Object Integrity Using Rules

Claudia Bauzer Medeiros* Patrick Pfeffert
DCC-IMECC-UNICAMP-CP 6065 Department of Computer Science
13081 Campinas SP University of Colorado
Brazil Boulder, CO 80309-0430
cmbmedeiros@dcc.unicamp.ansp.br U.S.A.

patrick@cs.colorado.edu

Abstract

Integrity maintenance in object-oriented systems has so far received little attention. This paper
is an attempt to fill this gap. It describes a mechanism for maintaining integrity in an object-
oriented database, implemented for the O, system, and which uses the production rule approach
to constraint maintenance. Object integrity is ensured by objects themselves — the rules which
are activated when selected events take place. The approach presented is original, in the sense
that it takes full advantage of the object-oriented paradigm, considering constraints as first-class
citizens which can be inherited, and defined independently of any application. Furthermore, we
support maintenance of not only static but also some types of dynamic constraints, as well as
constraints on object behavior.

1 Introduction

As remarked by [JMSS89], a great part of the properties that define the consistency of a database
can be represented by predicates on the database state (the so-called static integrity constraints). If
all these predicates are evaluated as true for a given state, then the state is consistent. Most of the
work published on database constraint maintenance is dedicated to ensuring this type of constraint.

Dynamic integrity constraints, on the other hand, are predicates specified over a sequence of states.
Research in this area goes in the direction of transforming each dynamic constraint into a set of
static constraints (e.g., [Via88]) sometimes using state transition graphs (e.g., [Kun85, Lip88]) where
the terminal nodes are consistent states. Again as remarked by [JMSS89], a considerable amount
of dynamic constraints can be expressed in terms of the initial and final states of a transaction.
A transaction is a sequence of actions conducting from one initjal (or input) database state to a
terminal (output) state. Dynamic constraints that can be expressed in terms of only initial and
final states of a single transaction are called two-state predicate constraints. The monitoring of other
dynamic constraints is still a matter of research, and demands maintaining historical information on
the database states ([HS90]).

Static constraints are usually expressed by means of first order logic expressions, and dynamic
constraints by means of temporal logic. Temporal logic extends first order logic by incorporating
modal operators always, sometime and next. These operators may vary, since authors who do research
in the area define their own operators to better express dynamic constraints.

*This research was developed while the author was on sabbatical leave at GIP Altair, BP 105, 78153 Le Chesnay-
Cedex, France. The support of this research was provided by GIP Altair and by grant CNPq - Brazil - 200.168-89.4

This research was partially developed while the author was working for Gip Altair. The support for this research
was provided by GIP Altair and by ONR under Contract N00014-88-K-0559

220

Most mechanisms for constraint enforcement support only a very limited set of constraints. This
support consists usually in either forbidding or rolling back operations that viclate constraints. A
more flexible approach to enforcement is that of performing compensating actions, whereby the
once forbidden operations are allowed to take place, followed by other operations which re-establish
consistency.

Integrity maintenance in object-oriented systems is still an unexplored topic. This paper presents
a solution to this problem, which has been implemented on the O, database system, and which can be
generalized to other object-oriented database systems. The constraint maintenance mechanism takes
advantage of the production rule subsystem which has been integrated into the O; prototype {Da90].
Though this rule mechanism is general, this paper is only concerned with the features relevant to
the consistency problem. The reader is referred to [BMP91] for a more detailed description of rule
treatment in O,.

The key issues discussed here are based on the following:

e Constraints supported. The mechanism supports the maintenance of any constraint that
can be expressed as a sequence of predicates on sequences of database states using the O,
query language. This means that we allow static constraints and some classes of dynamic
constraints. For dynamic constraints, we restrict ourselves to cases where state history can be
checked in terms of one state transition (i.e., we support two-state predicate constraints). We
do furthermore consider constraints on object behavior.

o Integrity enforcement. It is ensured by performing compensating actions, determined by
database and application semantics. It uses the production rule solution to constraint mainte-
nance.

