Issues in the Design and Implementation of a
Schema Designer for an OODBMS

Jay Almarode
Instantiations, Inc.

Portland, Oregon

1. Introduction

In an earlier paper [Almarode Anderson 90], we described the GemStone Visual
Schema Designer, a graphical schema editor for the GemStonet object-oriented
database management system. The GemStone Visual Schema Designer (GS
Designer) allows the user to interactively define classes and relationships
between them by drawing a graphical object model of the class definitions. GS
Designer allows the user to create, modify and delete GemStone class
definitions using a mouse and keyboard interface and bit-mapped graphics in a
windowing environment. The tool utilizes state of the art user interface
primitives and direct graphical manipulation to provide an easy-to-use,
intuitive interface to operations. GS Designer is a commercial product designed
to meet the needs of real application development.

In the course of designing and implementing the tool, a number of issues were
encountered that are unique to object-oriented databases. These issues include
order of database update, references to classes external to a particular schema,
and concurrency conflict. This paper discusses some of the key problems
encountered, proposed solutions to the problems, and a rationale for the
solutions that were chosen. This paper is organized as follows. Section 2 gives
an overview of the GS Designer. Section 3 discusses the order of updating class

definitions in the database and Section 4 discusses the problems of external

201

references to classes outside the schema. Section 5 discusses concurrency
conflicts that can arise under optimistic concurrency control. We conclude with a

brief discussion of future directions for the GS Designer.

2. Overview of the GemStone Designer

The main organizing principle of the GS Designer is the class graph. A class
graph is a named collection of classes related to one another by various kinds of
relationships. A particular class may be contained in more than one class graph,
and a schema may consist of many class graphs. Collectively, all of the class
graphs may be thought of as the schema for the application. The relationships
currently implemented include generalization (realized by the superclass /
subclass hierarchy), constrained instance variables, and constrained collections.
Future relationships to be implemented include aggregation and association. All
classes are part of a single superclass / subclass hierarchy (rooted at class
Object), so any class class graph that the user creates or manipulates is a sub-
graph connected to the class hierarchy, although these connections may not be
displayed. Class graphs are used to partition all the classes of an application
schema into logical subdivisions. Within a class graph, relationships between
classes may selectively be displayed or hidden. Thus, a class graph is a versatile
mechanism for viewing the meta-data of an application, and for managing the
complexity of large schemas. An important design principle of the GS Designer
is that the user should not be allowed to create an invalid class graph. All class
graphs should represent a consistent database state, and the user should not be
allowed to draw an incorrect schema given the information currently available
to the GS Designer.

Figure 1 illustrates the various windows of the GS Designer. The bottom
window is the schema window. It contains an icon for each class graph in the
schema. All schemas automatically include the four GemStone class graphs that

202

contain built-in classes, such as Integer, String, Dictionary, etc. The right-most
window is a class graph window. In this window, each rectangle represents a
class in the schema. An arrow represents a relationship between two classes.
The solid single-headed and double-headed arrows represent named instance
variables for a class. The arrow labeled IsA represents the superclass
relationship between classes, and the arrow labeled holds represents a
constrained collection. The top window is a class form window. This window
allows the user to define a class textually rather than by drawing relationship
arrows. An important feature of the GS Designer is that all windows are
consistent and are updated dynamically. This means that a change in one

window will be reflected in all windows that are appropriate.

Cass Name: [CIVRelation

Instancs Variables

instance Varinhie Name instance Variable Typa Ona Many
* O :
conetrains InstVar * O E:
constrainedToBs Schemallass * O E
setClass E-s—Td'l —— - ~ E
= Class Graph; G5 Desigrer Classes]
Inherfted Instance Variables Osss Gragh Qass View Edit]
es—
—
Instance Variable Name ey
~ ® —r
relationType
ERVIO elassBoxes| olaas nosftep
repe 1 coniep Ttombox
oxtre
class 33 itenboxes
Now Gasses | A Tnedtn <Creesiramn)
Cltonbox>
axtra_(Object)
Defauit Colection Cass: [SetOFTIWelstion Clese I
i - containedlin CTass w» box2 boxl
A
>
J

Figure 1.

The various windows of the GS Designer

203

The following list describes some of the main operations that can be performed

by users of the GS Designer.

Create a new class graph in the application schema. The new graph

initially contains no classes.

