
itance is supported for both classes and modules. Abstract data types, overloading, and exception
handling are also supported. OOZE has an interpretable sublanguage that can be used for rapid
prototyping, and a compilable sublanguage that can be used for implementation. All of this has a
precise semantics that is based upon order sorted algebra.

Formal methods emerged in the mid-seventies as an attempt to add mathematical rigour to the
development of computer systems. It is claimed that their use can significantly increase quality by
permitting accurate design at a high level of abstraction. Consequently, design errors can be reduced
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and confidence in the system behaviour increased. Formal specifications can also provide a reliable
basis for documentation, implementation and maintenance.

Despite these attractive properties, formal methods have the reputation of being hard to use,
because a reasonable understanding of computer science and discrete mathematics is required, and
unfortunately, the average computer professional seems not to meet this requirement. Also, com-
munication with clients can be difficult, because they may not easily understand the syntax and
semantics of formal specification languages. Moreover, the time spent on design may increase, and
it is not obvious that the extra cost is returned in all cases!.

The present work describes a programming environment that can take advantage of the attractive
properties of formal methods while reducing the burden associated with their use. This environment
includes not just a syntax and type checker, but also an interpreter for an executable sublanguage,
a theorem prover, and a module database; all of this is based on facilities provided by the OBJ3
(14] system. OOZE can be considered a syntactic variant of FOOPS [11], and indeed, it has the
same semantics as FOOPS. However, OOZE is intended to be used in a different way by a different
constituency, and it has a very different appearance. Thus, although OOZE looks and acts like a
model-based language, it actually has a relatively simple equational semantics. However, unlike most
other equational languages, OOZE supports the encapsulation of states, and more generally, is truly
object oriented.

By providing animation facilities for rapid prototyping, OOZE helps to improve communication
with the client, and makes it easier to master its mathematical basis. As a result, OOZE should
reduce the time and cost of formal methods, and also increase confidence in correctness. OOZE can
also help with subsequent phases of system development, including design, coding and maintenance.

2 Z

Z is a model-based specification language that has been primarily developed in the Programming
Research Group at the Oxford University Computing Laboratory [18, 25], and has been widely used
in industry. Z is based on set theory and the first-order predicate calculus, and has been successfully
used for applications to distributed computing, transaction processing, operating systems, large
information systems, etc. The heart of Z is its use of schemas to describe state spaces and state-
changing operations. Schemas are the basis for the incremental presentation of Z specifications.
They encourage structuring, and are syntactically integrated with informal prose, to help the reader
understand what has been specified. Schemas also provide a graphically elegant way of delimiting
the parts of a specification.

Although modularity is widely recognized as helpful in all phases of software development, Z
provides only rather weak modularity. Z specifications do not have clearly delimited beginnings or
ends, cannot be made generic or instantiated, and lack the ability to import and export. Schemas
are not modules, because they do not hide information, and they have no natural meaning that is
independent of context. Also, schema scope conventions are subtle, and can cause complex specifi-
cations to be misinterpreted. Therefore Z specifications can be hard to read and maintain, and their
parts can be hard to reuse in new developments; see [22, 6] for related discussion.

A 7 specification of a large and complex system may contain many state and operation schemas,
which can be dispersed arbitrarily through the specification, because schemas do not enforce any
association of operations with states. All state space schemas and operation schemas are global within
the specification, i.e., they can be used in any other state space or operation schema. Therefore the

!See [4] for a discussion of the pros and cons of using formal methods.
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dependency relations that exist between schemas can only be determined by examining all schemas
in a specification. In addition, the schema calculus [25] allows schemas to be combined in a large
variety of ways, some of which seem quite unnatural, especially from a logical point of view. Thus,
understanding and updating specifications can be very hard in some cases.

The best ideas of Z are in its style. These ideas include its comment conventions, its graphical
layout, its use of ordinary set theoretic and logical notation, its conventions for decorating input and
output variables, and some uses of schemas.

3 OOZE

OOZE formalizes and enforces these attractive ideas, and combines them with other good ideas in
software engineering, such as object orientation, modularization and algebraic semantics, yielding an
environment that strongly supports reusability and the subordination of complexity. A summary of
differences from Z appears in Section 7.

While numbers and other data elements do not change, objects have attributes that may change.
For example, the natural number 7 is fixed and eternal; it does not change. But the amount of money
in one’s bank account may vary with time. Failure to make this distinction can cause confusions with
undesirable practical consequences. For example, in Smalltalk72 [16], addition is not commutative;
e.g., 2+ 2.0 is 4 whereas 2.0 + 2 is 4.0, because in each case the second number is sent as a message
to the first, and so a different addition method is used.

3.1 Objects

By convention, a Z schema with non-decorated variables represents the state space of some system
component, and is followed by another schema defining the initial values for those variables, and by
other schemas that define operations on these variables. But these conventions are not enforced, and
it is very easy to write specifications that violate them.