» Exploiting the object-oriented paradigm. Our mechanism takes advantage of the object-
oriented paradigm in three aspects. First, each constraint is transformed into a set of special
objects, called rules, which will monitor integrity. Thus, object integrity is supported by objects
themselves. Second, the system takes inheritance into account, and a constraint defined for a
given class is automatically enforced in all its subclasses. Third, constraints can be inserted,
deleted and modified at will, independent of any application. They are considered first-class
citizens, and need not be encoded in the body of any application. The last point is an answer
to the remark in [fADF90], where it is claimed that this independence cannot be supported in
object-oriented systems.

The rest of this paper is organized as follows. Section 2 presents an overview of the O, system.
Section 3 presents a brief description of the O, rule system. Section 4 points out some of the problems
of constraint maintenance in an object-oriented environment, presents our framework and gives an
overview of research in the area. Section 5 shows how the rule system is used to maintain constraints.

Section 6 gives examples of constraint support. Finally, Section 7 contains conclusions and directions
for future work.

2 A brief overview of the O, system

This section contains a short presentation of the O object-oriented database system. The interested
reader will find further detailed information in [Da90].

The O, data model {LR89] relies on two kinds of concepts: complez values, defined as in standard
programming languages, and objects. Objects are instances of classes, and values are instances of
types. Objects are encapsulated (i.e., their value is only accessible through methods), whereas values
are not — their structure is known to the user, and they are manipulated by primitive operators.
Manipulation of objects is done through methods, which are procedures attached to the objects.
Objects sharing structure (type) and behavior (methods) are grouped into classes. Users can define
names for given objects.

221

Types are constructed recursively using the O, atomic types (e.g., integer or bitmap), classes
from the schema and the set, list and tuple constructors. An O, schema is a set of classes related
by inheritance links and/or composition links, as well as the attached methods, and allows multiple
inheritance.

Though O, is multi-language, the methods discussed here are coded in the CO; language. CO,
is a C-like programming language which allows (i) class declaration, (ii) object manipulation (i.e.,
message passing) and (iii) value manipulation by means of primitive operators.

The O, system has a functional first order query language [BCD89] which can be used either
in an interactive mode or included in the body of methods. This language supports access to O,
structures, thus being able to manipulate O; constructors and make use of methods. The result of
a query is a complex value whose type is defined by the query itself. The result of a query can be
used in a program as any complex value.

3 The O, rule mechanism

3.1 General concepts

Active databases (e.g., [DBB*88]) are database systems that respond automatically to events gen-
erated internally or externally to the system itself, without user intervention. The nature of the
response is arbitrary, and depends on application semantics. The desired behavior is commonly
specified by production rules, which are pairs of the form < predicate — action > to be triggered at
specific events.

Our solution to integrity enforcement uses the active database paradigm, where a constraint is
enforced by means of O, production rules. This section gives a brief overview of the rule mechanism
in Oz. A complete description of this mechanism is given in [BMP91].

Rules are considered to be schema components and can be kept independently from applications
on the database. Furthermore, the inheritance property applies - i.e., rules defined for a given class
are inherited by all of its subclasses. Like any other schema component, rules also suffer evolution:
they can be added, deleted and modified. They differ from other schema components in the sense
that they can be enabled or disabled at times, which does not apply to the other components. Some
rules may be local to one transaction (which creates them at its beginning and deletes them at its
end).

Rules are implemented as objects, with priorities and access rights, and are instances of O, builtin
classes, whose root is the class Rule. Following the terminology of [DBB*88], their activation occurs
upon some Ewvent, in which case a Condition is checked and some Action is optionally undertaken.

3.2 Rules as objects

The O, rule system is not restricted to verifying integrity constraints. Whereas most active systems
restrict events to be update requests, in O, they may be associated with message sending or with
the passing of time.