Delete the class graph. The class graph is deleted from the schema but
classes in the graph remain, since they may be referenced by classes in
other graphs.

Create class definitions in the database. New classes are instantiated in

the database and existing classes are modified if necessary.

Save the schema as a graph object in the database. Saving the schema
does not make any modifications to the class definitions in the database.

Import an existing class into the class graph. The user may import a class
from the built-in class library, from another class graph within this schema,
or from outside the schema. A class my be imported according to the
relationships it has with other classes, by cutting and pasting from another
class graph window, or by name look-up.

Generate a textual report. A text file of class definitions may be output for
documentation purposes.

File out the schema. A schema may be output in a form that can be input to
other databases.

File out the class definitions. Individual class definitions may be output so
that the class definitions can be instantiated in other databases.

Another important feature of the GS Designer is that class and relationships
may have multiple representations that can be manipulated. For example, a

204

class may be represented in a class graph as a simple rectangle with its class
name displayed and some of its instance variables displayed as arrows
emanating from the rectangle. Another representation for a class in a class
graph is a rectangle with all of the class’s instance variables and their
constraining classes listed inside. Still another representation for a class is a
separate window which shows its superclass and lists all instance variables
defined by the class and all its inherited instance variables. Since classes and
relationships have multiple representations, it is possible to perform the same
conceptual operation in many ways. For example, to reconstrain an instance
variable, the user may type in a new constraint in the class form widow, or may
graphically drag an arrow representing the instance variable from one class
rectangle to another. A principle of good user interface design is to allow the
user a number of ways to perform the same operation. Dynamic updating of all

windows provides instant feedback of the results of the operation.

The remainder of this paper discusses some of the issues that were addressed
during the design and implementation of the GS Designer.

3. Updating Class Definitions in the Database

One of the first issues that was addressed in the design of the GS Designer was
when to update class definitions in the database. One alternative is to update a
class definition in the database immediately after each operation on a class.
Another alternative is to allow a number of operations to be performed and then
allow the user to explicitly update the database with all class modifications.
Most schema editors for non-traditional data models, including ISIS [Goldman
et al. 85], Pasta3 [Kuntz Melchert 89], Siderius [Albano et al. 88], SNAP [Bryce
Hull 86], and VILD [Leong et al. 89], have chosen the latter approach. We are
aware of only one schema editor, the PSYCHO schema editor [KimH 88], that
provides both alternatives.

205

For the first release of the GS Designer, we chose to provide an explicit
operation to update the database. We felt it was desirable for the user to be able
to save the schema design separately from actually updating the definitions in
the database. This allows the user to modify and view private changes in the
schema without changing classes that may be contained in other schemas. In
addition, the user may file out the private changes and create the class
definitions in a different database without updating the actual definitions in the
original database. Another reason is performance. Some class modifications
are expensive, potentially causing the recompilation of numerous methods in the
class hierarchy. This delay can be noticeable with an interactive graphical tool,
and discourages the user from exploring alternative designs. The next release
of the GS Designer will cause us to re-evaluate whether to provide the first
solution (continuously updating the database as changes are made) in addition
to the second solution. The next release will provide integrated capability for
defining and compiling methods for a class. Before a method can be compiled,
any changes the user has made will need to be transmitted to the database, so
that references to instance variables will be valid. In such a scenario, when the
user opens a window for method definition for a class, an implicit operation will

update the class’s definition in the database.

Given that the user can make many modifications to more than one class before
updating those changes to the database, the order that the changes are made in
the database is important. The order of updates must ensure that the database
is always in a consistent state, especially since methods may be invoked during
the update operations. The ordering problem is particularly evident when a
subclass reconstrains an instance variable inherited from a superclass. This
reconstraining is allowable as long as the new constraint is a subclass of the
superclass’s constraint. Figure 2 illustrates an example of a subclass
reconstraining an inherited instance variable. In this example, Class2 may
reconstrain inherited instance variable y as long as the new constraint is a
subclass of Dictionary. When multiple deletions and additions of instance

variables are performed, the order of class modifications must be performed

206

correctly or this rule could be broken. This is best illustrated with an example.
Figure 3 show two classes: Class1 with no instance variables, and its subclass,
Class2, with a single instance variable named x constrained to be a string. Now
suppose that the user deletes instance variable x and redefines it for Class1 to be
constrained to an integer. The resulting class graph is pictured in Figure 4.
When the class definitions are updated in the database, there are two operations
to be performed: deleting x defined on Class2 and adding x defined on Class1.
If the addition of x is attempted first, it would not be allowed since x would be
defined in a subclass and the constraint in the subclass would not be valid.

|
Classi
S — P
/}

' '

] '

] 1

' 1

) IsA 1 [sA

; |

] 1

L]

Class2 Symbollictionary

=08 yCinherited) M It

Figure 2.