OOZE groups the state space schema, the initial state schema and operation schemas into a
single unit?. Only the operations defined in the unit are allowed to act upon the objects of that
class. Syntactically, such a unit is an open-sided named box in which the features of the class are
defined, with the following general form,

— class-name < ancestor-names

constants

— State

class attributes

class invariant

Init
rinitial values

methods

where class-name is the name of the class. The symbol < indicates that the class being defined is a
subclass of one or more previously defined classes, named in ancestor-names. The constants are fixed
values which cannot be changed by any method, and are the same for all instances of the class. The

2This structure is similar to that used in Object-Z [6], but its semantics is quite different.
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class attributes are variables that can take values either in another class or in a data type. The class
invariant is a predicate that constrains the values that the attributes can take; it must hold for all
objects of the class, before and after the execution of methods and in the initial state. Init gives
the initial values that attributes take. methods are given in schemas that define operations involving
one or more attributes of the same class, and possibly input or output variables; these define the
relationship between the state of an object before and after the execution of a method. (Differences
between the syntax and semantics of schemas in OOZE and Z are discussed in Section 3.8).

3.2 Encapsulation of Classes in Modules

To build a large system, we must overcome the difficulties of manipulating huge amounts of informa-
tion. Explicit mechanisms for modularization are needed to support this in a natural way, allowing
the system to be defined in small separate pieces that are easy to read and manage, and that can
be easily combined [8]. Indeed, such mechanisms may significantly reduce the cost associated with
system development, and are becoming common not only in languages for programming, but also
in languages for prototyping and specification. There is no widely accepted agreement on an ideal
mechanism, and several interesting alternatives have been proposed, including Clear (3], OBJ [14],
Ada (1], SML [17], and the extension of VDM proposed by Bear [2].

In OOZE, classes of objects are encapsulated in modules, which can be generic and can contain
any number of classes:

—module-name[parameters)

Importing
I-imported- modules

Class class-nameg

B

Class class-name,,

E

Here module-name names the module; parameters is a list of formal names with their corresponding
requirements on the actual parameters that instantiate the module; imported-modules lists the im-
ported modules, and class-name, ..., class-name, are the classes defined in the module. Note the
clear distinction between module importation and class inheritance. The former has to do with the
scope of declarations; for example, a class cannot be used unless the module that declares it is im-
ported. Note that module importation is transitive, so that if A imports B and B imports C, then
everything in C is also available in A. See [8, 9] for more detailed discussions of the module concepts
used in OOZE, including importation and genericity; they are evolved from those introduced in Clear
(3] and implemented in OBJ [14], and are given a precise semantics using the theory of institutions.

In many object oriented languages, including Eiffel [20], Smalltalk [21] and Object-Z [6], modules
and classes are identified, so that only one class can be encapsulated. Because of this, cases where

several classes have interdependent representations are not easily captured. For example, consider a
class Private-Teachers and a class Independent-Students, where each class has only one attribute,
with a value involving the other class: teachers keep a list of their students, and students keep a list
of their teachers. Because these two classes are interdependent, it is impossible to determine which
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should be defined first. If no order is established, then the object hierarchy is not properly enforced.
A straightforward solution is to introduce both classes in one module. In OOZE, data, objects,
classes and modules are distinct entities, carefully distinguished both syntactically and sermantically.
(This discussion follows [15]).

When encapsulating classes in modules, it is not rare to end up with modules with just one
class. Moreover, the module and the class usually have the same name. As a result, for the sake of
simplicity and conciseness, the class name and enclosing box for its space state and methods can be
omitted in OOZE, as in Section 3.1.

3.2.1 Arrays
Consider the following code for arrays of real numbers®:

__Array

State
array : Z -+ R [hidden]
lower _bound : 7
upper_bound : Z

— Init

bt byt 7

Vj:min{b?, 57} .. max{$?,b,?} e array’ j =0
lower_bound’ = min{h?, b7}
upper_bound’ = max{b?, 5,7}

__Store

Aarray
77?1 lower_bound .. upper_bound

z?7:R

array’ = array @ {j? — 27}

—Get

J? ¢ lower_bound ..upper_bound
z!:R

z! = array j?

— Maz_of
z!I:R

z! = max(ran array)

Following the notation of Z, we let Z, R and N denote the integers, reals and naturals respectively.
Also, f : A » B indicates that f is a finite partial function from 4 to B, while “ran f” denotes the
range of f, and z..y denotes the interval {n | z < n < y}. Finally, f @ {a — b} denotes the partial
function equal to f except that it takes value b on argument a. The notation “Vz : X e ...” for
quantification over a variable z of sort X also comes from Z.