Rule objects are tuples <Name, E, Q, A, P, S, AP>, where
Name is a string that identifies the rule;
E(vent): is an expression describing one event which triggers rule verification;
Q(uery): is an O; query. It contains the predicate to be tested in order to execute the action;
A(ction): is a sequence of CO; operations and corresponds to the action to be performed if the
condition is met. It may itself involve operations which will trigger further rules, in nested execution;
P(riority): is an integer that ranks the rule, to be used when there is more than a rule applicable
for a given event;
S(tatus): indicates whether the rule is enabled or disabled;
AP(plicability): indicates when to check the rule, e.g., pre- or post-method execution.

222

Message-related events are expressed as [Receiver, Method) - i.e., the event is signalled when there
is a request for Method to be executed on Receiver. Receiver can be either an object name or a class
name. Time-related events are specified as TIME(value). Accepted time values are those of the O,
builtin classes Date and Duration (which respectively allow expressing points in time or time intervals
in years, months, days, hours, minutes and seconds). An event may trigger the verification of a set
of rules, according to their priority. Verification of a rule’s applicability corresponds to performing
query Q followed by the arbitrary action A which is itself an O, method.

Rules can be examined or updated. Rule operations are methods attached to the Rule builtin class
hierarchy. They can be invoked inside an application program or interactively using the graphical user
interface. The update operations on rules are Add, Delete, Enable, Disable, Fire and Change_priority.

4 Constraints in an object-oriented DBMS

4.1 Related work

The analysis and support of constraints for object-oriented systems has so far merited little at-
tention and has been restricted to static constraints. Most of the integrity maintenance problems
already existing in the relational world can be translated into equivalent (or often the same) prob-
lems when one comes to the object-oriented model. However, the object-oriented model has brought
an additional type of constraint into existence: constraints imposed on the behavior of objects (i.e.,
controlling method definition and execution). Some systems (e.g., [KGBW90]) support constraint
maintenance for schema (structural) update operations; others (e.g., [DBB*88, KDM88]) describe
constraint maintenance in the framework of active databases, but without details about types of
constraint supported or their transformation into rules.

Recent research in constraint maintenance in relational and logic databases uses the active data-
base approach, and is usually restricted to static constraint support. Examples are the constraint
equations of [Mor84] (expressed as path expressions over relations), the POSTGRES rule system
[SJGPY0] (where rules are used to define views, compute aggregate fields and translate update re-
quests), or the work of [SLR89] (concerned with different algorithms for improving the checking of
conditions upon one-tuple relational updates). [CW90] describe a framework in which constraints
specified in an SQL-like language can be translated into rules that detect integrity violation. Logic
database rule based systems include PRISM [SK84] and TAXIS [MBWS80).

In the object framework, [LR90] suggest how static constraints might be stated in a database
programming language, to be checked as post-conditions to a transaction. Production rules are
suggested for constraint maintenance in [DBB*88, KDM88]. In [DBB*88], ECA (Event Condition
Action) rules are supported, where Event triggers the rule, Condition is a collection of queries
evaluated when a rule is triggered by an Event, and Action is a sequence of database and application
program operations. [KDMS88] describes an extended trigger mechanism on top of the DAMASCUS
system which has three components: Event, Action and Trigger. The Trigger is the means of
connecting an Event with a given Action. Events have pointers to Trigger chains, organized according
to Trigger priority.

Constraints and rule execution in object-oriented environments are also found in the CACTIS
system [HK89] where derived attribute instances are defined in terms of triggers, and updated only
on request. The work of [UD89] proposes specification and maintenance of integrity constraints
as rules in an NF2 system, where constraints are defined on the schema or for specific application
needs. Finally, in [NQZ90] a rule system for semantic modelling is implemented on top of Gemstone,
allowing the handling of some types of static constraints.

4.2 Constraints supported in O, - assumptions and terminology

We support both static and two-state transition constraints. This section describes the framework
of this support.

223

In the relational model, constraints are often classified into intra-relation (e.g., functional depen-
dencies) or inter-relation (e.g., referential integrity). Inter and intra-relation constraints exist both at
the static and the dynamic level. Analogously, we support constraints that are defined on the objects
of one class (intra-class) or several classes (inter-class). We consider constraints between objects as
a special case of intra-class constraint. We also support constraints defined on object behavior, as
long as they can be stated as pre or post conditions to methods. Finally, constraints can be global
- i.e., they hold for all applications that run on a database; or local - they are defined locally to an
application, and their verification is only enabled when the application is active.