An example of a correctly reconstrained inherited instance variable

Classi Integer
->DB
GEMSTONE
+*
:
1
+ IsA
1
1
1
Class2 x allString
=YY 14
|LsEmstone
Figure 3.

A subclass with an instance variable

207

Classl % Integer
L4
—*oe GEMSTONE
T
I
: IsA
1
:
Class2 String
~3»DB
GEMSTONE

Figure 4.
After the instance variable has been moved to the superclass

A similar ordering problem occurs if the addition of a new instance variable
causes a subclass’s instance variable to become inherited. Figure 5 shows Class2
with an instance variable z constrained to be SmallInteger. If the user adds a
new instance variable z to Class1 to make the instance variable in Class2 a
reconstrained inherited instance variable, as pictured in Figure 6, the following
operations must be performed. First, the instance variable z must be deleted
from Class2. Next, the new instance variable must be added to Classl. Finally,

the inherited instance variable z for Class2 must be constrained to Smalllnteger.

Classi Integer
-3DB
L_GEMSTONE |
A
]]
1 1
]]
] 1
IsA 1IsA
1 t
1 1
1 1
1
Class2 Smalllnteger|

Ik S [cemsrone]
z GEMSTONE

Figure 5.

A subclass with an instance variable

208

Classi z Al Integer
=08 4
GEMSTONE
/T\

—
tn
b o]
g
]
pod

1
Class2 Smalllnteger
—>DB z¢inherited) — P ncone |

Figure 6.
After the instance variable has been made inherited

Although the user did not explicitly delete instance variable z for Class2, it must
implicitly be deleted before z is added to Class1; otherwise, an error would occur
for attempting to add a same-named instance variable that is defined by a

subclass.

In light of the ordering problems described above, we have developed a general
algorithm to perform multiple schema modifications. The purpose of the
algorithm is to modify the actual class definitions in the database to conform to
the definitions as pictured in the GS Designer. The pseudo code to perform
multiple schema modifications is as follows:

1. Create any new class definitions in the database

2. For each class, remove any instance variables from the database definition

that are not in the schema definition

2a. Find an instance variable in the database definition that is not in the

schema definition

2b. Check all superclasses to see if this instance variable is inherited

209

2c. If the instance variable is not inherited, delete it

2d. If the instance variable is inherited, reconstrain the instance variable

to the superclass’s constraint

3. For each class, add new or reconstrained instance variables to the
database definition

3a. Find an instance variable in the schema definition that is not in the

database definition

3b. Check all subclasses to see if this instance variable makes a subclass’s
instance variable become inherited

3c. If so, delete the subclass’s instance variable
3d. Add the new instance variable

3e. Reconstrain any subclass’s instance variables that were removed in

step 3c.

4, External References

As mentioned previously, the GS Designer provides an operation to import
classes that are defined outside the schema. This provides a way to bring classes
defined in other schemas or by other tools under the control of the GS Designer.
However, importing external classes leads to some problems in handling
external references. When a class is imported into a schema, it is possible that

the class references other classes not in the schema. One solution is to import

210

the referenced class also, but this class may also reference a class outside the
schema and so on. Unless some discipline is placed on how external classes are
imported into the schema, a potentially large number of classes may be
imported. This is unnecessary if all the user wishes to do is to reference a single

class, for example, to constrain an instance variable.

The GS Designer solves this problem by giving the user control over how deeply
nested the import operation is invoked. The user is allowed to import a class
whose definition with respect to the GS Designer is ‘incomplete’, i.e. the class is
imported although not all of its instance variables (and their constraining
classes) may be included or displayable. When a class is imported incompletely,
the class is read only; only complete classes may be modified. The GS Designer
provides three levels of nesting for the import operation, as follows:

. Import the class only. The class definition in the GS Designer may be
incomplete if it references classes not in the schema. This operation is

useful if the user only plans on referencing the imported class.