3The functions max and min are built in.
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Arrays have attributes array, lower_bound and upper_bound. The array attribute is hidden, i.e.,
it is an internal state that is not visible outside the current module. This class does not inherit from
any others, and it has no invariant. Only the methods Init, Store, Get and Maz_of can be used
on Arrays; these respectively create an array, store a value in an array, retrieve a stored value, and
return the maximum value in an array.

Values of attributes before method application are indicated by undashed variables, and by dashed
(") variables afterwards. Method inputs are indicated by variables with an interrogation mark (?),
and outputs by variables with an exclamation mark (!). A heads a list of attributes whose values may
be changed by the method; attributes absent from the list are unchanged, i.e., the dashed attribute
value equals the undashed one. The absence of a A list means that no attribute value can be changed
by the method*. Unlike Z, these are not mere conventions; they are part of the definition of QOZE,
and are enforced by the implementation.

3.3 Parameters and Theories

It can be very useful to define precisely the properties that the actual parameters to a parameterized
module must satisfy in order for it to work correctly; in OOZE these properties are given in a theory;
theories are a second kind of module in OOZE, with the same syntactic form. In particular, theories
can be parameterized and can use and inherit other modules. A theory is introduced in an open-sided
box, and its name is preceded by the key word Theory.

Theories declare properties and provide a convenient way to document module interfaces. Under-
standability and correctness for reusability are improved by this feature. For example, the following
theory requires that an actual parameter provide a totally ordered set with a given element:

— Theory TotalOrder

Vz,y,z: X o
~(z C 2)
(zC YA C 2)=>(zC 2)
(zCyVE=yVv(ycC =)

Here the notation [X] indicates that X is a set newly introduced for this specification.

The formal parameters of an OOZE module are given after its name in a list, along with the
requirements that they must satisfy. The actual parameters of generic modules are not sets, con-
stants and functions, but rather modules. The motivation for this is that the items that naturally
occur in modules are usually closely related, so that it is natural to consider them together rather
than separately. Moreover, by allowing parameters to be modules, OOZE incorporates the powerful
mechanisms of parameterized programming [8]. In the syntax below, Po,P1,-+-, Pn are the formal
module names, while Tg, Tq,---, T, are theory names:

module-name[Pg :: Tg, Py :: Ty, -+, Py i Ty

“Init is an exception to this rule; its signature has no A list, and only dashed variables are available.
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3.3.1 A Parameterized Array Module

The following parameterized version NewArray of Array is much more flexible, in that it can be
instantiated to define arrays with different types and ranges:

— NewArray(P :: TotalOrder]

—State
array : Z + X [hidden]
lower_bound : 7
upper_bound : 7

Maz:F X > X
VS:F X, z,y:5e

Maz(S)=z e yCzVy=1z

Init

Fbl?,bz? 4

Vi:min{d,?,8,7} .. max{b?, b7} e armay j=v

lower_bound = min{b,?, 6,7}

upper_bound = max{b,7, b,7}

Store

[_Aarray

37 : lower_bound .. upper_bound
z?: X

array’ = array @ {57 — 27}

__Get
J7 : lower_bound .. upper_bound
z!: X

z! = array 57

Maz_of
! X

=

z! = Maz(ran array)

Here F, X denotes the set of all non-empty finite subsets of X, and Maz({a,,a,,---, a,}) denotes
the maximum element of a non-empty totally ordered finite set.

3.4 Views for Parameterized Modules

A view can be used to say how a given module satisfies a given theory. A view is a mapping from the

features (sets, methods, functions, constants, etc.) of the source module to the features of the target

module, preserving subtype relations and the rank of methods and functions. Views are needed

because an actual parameter may satisfy a given theory in more than one way. For example, the set

of natural numbers is totally ordered with the relation < or with >; these correspond to two distinct

views. Views that are used for instantiating parameterized modules have the following general form,
M{ty — mg,ty > mq, -ty — mp},
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in which M is the name of the parameterized module, while tg, ty, - -, tn are names of features in the
source theory, and mg, my,- -+, m, are names of features in M.

Data types in OOZE are defined in modules similar to those used for classes, but they have initial
order sorted algebra semantics®. For example, the module Nat gives the natural numbers, with the
carrier N. Using the NewArray class and a view, we can get a class of arrays of natural numbers,
with an operation that returns the maximum element, as follows:

NewArray [ Nat {X — N,v » 0,C — < }]
Because we already know that TotalOrder is the source theory for this view, its name is not needed.
It is common to use an “obvious” view, and then it can be distracting to have to present it in detail.
Some conventions for simplifying views ease this problem. For example, any pair of the form § — §
can be omitted5.