Another issue we consider is that of flezibility. In commercial database systems, constraint
enforcement depends on the programmer adding the appropriate integrity checks throughout all
applications that use the database. This type of enforcement requires a huge maintenance effort,
not only to correct errors, but also to accompany evolution of the database or the applications.
Furthermore, one would like flexible constraint management, allowing enabling and disabling of
constraint verification.

In order to respond to this need for flexibility, we define constraints to be first-class citizens. They
are conceptually considered to be propertiesof an O, database schema and can be kept independently
from applications on the database. They may be defined over classes, methods or named objects, as
well as as over computed or aggregate values, that is, values that are not effectively stored.

We handle both static constraints (expressed as first order logic predicates on a state) and some
dynamic constraints (those that can be stated as two state predicates). Two-state constraints are
formalized in [CCF82], where they are stated in terms of transactions that lead from an input State;
to an output State,, and where the predicate is transformed into a first order expression.

We thus deal with situations involving just first order logic predicates: static constraints, con-
straints on input and output states of methods, and two-state constraints. In the latter case, we
use [CCF82]’s technique to transform the constraint into a transaction where predicates are to be
verified as pre and/or post conditions.

We take the remedial approach to integrity maintenance. Thus, rather than defining constraints
as assertions over database states, they are specified as production rules. These rules are imple-
mented using the O, rule system and the predicates are expressed within O, queries: first order logic
expressions, using methods, composition and iterators.

A constraint statement is transformed in a production rule expression as follows. Consider first
static constraints, stated as first order logic predicates P. They give origin to rule statements of the
form < -~ P — A > for some designer-defined action A. If one assumes the state of a database is
consistent before any operation that may violate a static constraint, then this constraint need only
be checked after a state change.

The dynamic constraints supported are expressed using modalities “sometime” and “always” (see

[CCF82))

sometime Pi before Transaction

sometime Po after Transaction
always Pi before Transaction
always Po after Transaction

Each such dynamic constraint is transformed into a set of static constraint declarations, to be checked
both as pre and post-conditions:

< - Pi (State;) — Ai > and < - Po (State,) — Ao >

where 7 and o indicate input and output states, Pi and Po are first order logic predicates and State;
and State, are input and output states of Transaction.

224

5 Maintaining constraints through O; rules

As pointed out in [SLR89}, one of the problems in maintaining constraints through rules is how to
execute rules in the appropriate order for events where more than one rule applies. We adopt the
solution described in, among others, [SLR89, DBB*88, CW90, WF90, NQZ90|: rules are assigned
execution priorities to disambiguate execution order.

As stated in Section 4, we only consider constraints where the predicate to be checked is a first
order logic statements. Constraint statements, expressed as < = P — 4 >, are transformed into O,
rules where — P is the selector clause within an O; query statement and A is the name of a CO,
method. The answer to the query gives enough information on the state of the database to indicate
if the constraint has been violated. Since O queries return complex objects and values, the answer is
also used, in some cases, to indicate which objects satisfy (= P) and thus might need to be processed
by A. For details on the syntax of the query language, see [BCD89)].

5.1 Checking constraints at message passing events

Like all other researchers who have examined the problem of integrity violation, we only analyze
constraints whose violation is caused by schema or by state updates (insertions, deletions or mod-
ifications). We only consider therefore message-related events, where the methods perform some
update action.

It must be stressed that this represents a subset of the constraints that can be enforced by the
O, rule system (we ignore, for instance, time-related events). We have not yet, however, been able
to completely characterize other kinds of constraints. One such example is the class of constraints
that are violated by the absence of an update, another corresponds to constraints on history-bound
relationships, which require keeping auxiliary structures to monitor state sequences.