. Import the class and its connections. The class definition is guaranteed to
be complete. If it references external classes, those will be imported as
‘class only” as described above. This operation is useful if the user plans on

modifying the imported class.

. Import the class and its network. The class and all other classes imported
will be complete. This operation imports the transitive closure of all
classes and their references. This is useful if the user wants to bring a

number of inter-related classes under the control of the GS Designer.

In all of the operations above, importing a class will implicitly import its
superclass at the same nested level. The GS Designer also supports promoting
incomplete definitions by providing a ‘re-import’ operation. This allows an
incomplete class definition to be changed to a complete definition by importing
its external references. Two operations are provided to promote an incomplete

211

class: re-import with connections, and re-import with network. These
operations work on incomplete classes already in the schema and will import

their referenced classes according to the semantics described above.

Though the import operation is both useful and flexible, problems can arise
when the schema designer has only a partial definition of a class available to it
(i.e., when a class within the schema references a class outside the schema or
vice versa). An example of this occurs when a class within the schema has a
subclass created in another schema by a different user of GS Designer, or
through another interface to the database (such as the C language interface,
Smalltalk interface, or the command line interpreter interface). In this situation,
the GS Designer cannot recognize name conflicts and other errors between the
superclass and its external subclasses until the superclass’s modifications are
updated in the database definition and the compiler determines the conflict. GS
Designer then informs the user that an error resulted from an external class
definition. The error message gives the name of the external class that caused
the error, and also suggests that the user re-import the class into the schema to

avoid future errors of the same type.

The import feature can also give rise to a deadlock situation. This problem is
best illustrated with an example. Figure 7 shows two class graph windows for
two different users of the GS Designer (i.e. two different sessions interacting
with the database). The background window shows user 1’s schema with class
Person instantiated in the database. The foreground window shows user 2’s
schema which also contains class Person. Note, however, the class is locked by
user 1 and is therefore not editable by user 2. (GS Designer locks class
definitions when the schema is loaded, and doesn’t allow modifications to
classes with subclasses locked by another user). Figure 8 shows that user 2 has
created the class Employee as a subclass of Person in the database. At this point,
user 1's schema does not include class Employee, and name conflict errors could
result, as described earlier. The deadlock situation is illustrated in Figure 9,
when user 1 imports the subclass Employee into his/her schema. Once the

subclass is imported, the GS Designer recognizes that class Employee is locked

212

lass Craph: User 1°s schen.

Edit

O
ass —] Class Graph: User 2’s schems

Qass Graph Qass View Edit

SERVIO

Hew Casses

New
Class

HNew

Set

Retationships

4—
“.__.__
& - sa -
€& nowss -

Figure 7.

Two class graphs with the same class for two different users

by another user and disallows any modification of class Person. This is
appropriate behavior because a change in the superclass may affect the subclass,
and the subclass is currently locked by user 2. Importing Employee eliminates the
possibility of name conflict errors as described earlier; however, no
modifications may be made to Person by either user until one of the users exits
his/her schema.

213

Llass Graph: User 2°s schema
Qass View Edit

Refationships
& -1sa -
<<— holds -

Figure 8.
User 2 creates a subclass

5. Concurrency Conflicts

As mentioned previously, the GS Designer acquires locks to prevent concurrency
conflicts between multiple uses of the system. An important issue is how much of
a class definition to lock without limiting other users. This is especially
important in database management systems, such as GemStone, that use
optimistic concurrency control (as described in [Maier et al. 86]) as well as

locking. With this mechanism, concurrency conflicts are recognized at commit

214

{lass Graph: User 2°s schema
— L

Qass Graph Qass View Edit
SERVIO —
[Person__|
[oo]
Mew Oasses H
New E IsA

Class

.
[r——
New I Enployes
Lse

[
i

Relationships

Figure 9.
User 1 imports the subclass

time if an object that was read or written has since been modified by another
user. Although the GS Designer locks class definitions, schemas, and
dictionaries that may be updated by the user, it is still possible for the operation
that updates class definitions in the database to be unable to commit due to
optimistic concurrency control. This is because the class creation and
modification methods may alter nested objects that are not locked. The GS
Designer could lock these nested objects, but doing so would limit other users.

An example illustrates how this might happen.