3.5 Applying Methods

A basic principle of object oriented programming is that only the methods defined with a class may
directly act upon its objects. Because attributes, method inputs and method outputs can be object
valued, methods defined in other classes may be needed to define methods that manipulate the
attributes of such complex objects. In OOZE, the following syntax indicates that a certain method
acts on a certain object,
objectsmethod(pg,p1,---,pn)

where object is an object name, method is the name of a method on the class to which object belongs,
and po,P1,---,Pn are parameters whose types must agree with those of the corresponding formal
parameters. Actual parameters are associated with formal parameters according to the order in
which the latter are declared. For example, see the methods Store and Get in the Matriz class in
Section 3.7 below. The method Init is an exception, because it acts on no objects, and its syntax is
simplified to the form Init(pg, py,---,pn).

To actually create the object A of class NewArray from its “template” in the NewArray module,
it is necessary to first instantiate the module with an actual value for P, say the natural numbers
with 0 and <, yielding a NewArrayNat class, and then to apply the built in method Init with values
for the parameters lower_bound and upper_bound,

A« Init(1,10).
OOZE provides a selection function for each visible attribute of a class, indicated by a dot before the
attribute name. So if A is the above object of the NewArrayNat class, then A.upper_bound yields
the value 10 for the upper_bound of that specific array.

3.6 Overloading

OOZE has a strong but flexible type system. Strong typing is not only useful to catch meaningless
expressions, but it also favours the separation of logically and intuitively distinct concepts (such
as matrices and arrays) and enhances readability and reusability by documenting such distinctions.
Moreover, strong typing supports overloading, i.e., attaching more than one meaning to a name. In
particular, overloading allows simpler code, because the context can determine which possibility is
intended.

5The semantics of data types is discussed in Section 6. Many data types including naturals, integers, reals,
sequences, and tuples are built in, and can be used anywhere.

*Views in OOZE are derived from the OBJ3 [14] implementation of the ideas introduced in Clear [3]; see (8] for
further discussion.
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Overloaded attributes and methods of a class can be distinguished by the type required in a given
context. For example, overloading resolution applies to the methods Store, Get, Init and Maz_of in
the Matrix class below.

3.7 Object-Valued Attributes

We illustrate complex objects using a class Matriz with an attribute that takes values in the NewA rray
class. Inheritance applies to all kinds of modules in OOZE and the effect is simply that the descendent
module inherits all features of its parents. For example the module Matriz below inherits the module
NewArray:

— Matriz[P :: TotalOrder]

Importing
NewArray[P]

— State
matriz : I -» NewArray [hidden)
lower_bound : Z
upper_bound : Z

Init
mby?,mby?: Z
ab1?,ab? : 1

Vj:min{mb?, mby?} .. max{mby?, mby?} e matriz’ j = Intt(ab 7, aby?)
lower_bound = min{mb, 7, mb,?}
upper_bound = max{mb,?, mb,7}

. Store

Amatriz

1?7 1 lower _bound..upper_bound

71 : (matriz i?).lower_bound .. (matriz i?).upper_bound
z?: X

matriz’ = matriz @ {i? — (matriz 7). Store(5?,27)}

Get
1?7 : lower_bound .. upper_bound

77 : (matriz i?).lower_bound .. (matriz i?). upper_bound
zl: X

z! = (matriz i7)s Get(j7)

— Maz_of
t? : lower_bound .. upper_bound
zl: X

z! = (matriz i?)s Maz_of
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3.8 Method Schemas

In both OOZE and Z, schemas are used to define some key aspects of systems, but OOZE schema
syntax and semantics have been designed to enhance readability without loss of expressiveness.

In OOZE, the values of variables before and after method application are related by conditional
equations. The if clause can be considered a pre-condition. The respective equations are required to
hold if the condition, expressed by a predicate, is true. If the if clause is omitted, then the equations

must hold in any circumstance. Method schemas have the following general form:
— schema_name

declarations

equations
if predicate

equations
if predicate

In the RegularAccount class in Section 3.9.1 below, conditional equations say that after the Debit
operation, the values of the attributes bal and hist are changed if the value of bal is greater than
or equal to m?. On the other hand, the Credit method changes the value of bal and hist in any
circumstance, because there is no if clause.

In OOZE, exceptional and non-exceptional behaviour for methods are defined in distinct schemas
having the same name, with the exception schema name preceded by the key word Error. Moreover,
the input variables appearing in the error schema must be among those appearing in the non-
error schema. By this device, users need not understand both situations at once. Therefore code
is simplified, readability is enhanced, and complexity is subordinated. The Debit method for the
RegularAccount class illustrates this feature.

If the object that a method is supposed to act upon is omitted, then the method being used and
the method being defined are regarded as sharing the same object, as in the Interest method in the
SavingsAccount class below.

3.9 Class Inheritance

OOZE supports multiple inheritance for classes. When one class inherits from another, the attributes
defined in the ancestor are added to those of the descendent. If the descendent class declares no
attributes, it is assumed that ancestor and descendent have the same attributes. Class invariants
defined in ancestors must hold in the descendant, and may also be strengthened. Initial values
defined in the descendant take precedence over those of ancestors. All this is illustrated by the
SavingsAccount < RegularAccount declaration below.