5.2 Transforming a constraint into a set of objects

This section describes how a constraint stated as a production rule is transformed into an initial
set of O, rules. This process is at the moment done manually, since automation would require
restricting the types of constraint that can be enforced (e.g., [Mor84, CW90]). Once this initial set
of rules is specified and inserted into the database, the rule support system takes over, and further
transformations are executed, automatically.

The first step consists in determining the pair < Q, A >. Recall that the constraint is stated as
(a set of) productions < = P — A >. Predicate = P is transformed into an O, Query. The Action
to be taken is determined by database and application semantics. It corresponds either to the name
of a method supplied by the user, or to system-provided actions in the cases of cancelling or undoing
of an operation.

The execution of the pair < Q, A > may be triggered by different update events. Thus, the next
step in transforming a constraint into rule objects corresponds to the determination of all Events
that require constraint verification. This is done in two stages. The first stage is path analysis, in a
fashion similar to the one described in [CW90]. The query predicate is treated as a path expression,
where all objects or class names mentioned in the path are potential sources of constraint violation.
The determination of these sources is automated, since this corresponds to syntactically analyzing a
query statement. Unlike [CW90]’s relational constraints, however, our predicates are on classes and
objects that interact, and static analysis is not enough. We must then go through the next stage and
ezamine the database schema to identify all methods which, sent to the potential sources of violation,
may indeed cause violation. The event description pairs [Receiver, Method) are the output of this
second stage.

The steps described above correspond to transforming a constraint into a set of rule objects
R1, ..., Rn, all having the same < Q, A > and different Event components. Finally, some Queries
can be simplified, given the restrictions imposed by the Events.

225

Structural/Inheritance Information

class Person type
tuple (Name:string, Birth:Date, Lives:Address)

class Employee inherits Person type
tuple (Salary:Money, Depi:Department)

class Client inherits Person type
tuple (Credit:Money, Status:string)

class Department type
tuple(Name:string, Personnel:set (Employee), Manager:Employee)

Behavior Information

method change_birth (Newbirth:Date) in class Person;
method hire () in class Employee;
method change_sal (newsal:Money) in class Employee;
method change_dept (Oldep:Department, Newdep:Department)
in class Employee;
method change_manager (Newman:Employee) in class Department;
method buy () in class Merchandise;

Figure 1: Example Schema

Once these steps are taken, the rule objects can be inserted into the database. The rule support
mechanism then takes over and creates additional rules to ensure constraint inheritance. If rule
R1 is created for an event [Rec, M], then other rules with the same components Q and A are
automatically created for events [Rec’, M] for all subclasses Rec’ of Rec. This corresponds to a
phenomenon of constraint propagation by inheritance. The user may later assign different priorities
to each such rule, as well as enable, disable or delete them individually.

6 Example of constraint maintenance

There follows an example of constraint maintenance in the system. We use the classical “Employee”
- “Department” example, with a few minor additions, which will allow the reader to easily grasp the
details of constraint management, without having to understand a particular application. Consider
the O; schema in Figure 1, with classes Person (subclasses Employee, Client) and Department.
Address, Money, Date and Merchandise are classes defined elsewhere.

This schema is submitted to the following Static and Dynamic constraints, and respective cor-
rective actions:

e S_ICIl: an Employee who is a Manager must earn at least $10,000 = Force Manager salary to
be 10,000.

e S_IC2: (exception to S_IC1) constraint S_IC1 does not apply to Employee “Smith”.
e D_IC3: a Person’s age may never decrease = Forbid violation.

o S_IC4: the salary of a Manager is greater than the salary of all Employees of the Department
= Non-Manager’s salaries must always be kept to salary of Manager minus 1.

o D_IC5: a Client’s status must be “good” before Client is allowed to buy Merchandise = Warn
user and forbid operation.

226

The following sections show rule generation steps, pointing out relevant details. The use of O, queries
and CO, methods is straightforward. We assume classes have extensions with the same name. For
ease of understanding, a rule's components (E,Q,A) are numbered according the constraint they
maintain - e.g., E1, Q1 and A1l refer to maintaining constraint number 1.