215

Figure 10 shows two class graph windows belonging to two different users
interacting with the database. Both class graphs contain Classl, with user 1
prevented from making any modifications because user 2 acquired the lock on
the class first. The two class graphs also show that each user has specified a
subclass of Class1, but has not created the class definition in the database yet.
When a class is created in the database, it updates a class variable in the
superclass. This class variable maintains a set of all subclasses of the class, and
is a nested object referenced by the superclass definition. In this case, whichever
user creates the subclass first will cause the other user to be unable to commit

because the set of subclasses will have been modified by another user since this

transaction began.

Class Graph: User 2°s schema
Qass Mew Edit
Classi
—
¥
Elw
Subclass. 1
[
]
Figure 10.

Both user 1 and user 2 create subclasses of the same class

216

One solution to the problem would be to lock all nested objects that may be
modified by other users. However, we felt this would be too limiting. As
demonstrated in the previous example, if the set of subclasses were locked by
user 2, then user 1 or any other users would not be able to create a subclass of
Classl. The solution that is used by the GS Designer is to abort the current
transaction when an optimistic concurrency control conflict occurs and then
retry the operation again. Aborting the current transaction refreshes the
database cache so that any modifications that occurred are now visible to the
user. The GS Designer reduces this possibility by locking all class definitions, the
schema, and the dictionary from which the schema was read. Locking the
dictionary guarantees that the user will always be able to save the schema (i.e.

no work is lost).

6. Conclusion

This paper has discussed some of the issues that were addressed in the first
release of the GS Designer. We have shown how the order of class
modifications can lead to problems unless performed in the correct order, and
given an algorithm of how the GS Designer performs multiple class
modifications in the database. We have also shown how references to classes
external to the schema can lead to problems when multiple designers are
updating the database, and discussed the import operations to support
incomplete definitions in the schema. Finally, we have illustrated problems with
locking and optimistic concurrency control when subclasses are created by

multiple users in different database sessions.

The emphasis throughout the design and implementation of the tool has been on
providing intuitive, consistent operations for the user without limiting other
users of the database. The tool is intended to aid in the sharing of class
definitions as well as in their creation and modification. To this end, we expect

217

to add a number of additional features in the next release. We expect to
integrate the GS Designer with a database administration tool that will allow
the user to set authorizations and to easily move objects to different name
spaces. In the future, we also expect to couple the GS Designer with a forms
package and a query tool, so that users will be able to specify indices and query
the database graphically. With the increased complexity of inheritance,
behavior, and complex objects in the database, building such tools for an object-
oriented database management system will provide a challenge to all database
researchers and implementors.

7. Bibliography

Almarode, J., Anderson, L. “GemStone Visual Schema Designer: A Tool for
Object-Oriented Database Design”, IFIP TC2 Working Conference on Database
Semantics, Windermere, UK, 1990.

Albano, A., L. Alfo, S. Coluccini, R. Orsini. “An Overview of SIDERIUS: A
Graphical Database Schema Editor for GALILEO”, Proc. of the Int. Conf. on
Extending Database Technology - EDBT ‘88, Venice, Italy, 1988.

Bryce, F., R. Hull. “SNAP: A Graphics-based Schema Manager”, Proc. of the
IEEE 2nd Int. Conf. on Data Engineering, Los Angeles, 1986.

Goldman, K. J., S. A. Goldman, P. C. Kanellakis, S. B. Zdonik. “ISIS: Interface
for a Semantic Information System”, Proc. of ACM-SIGMOD 1985 Int. Conf.
on Management of Data, Austin, Texas, 1985.

Kim, H. J. “Issues in Object-Oriented Database Schemas”, The University of
Texas at Austin, PH.D. 1988.

218

Kuntz, M., R. Melchert, “Ergonomic Schema Design and Browsing with More
Semantics in the Pasta-3 Interface for E-R DBMSs”, 8th Int. Conf. on Entity-
Relationship Approach, Toronto, Canada, 1989.

Leong, M.,S. Sam, D. Narasimhalu. “Towards a Visual Language for an Object-
Oriented Multi-Media Database System”, Proc. of the IFIP TC2/WG 2.6
Working Conf. on Visual Database Systems, Tokyo, 1989. Published as Visual
Database Systems, Elsevier Science Publishers B .V, 1989.

Maier, D., J. Stein, A. Otis, A. Purdy. “Development of an Object-Oriented
DBMS”, OOPSLA ‘86.