3.9.1 Bank Accounts

The BankAccount module to follow is parameterized, with parameter requirements defined by the
DateMoneyAndRate theory below. Note that R} denotes the positive real numbers union {0}.

Theory DateMoneyAndRate
[DATE, MONEY ,RATE)
MONEY C R}

RATE C R}
Vm: MONEY o (100 + m| = 100+ m
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Every object of the RegularAccount class has a balance and a history which records credit and
debit transactions; these appear in the attributes bal and hist. today is a built in function that
returns the current date. As in Z, ~ denotes sequence concatenation, and {(a,b)) is the singleton
sequence consisting of the ordered pair (a, ).

— BankAccount[P :: DateMoneyAndRate)

— Class RegularAccount

__ State

bal : MONEY
hist : seg DATE x MONEY

— Init
bal' =0
hist' = (today, 0)

— Credit
A bal, hist
m? : MONEY

bal' = bal + m?
hist’ = hist ~ {(today, m?))

Debit
rA bal, hist
m?: MONEY

bal’ = bal — m?
hist’ = hist = ({(today, —m?))
if bal > m?

— Error Debit
m?: MONEY
error! : Report

error! = Qverdrawn
if bal < m?

—Class SavingsAccount < RegularAccount

— State
rate : RATE

— Interest
A bal, hist

bal’ = Credit(rate * bal). bal
hist’ = Credit(rate * bal). hist

Note that because there is no Init method for SavingsAccount, the Init method for its superclass
RegularAccount will be used; however, a value must be given for the attribute rate whenever a new
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SavingsAccount is created, because there is no default value. The parameterized module BankAc-
count can be instantiated with DateMoneyAndRate modules to yield banks operating under various
conventions for currency and date. Also, using a notational short cut, the specification of the method
Interest could have been simplified to Interest = Credit(bal * rate).

3.10 Animation

In order for an OOZE module to be executable, its axioms must have a special form,

—m
AL
n:1
Pr: Ty
o =e
a=e
if P

where a1, a3, ... are attributes changed by the method m and listed in L, where D1, ..., Pn are parameters
of m with types Ty, ..., T, where e, €, ... are expressions in pi, ..., p, and the state of the object,
including ay, as, ..., and where P is a predicate in the same variables. The if clause is optional, and
there could even be more than one such clause, each giving a set of conditional equations. These
equations have a declarative interpretation, and in fact are referentially transparent. They define a
method by its effects on attributes. Alternatively, methods can be defined as compositions of other
already defined methods. The operations for composing methods include sequential and parallel
composition.

Animation is useful for rapid prototyping during the requirement and early specification phases.
If the attributes associative or commutative are used for any operation, then the resulting program
cannot be compiled, but only interpreted (Section 5 contains an example using the attribute asso-
ciative). Also, some forms of abstract data type definitions can only be interpreted.

4 Requirements

Usually the process of building a system starts from some very high level requirements. In this
initial] stage, it is quite common that attributes and methods are not completely determined, and
so these initial definitions are satisfied by a large class of models, some of which may not fit the
client’s expectations; also, animation cannot in general be provided at this early stage. For example,
the initial requirements for a bank might simply say that it should be possible to debit and credit
accounts, and that these methods should respectively decrease and increase the balance. One can
easily imagine models of this theory that are not among those really intended by the bankers, such
as a deposit method that always increases the balance by one million currency units.

OOZE uses theories to express requirements, and also for the initial stages of specification. In
many typical applications, an OOZE text will evolve until theories are only used to specify properties
that parameters should satisfy (however, theories can also be retained to document the earlier stages
of the development cycle). At this point, it is possible to use the specification itself as a rapid
prototype. Let us consider the following theory of bank accounts’:
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Theory LooseAccount

-

[DATE,MONEY)
MONEY C R}

— State

bal : MONEY

hist : seq DATE x MONEY
#hist

bal = Z second(hist(7))

i=1

— Init
bal’ = 0

hist' = (today, 0)

— Credit
A bal, hist
m? : MONEY

bal' > bal

Debit
FA bal, hist
m?: MONEY

bal' < bal

Although the attributes bal and hist are related by a state invariant, their value after the execution
of the methods Debit and Credit is not completely determined. For example it is possible to credit or
debit more money to an account than the argument indicates, and it is also possible to put arbitrary
values in the history.