6.1

Processing S_IC1

¢ Determining Q and A components

P is (V d in Department, d.Manager.Salary > 10,000)

Q1: Q.result = select set(d.Manager)

from d in Department

where (d.Manager.Salary < 10,000)
Al: for emp in Q_result { [emp change sal(10,000)];}

Notice the query returns an O; complex value, Q_result, whose type is defined in the select
clause as being “set of Managers”. This set contains all managers that violate the constraint.
Also notice Al is performed on the objects which are returned by the query.

Determining Events
Possible sources of violation are extracted from Q1’s predicate
“(d.Manager.Salary < 10,000)”, i.e., Manager or a Manager’s Salary. Manager is of type
Employee and is a component of class Department, so this analysis just tells us that updating
Employees or Departments may violate the constraint. This is obviously not a fine enough
control to determine events. An examination of the schema (and method semantics) shows
that the only events that must be checked for are

El.1: [Employee change sal(Newsal)]

E1.2: [Department change manager(Newman)]

This corresponds to the creation of two rules, R1.1 and R1.2, one for each event, which need
only be checked after execution of the corresponding methods.

Q and A simplification

At event El.1, the rule needs only be applied if method “change_sal” applies to an Employee
who is also a Manager. Furthermore, Q1 is too general, since it always checks all Managers,
whereas only one Manager is being affected at each event. Query and action are thus modified
to:

R1.1 (self is of type Employee), and for event E1.1:
Q1.1: Qresult = (self — Dept.Manager == self
AND
self — Salary < 10,000)
Al.1: if (Q.result) then [self change sal(10,000) |
R1.2 (self is of type Department), and for event E1.2:
Q1.2: Qresult = (self - Manager.Salary < 10,000)
A1.2: if (Qresult) then [self — Manager change_sal(10,000)]

Detection of cycles

The rule management system detects some types of cycles and warns the database designer.
Here, one can immediately detect a cycle since R1.1 is both triggered by and executes the
method “change sal” and thus R1.1 activates itself. This is solved by using disable and enable
rule operations in Al.1 as follows

Al.l: if (Q.result) then { disable R1.1;
[self change _sal(10,000)];
enable R1.1;}

227

6.2 Processing S_IC2

This exception to SJIC1 can be handled in two ways. The first is to define pre (and post) method
execution rules, where if Employee is “Smith” then both R1.1 and R1.2 are disabled (and enabled).
The second (simpler) solution is to compose the two constraints, by modifying Q1.1 and Q1.2, adding
to each the clause “AND self+Name != “Smith”. The first choice maintains the independence
between S_IC1 and S_.IC2, but is less efficient in terms of processing time.

6.3 Processing D_IC3

This constraint predicate is stated as “always Birth > Newbirth”, and is an example of a case where
two-state constraints are expressed in terms of old (input) and new (output) values. Event, Query
and Action after simplification are respectively:

E3: [Person change_birth(Newbirth)]

Q3: Q.result = (self — Birth < Newbirth)

A3: if (Qresult) then Break

where Break is a special system method that results in not allowing the execution of “change_birth”.
This rule is to be checked before execution of “change_birth”.

Here a new phenomenon can be observed: constraint inheritance. The user defines rule R3 for
class Person. Two other rules are automatically created by the system, to account for the fact that
this class has two subclasses (Employee, Client) to which “change_birth” can also be applied. This
finally results in three rules, one stated by the system designer and the other two generated by
the system, with the components < Q3, A3 > and for events [Employee change_birth] and [Client
change_birth].

6.4 Processing S_IC4

Query, Action and Events are

Q4: Qresult = select set(emp)
from emp in Employee
where (emp.Salary > emp.Dept.Manager.Salary)
Ad: for e in Qresult
{ [e change_sal(e —+Dept.Manager.Salary - 1)];}

Events are those that affect Salary, Managers and Employees
E4.1 [Employee hire()]
E4.2 [Employee change_sal(Newsal)]
E4.3 [Employee change_dept(Oldep, Newdep)]
E4.4 [Department change_ manager(Newman)]

Notice the query cannot be simplified to its predicate component in all four cases, because for
certain events (e.g., change of Department’s Manager) more than one Employee may be affected.
If we had taken the approach of other authors, constraint violation would be signalled by having
the constraint’s predicate return the value of “false”. Then, we would have to navigate through the
database to perform corrective actions. Our approach is more efficient in that the query result itself
already shows where to perform such actions. Query simplification to a boolean predicate can be
made for events E4.1 and E4.3, only.