When creating large systems, it is important to relate the different stages of the development
process. For example, the BankAccount module in Section 3.9.1 satisfies the requirements of the
LooseAccount theory, and it might represent a more recent stage in the evolution of the same sys-
tem. In OOZE, this satisfaction relationship is described by a view. Although views were previously
used to describe how an actual parameter satisfies a theory, they can also express refinement rela-
tionships between any kind of module. However, in this context a more comprehensive notation is
needed. The view Account that follows asserts how the class RegularAccount described in the module
BankAccounts satisfies the theory LooseAccount®:

"The function second extracts the second component of a pair [25].
8Note that according with the conventions established in Section 3.2, the theory LooseAccount encapsulates the
description of a class also named LooseAccount.
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— View Account

LooseAccount — BankAccount

[MONEY — MONEY,DATE — DATE]

Class
leooseAccount > RegularAccount

Attributes
rbal — bal, hist s hist

Methods
Credit — Credit, Debit — Debit

OOZE texts are hierarchically organized into modules, and a complete OOZE system can be en-
capsulated in one final module. This allows the use of views to express satisfaction (i.e., refinement)
relations between different levels of development of the same system. Views between such conglom-
erates can also be constructed from individual views between component modules. This makes it
possible to build views between conglomerates by combining views between their components which
are easier to understand and modify. In this way, each phase of the software life cycle can be precisely
and quickly documented. Multiple implementations of a single specification or requirement can also
be accommodated within a single OOZE text, encapsulated then in different modules.

5 Data Types

OOZE provides a large library of basic “built in” data types, intended to be rich enough for the vast
majority of applications. For the most part, these are modelled after Z. However, it is important to
provide a way for defining new data types in case those available in the library do not fit current
needs. Data types in OOZE are defined in open-sided boxes in which the module name is preceded
by the key word Data. Data modules can be parameterized and can import other data types. For
example, consider the following definition of the parameterized data type Seq that defines sequences
along with some of their basic operations; its parameter requirement is defined by the Triv theory
below.

|,Th[eﬁ Triv

Thus, any module P that satisfies Triv must have a set X.
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—Lata Seq[P :: Triv]
[Seq, Seq]
X C Seqy C Seq

() : Seg
-7 _:8eq x Seq — Seq [assoc,id : ()]
-7 —: Seq: x Seq — Seq [assoc]
head : Seqy —» X
tail : Seqy — Seq
VS5:Seq;z:X o
head(z ~ Sy ==z
tail(s~ §)=§

#_:8eq - N

rev : Seq — Segq
VS5:Seq;z:X o

#(=0

#(zx"8) =14+ #S

rev(()) = ()
rev(§ 7 z) =z " rev(S)

Here Seq has just one constant, namely (), the empty sequence. Seq, is the set of all non-empty
sequences. X C Seq; C Seq indicates that an element of set X is a sequence and that a non-
empty sequence is also a sequence. The operations ~, # and rev respectively denote concactenation,
lenght and reverse, while kead and tail have their expected meanings. The key words “assoc” and
“id:” indicate that the operations are associative and have an identity.. The constant introduced
after “id:” is an identity element for that operation. This is a specification for an abstract data
type whose enriched version is actually built into OOZE. Its conventions are those of initial algebra
semantics, as discussed in Section 6 below, rather than those of set theory.

Other basic data types that define naturals, integers, rationals, tuples, etc., along with their
respective operations can be defined in a similar way®.

6 Semantics of OOZE

Although object and data elements are distinguished in OOZE, they share the important common
feature of inheritance. At the data level inheritance is subtype inclusion, while at the object/class
level, inheritance is subclass inclusion. For example, Dog is a subclass of Canine, and Canine is a
subclass of Mammal. Similarly, we may say that the naturals are a subset of the integers, and that
the integers are a subset of the rationals. It is also important to provide semantics for operations, that
is, for functions at the data level (such as addition, division and multiplication for naturals, integers,
rationals, etc.), and for methods at the class level (for updating, interrogating and manipulating
objects).

?See [14] for an introduction to specifying data types in a similar context. It is perhaps worth remarking that the
reals cannot be defined using ordinary initial algebra semantics; however, floating point numbers can be defined this
way, and other techniques can be used for the “real” reals if they are really desired.
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Order Sorted Algebra (OSA) [12] gives a powerful theory of inheritance for both data and objects,
as well as for overloading functions and methods. OSA also has an operational semantics that can
be used to animate specifications under certain conditions [10]. See Section 6.1.

It is also important to give a precise semantics for the large grain programming features of OOZE.
Although the details of this are too complex for this paper, they have already been worked out in
developing semantics for Clear, OBJ and FOOPS. The essential ideas are that modules are theories
(i.e., sets of sentences) over the order sorted, hidden sorted, equational institution [15], and that the
calculus of such modules is given by colimits. Views are theory morphisms, and a generic module is a
theory inclusion. Furthermore, modules that define structures and operations are distinguished from
those that define requirements by whether or not they involve data constraints. Data constraints are
also used to define abstract data types, which are distinguished from classes in that their sorts are
not hidden. Data constraints generalize initiality.

OOZE builds on FOOPS!, an object oriented specification, programming and database language
conceived by Goguen and Meseguer [11]. Both OOZE and FOOPS take OSA as a basis for their
semantics, and specifically FOOPS is used to animate OOZE. FOOPS, in turn, is implemented by a
translation into an enrichment of OBJ3 [24]. Both the OOZE and FOOPS implementations are still
under construction, and are expected to see completion during 1991.

6.1 Data Types

The basic syntactic unit of the functional part of OOZE is the Data module, which defines abstract
data types, including their constructor and selector functions. Such modules can be understood on
the basis of two different semantics, one denotational and the other operational. The former is based
on OSA and the latter on order sorted term rewriting [10] (see [19] for a survey of term rewriting).
Following OBJ3, built in functional modules can also be implemented directly in the underlying Lisp
system; for example, OBJ3 numbers are implemented in this way.

Consider the specification of sequence of natural numbers obtained by instantiating the data type
Seq introduced in Section 5 with the module Nat which gives the natural numbers, i.e.
Seq [ Nat {X +— N} ]. The basic idea of the term rewriting operational semantics of OOZE is to
apply the given axioms to ground terms, i.e., terms without variables, as left-to-right rewrite rules,
and progressively transform them until a form is reached where no further axioms can be applied;
this form is called a normal form. Let us take a specific ground term as an example, and let the
symbol = indicate that a rewrite rule has been applied:

rev(head( 1 ~ 2 7 3 ) T tail (4 7 5 7 6)) =
rev(li ~ tail (4 ~ 5 T 6)) >

rev(i S~ 6) =

6 " rev (17 5) =

~

6 "5 "1
Two basic properties of term rewriting systems are termination and confluence. A term rewriting
system is terminating if there are no infinite rewriting sequences on ground terms, and is confluent if
any two rewrite sequences of a given ground term can be continued to a2 common term. A rewriting
system that is both terminating and confluent is called canonical.
An OOZE functional module is an equational specification consisting of an order sorted signature
L, which gives the sort and function symbols, and a partial ordering on the sorts, plus a set & of

10FQOPS stands for Functional and Object Oriented Programming System. It was first introduced in 1987 at SRI
International, and is now under development in the Programming Research Group [24].
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equations which involve only the symbols in ¥. The class of all algebras that satisfy £ has initial
algebras, i.e., algebras that have a unique homomorphism to any algebra that satisfies £. OOZE
takes initial algebras as the denotational semantics of its functional modules [13].

If a set £ of equations is confluent and terminating as a term rewriting system, then the set
of all its normal forms constitutes an algebra which is initial among the algebras satisfying £ (7],
and so the denotational (initial algebra) and operational (term rewriting) semantics agree. Since an
abstract data type is an isomorphism class of initial algebras, it follows that an OOZE functional
module defines an abstract data type. By contrast, Z and other model based languages, including
Object-Z, have concrete data types, which have excessive implementation bias.

6.2 Classes and Objects

Many aspects of the data level of OOZE are mirrored at its object level. For example, OSA gives
meaning to class inheritance and method overloading. Also, equations are used to define how methods
modify attributes. Note that the types for data and the classes for objects form entirely separate
hierarchies in OOZE, each with its own partial ordering.

Some axioms about objects appear not to be satisfied by all of their intended models. For example,
the implementation of a stack by an array and a pointer does not satisfy pop(push(S,N)) = S for
all states S: If the state before a pop is pop (push(push(push(empty,1),2),3)) then the state after
the pop is pop(push(S,4)), which differs from the state before in that the number 4 occupies the
position above the pointer, instead of the number 3. On the other hand, top(pop(push(S,N))) =
top(S) is satisfied.

The solution is that rather than demanding axioms to be strictly satisfied, we only demand that
their visible consequences are satisfied. This is justified by the fact that objects do not actually
appear as such, because only their attributes are visible. While the functional level of OOZE has
initial algebra semantics, the object level uses classes of algebras with the same observable behaviour
as denotations; these need not be isomorphic to one another. More formally, given an order sorted
signature X, a set of visible sorts and a set of hidden sorts, then two algebras are behaviourally
equivalent if the result of evaluating any expression of a visible sort is the same for each of them
[15, 9, 11].

Such algebras are abstract machines whose states are elements of hidden sorts; each object of a
given class is a different copy of such a machine, with its own state, and creating an object produces
a new copy of the machine in its initial state, while methods change the state, and attributes observe
the state. When all sorts are visible, the concepts of abstract machine and abstract data type
are identical. At the object level, OOZE takes behavioural equivalence classes of algebras as its
denotational semantics. [11] gives an operational semantics based on the reflection of the object level
into the data level; this provides on alternative way to support animation.