6.5 Processing D IC5

This constraint can be stated as “sometime Client.status = “good” before Client buy Merchandise”.

This is another case of rule processing before method execution. Rule components after simplification
are:

228

Q5: Qresult = (self — Status !'= “good”)
A5: if (Qresult) { Warn user; Break; }
E5: [Merchandise buy]

6.6 General comments

In previous research about maintaining constraints through rules, each constraint gives origin to one
rule (since updates and their effects are localized, and are not performed across classes). Here, one
constraint may give origin to several rules, applied to distinct classes.

Each of the previous constraint transformations is an instance of the different issues covered.
Processing of SIC1 shows simplification of query and action, as well as the fact that part of an
action may include the temporary disabling of the constraint itself. Enable and disable operations
allow controlling constraint scope. Thus, constraints may be enabled only within an application or
a transaction. One may want, for instance, to disable constraint S_IC1 for a transaction that will
change all salaries of a company, and perform a global verification of Manager’s salaries at the end.

Processing of S_1C2 shows exception handling options and that constraint composition is trans-
formed into query and action composition. Processing of D_IC3 shows processing of an “always”
dynamic constraint, the special system action Break, and the feature of automatic constraint in-
heritance. S_IC4 is an example of the need for a query that returns a complex value and not just
a boolean. Again in this our system differs from the proposals of most authors that are limited
to checking boolean expressions. Finally, D_IC5 shows handling of a “sometime/before” dynamic
constraint.

7 Conclusions and future work

This paper presented a solution for maintaining integrity constraints in an object-oriented system,
which was implemented using the O, production rule mechanism. The approach described here is
original in that constraints are transformed into objects and therefore managed as database com-
ponents by the database management system itself. Constraints are considered as part of a schema
and are treated as first-class citizens. This permits supporting object-oriented characteristics such
as constraint inheritance and independence, and which are ignored by most researchers.

Unlike previous work on constraint maintenance in object-oriented databases, this solution con-
siders not only static but also some two-state dynamic constraints, as well as constraints on behavior.
Also unlike previous work, we consider both global and local constraints, as well as inter-class cons-
traints. Other aspects that distinguish our approach from others’ are the ability to treat exception
handling, considering one constraint as enforced by sets of rules (and not just one) and support
to system evolution, where modification of the set of database constraints is transparent to the
applications. Finally, constraint enforcement can be disabled and enabled for different transactions.

Future work will consider extending the set of allowable constraints, as well as partially automat-
ing the determination of the set of events which correspond to a constraint statement.

Acknowledgements

The authors thank Guy Bernard and Christophe Lécluse for their careful reading of previous versions
of this paper, and their insightful comments.

229

References

[BCDS8Y)

[(BMP91)

[CCF82]
[CW90]
[Da90]

[DBB+88]

[FADF90]
[HK89)
[HS90]
[IMSS89)
[KDMS8)

[KGBWY0]

[Kun85]
[Lip&8]
[LR89]
(LR90]

(MBWS0]

F. Bancilhon, S. Cluet, and C. Delobel. A query-language for an object-oriented database
system. In Proceedings of the Second Workshop on DataBase Programming Languages,
Salishan, Oregon, USA, June 1989. Morgan Kaufman.

C. Bauzer-Medeiros and P. Pfeffer. A Mechanism for Managing Rules in an Object-
Oriented Database. Technical Report 65-90, GIP Altair, Rocquencourt, France, 7 janvier
1991.

J. Castilho, M. Casanova, and A. Furtado. A Temporal Framework for Database Speci-
fications. In Proceedings of VLDB, pages 280-291, 1982.