6.3 Theories and Views

Modern programming languages have many different kinds of entity, such as arrays, procedures,
functions, operations, and records; hence, types are useful to separate and classify entities. The use
of types helps to avoid meaningless expressions, and also makes it easier to understand code. In
OOZE, theories are used to classify modules and to express requirements. This approach can be
applied to both specification and programming languages, and is especially useful for building large
systems.

Formally, a theory is a pair (Z, £); its denotation is the collection of Y.-algebras that satisfy £. In
OOZE, an algebra satisfies a data module if it is an initial algebra of the corresponding theory. At
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the object level, behavioural satisfaction is used instead. In both cases, views are morphisms from
one pair (X, £) to another pair {¥’, £’) such that each equation in the first is (behaviourally) satisfied
in the models of the second. See [15] for an introduction to behavioural satisfaction, and [9] for a
more comprehensive discussion.

7 Related Work

OOZE is not the first proposal for an object oriented extension of Z. The oldest work in this area
seems to be that of Schuman, Pitt and Byers [23]. The semantics of that language is based on set
theory, first-order logic, events and histories. There are many differences between OOZE and this
proposal, one of which is the absence of a specific syntactic construction for classes. As a result,
classes and their associated operations may be dispersed freely throughout a specification, and it
may be hard to discover what dependencies exist.

Object-Z, which is being developed at the University of Queensland, Australia [6], is based on
class histories for each object, which record the operations executed on it!'. In Object-Z, class
histories are not only restricted by class invariants, and operations by pre- and post- conditions,
but also by history invariants, which are temporal logic predicates. Although temporal operators
make Object-Z unique among the object oriented extensions of Z, they may be hard to animate. For
example, predicates of the form eventually a will occur are not easily checked. Also, maintaining a
history for each object would require significant amounts of memory and processing time. Moreover,
the semantics of Object-Z seems not to be very precise; however, recent work of Cusak [5] goes some
way towards filling this gap.

In comparison with Z and other languages based upon it, OOZE is more abstract, more flexible,
and more compact. This is largely because the model-based semantics is too concrete for many
purposes, and in particular is not very well matched to some aspects of object orientation. For
example, it can be difficult to tell whether a subset relationship is intentional or accidental, and
what implications it may have for implementation. Given a Flag class whose state is a finite set
of natural numbers in a certain range, it may be unclear whether Flag must be a subclass of a
previously defined class of finite sets of integers. As a result, it will be unclear whether or not flags
can be implemented by arrays of bits.

—IntSet
st:FZ

—— Flag .
st:FN

nest=>1<n<N

where N is a positive integer constant assumed to be previously defined.

Z and Object-Z do not support classes of objects, but only single instances of each class; that is,
they conflate the notions of class and object. In particular, they do not support the creation and
deletion of objects. As a result, when there is more than one instance of a class, specifications in Z
and Object-Z can be considerably longer.

Some other significant differences arise from OOZE’s powerful module facility. These include:
localizing variables and operations to modules, yielding simpler scoping conventions and eliminat-
ing the “global variable problem” (which is that all variables have global scope); parameterized (or
“generic”) modules; module importation; module expressions; a distinction among classes, objects

UThere are differences between this approach and that of [23).
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and modules; a distinction among modules used for interfaces and requirements, modules used for
defining classes, and modules used for defining data types; relegating schemas to a minor réle; elimi-
nating schema combinators; clearly distinguishing between module inheritance and class inheritance;
and using views to express refinement, satisfaction and inheritance at the module level. Finally, some
significant differences arise from the semantic foundation in order sorted, hidden sorted equational
logic. These include: precise and general ways of defining and handling exceptions; operation over-
loading; precise notions of abstraction and encapsulation; and simple criteria for when a refinement
is correct.

8 Conclusion

OOZE is a generalized “wide spectrum” object oriented language with both loose specifications
and ezecutable (compilable or interpretable) programs. These two aspects of the language can be
encapsulated in modules and may be linked by views, which assert refinement relationships. Modules
are organized according to an import hierarchy, and can also be generic, i.e., parameterized. A
system of modules, which may be loose and can even have empty bodies, can be used to express
the large-grain design of a system. A single, very high level module can be used to express overall
requirements, via a view to a module that encapsulates the whole system, or at earlier stages of
development, just its design or specification. Rapid prototypes can be developed and precisely linked
to their specifications and requirements by views. The use of loose specifications to define interfaces
can be seen as a powerful semantic type system. Theorem proving is supported by the underlying
OBJ system. OOZE is truly object oriented, allowing varying numbers of objects to a class, and
complex objects (i.e., object valued attributes), as well as multiple inheritance and dynamic binding.
The precise semantics based on order sorted algebra supports exception handling and overloaded
operations. These characteristics are unique among the proposals for extending Z, and along with
its animation and database facilities, make OOZE a very attractive language for developing large
systems.
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