S. Ceri and J. Widom. Deriving Production Rules for Constraint Maintenance. In
Proceedings of the 16th VLDB, pages 566-577, 1990.

O. Deux and al. The Story of O,. Special Issue of IEEE Transactions on Knowledge
and Data Engineering, 2(1), March 1990.

U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarty, M. Hsu, R. Ledin, D. McCarthy,
A. Rosenthal, S. Sarin, M.J. Carey, M. Livny, and R. Jaurhy. The HiPAC Project: Com-

bining Active Databases And Timing Constraints. SIGMOD RECORD, 17(1), March
1988.

The Committee for Advanced DBMS Function. Third Generation Data Base System
Manifesto. In Proceedings of SIGMOD’90, Atlantic City, May 1990.

S. Hudson and R. King. Cactis: a Self-Adaptive, Concurrent Implementation of an
Object-Oriented Database Management System. ACM TODS, 14(3):291-321, 1989.

K. Hulsmann and G. Saake. Representation of the Historical Information Necessary for
Temporal Integrity Monitoring. In Proceedings of the 2nd EDBT, pages 378-392, 1990.

M. Jarke, S. Mazumdar, E. Simon, and D. Stemple. Assuring Database Integrity. Sub-
mitted for publication, 1989.

A. Kotz, K. Dittrich, and J. Mulle. Supporting Semantic Rules by a Generalized
Event/Trigger Mechanism. In Proceedings of the 1st EDBT, pages 76-91, 1988.

W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION Next-
Generation Database System. JEEE Transactions on Knowledge and Data Engineering,
2(1):109 -124, March 1990.

C. Kung. On verification of database temporal constraints. In Proceedings of the ACM
SIGMOD, pages 169-179, 1985.

U. Lipeck. Transformation of Dynamic Integrity Constraints into Transaction Specifica-
tions. In Proceedings of ICDT, pages 323-337, 1988.

C. Lécluse and P. Richard. Modeling Complex Structures in Object-Oriented Database.
In Proceedings of PODS, 1989.

Christophe Lécluse and Philippe Richard. Data Base Schemas and Types Systems for
DBPL. Rapport Technique 55-90, GIP Altair, Rocquencourt, France, 29 aoit 1990.

J. Mylopoulos, P. Bernstein, and H. Wong. A Language Facility for Designing Database-
Intensive Applications. ACM TODS, 5(3):185-207, 1980.

[Mor84]

[NQZ90]

[SIGP90]

[SK84]

[SLR8Y)

[UD8Y]

[Via88)

[WF90]

230

M. Morgenstern. Constraint Equations: Declarative Expression of Constraints with
Automatic Enforcement. In Proceedings of the 10th VLDB, pages 291-300, 1984.

R. Nassif, Y. Qiu, and J. Zhu. Extending the Object-Oriented Paradigm to Support
Relationships and Constraints. In Proceedings of the IFIP Conference Object Oriented
Database Systems - Analysis, Design and Construction, 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On Rules, Procedures, Caching
and Views in Database Systems. In Procedings of the ACM SIGMOD, pages 281-290,
1990.

A. Shepherd and L. Kerschberg. PRISM: a Knowledge Based System for Semantic
Integrity Specification and Enforcement in Database Systems. In Proceedings of ACM
SIGMOD, pages 307-315, 1984.

T. Sellis, C. Lin, and L. Raschid. Implementing Large Productions Systems in a DBMS
Environment: Concepts and Algorithms. In Proceedings of ACM SIGMOD, pages 404—
412, 1989.

S. Urban and L. Delcambre. Constraint Analysis for Specifying Perspectives of Class
Objects. In Proceedings of the 5th IEEE Conference on Data Engineering, pages 10-17,
1989.

V. Vianu. Database Survivability Under Dynamic Constraints. Acta Informatica, 25:55-
84, 1988.

J. Widom and S. Finkelstein. Set Oriented Production Rules in Relational Database
Systems. In Proceedings of the ACM SIGMOD, pages 259-270, 1990.

