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Abstract

The value of computational reflection has been explored in a number of programming lan-
guage efforts. The major claim of this paper is that an ostensibly broader view of reflection,
which we call implementational reflection, can be applied to the design of other kinds of sys-
tems, accruing the same benefits that arise in the programming language case. The domain of
window systems in general, and the Silica window system in particular are used to illustrate
how reflection can be applied more broadly. Silica is a CLOS-based window system that is a
part of the Common Lisp Interface Manager, an emerging user interface programming standard
for Common Lisp.

Introduction

One meaning of the word reflect is to consider some subject matter. Another is to turn back
something (e.g. light or sound). Punning on these two meanings, we get the notion of turning
back one’s consideration or considering one’s own activities as a subject matter. Our ability as
humans to reflect in this sense has been credited, since Aristotle, with our success in adapting to
new situations and mastering our environment. Naturally, it was widely conjectured in the artificial
intelligence community that by providing reflective capabilities to computational systems, we would
obtain systems with greater plasticity and consequently, enhanced functionality.

Hence, this notion was introduced in a number of languages including the procedural language
3-LISP[Smi84), the logic-based languages FOL{Wey80] and META-PROLOG[Bow86], and the rule-
based language TEIRESIAS[Dav80]. These various efforts have shown that facilities for reflecting
on the computational process can offer users the ability to control or monitor a language’s behavior
and to extend or modify its semantics in an elegant and principled way.

More recently, reflection has been gaining momentum as a major topic in the design of object-
oriented languages. A number of object-oriented languages including CLOS[BKK*86, KdRB91],
3-KRS[Mae87], ObjVlisp[Coi87], ABCL/R[WY88], and KSL[IC88] have embraced reflection as a
first class concern. Besides adding to the general understanding of reflection’s benefits, these efforts
have elaborated on the use of object-oriented programming technology for building reflective systems.

The primary purpose of this paper is to establish that reflection can be applied to the design
of systems other than programming languages and that this endeavor can attain the same behefits
for the users of such systems. We reformulate the framework of reflection in terms of a system’s
implementation. In particular, we introduce the concepts of implementational reflection {as opposed
to computational reflection) and open implementation (as opposed to a reflective architecture) in the
next section. This reformulation helps clarify what it means for a system other than a programming
language to support reflection.
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We substantiate our thesis by considering the domain of window systems, and within this do-
main, offer the Silica system, designed and implemented by the author, as an example. Silica is the
portable window system layer of the Common Lisp Interface Manager (CLIM) [RYD91], an emerg-
ing standard user interface programming interface for Common Lisp (which includes CLOS). Silica
can be viewed as a window system for a single address space environment {analogous to Interlisp-
D[BKM™*80], Symbolics[Sym], or Smalltalk-80[KP88, LP91}), or alternatively as an extended window
systern model for an application address space in a multiple address space environment that provides
a window library (e.g. SunWindows[Sun86)) or a window server (e.g. X 11{SG86]). Most pertinent
to this paper’s purposes, Silica supports reflection on its implementation, thus providing a structured
framework for allowing users to explore various window system semantics or implementations.

After presenting an account of implementational reflection, we describe the functionality provided
by window systems and two scenarios where reflection would be useful. Following that, relevant
features of Silica’s open implementation are described. Then the two scenarios are revisited to
explain how Silica’s reflective facilities can be used. The paper concludes with a discussion of various
questions and issues that arise when building systems with open implementations, particularly in
object-oriented languages.

1 Implementational Reflection

The notion of reflection describes a wide range of activities loosely characterized as some form of
self-analysis, often in service of initiating or informing subsequent actions. Hence, a reflective system,
besides computing about some base domain, must compute about itself. But what does it mean for
a system to compute about itself? Since a system is represented as a program and is embodied
in a computational process that arises from the execution of that program, the following view on
reflection is typical:

Computational Reflection. Reflection involves inspecting and/or manipulating represen-
tations of the computational process specified by a system’s program.

Thus, computational reflection allows a system to participate in how its program is executed. For
example, many of the language systems cited above allow a program to alter control flow in response to
analysis of various runtime interpretation structures. In particular, these language systems provide
a separate level, often called a metalevel, for computing about the current state of the base level
computation and allow this metacomputation to alter the control flow of the base level computation.

Though the computational reflection view adequately describes the application of reflection to
programming languages and their builtin mechanisms, most significant systems depend not only on
these constructs, but also on other systems that they utilize. This suggests another view on reflection:

Implementational Reflection. Reflection involves inspecting and/or manipulating the im-
plementational structures of other systems used by a program.

Implementational reflection allows a program to participate in the implementation of systems
that it utilizes. For example, the CLOS Metaobject Protocol specified in [KdRB91] allows users of
CLOS to control the implementation of instance representation. This capability can be used to select
an instance representation that is appropriate for a given specific situation. For example, Figure 1
illustrates two different instance representations tuned to different requirements: the point class has
a small number of slots that need to be accessed quickly, whereas the person class has hundreds of
slots, many of which may not be used in any given instance.

Two observations suggest that computational and implementational reflection are, in fact, just
different characterizations of the same essential capability. First, a language interpreter, which
generates a computational process from a program, is the implementation of a language. And
second, the interface of any system can be seen as a language, and the system’s implementation as
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Figure 1: A metaobject protocol for CLOS allows the user to select instance representations tuned
to their needs. The point class uses fixed storage, which is appropriate since slot access speed is
important. The person class uses variable storage since for a given person object, many slots may
not have a value and hence, space savings are the dominant factor.

an interpreter for that language. The first observation indicates that computational reflection is a
special case of implementational reflection, and the second observation indicates the converse. In
any case, the implementational reflection view allows us to recast much of the framework provided
in the reflection literature in terms more familiar to system builders.

1.1 From Implementational Access to Open Implementations

To a certain extent, support for reflection is a matter of degree: many existing systems provide
limited cases of reflective capability. In [Mae88], a valuable distinction is made between reflective
facilities and a fully reflective architecture. A reflective facility is one that allows the user to query
or manipulate some aspect of implementation using a set of predefined operations. As Smith and
Maes have pointed out, many programming languages provide access to implementational constructs.
For example, Common Lisp provides access to its interpreter (eval), its compiler (compile), its
control stack (unwind-protect, catch and throw), and its special binding environment (boundp
and makunbound).

Similarly, a number of existing non-language systems support operations which are about the
implementation itself. The GKS graphics standard[ANS85] allows the user to query whether cer-
tain features are supported and thus adapt to different GKS implementations. The X window
system[SG86) supports a more general version of this feature. The X11 protocol provides a request
for determining whether a desired extension is supported. If the extension is supported, this request
returns the information necessary to use the extension. This request is reflective because it supports
a dialogue about functionality and implementation.

A reflective architecture, on the other hand, according to the discussion in [Mae87, Mae88], allows
much more open-ended access to a language’s implementation. In particular, a reflective architecture
allows writing code that is invoked by the language interpreter. This reflective code participates in
language interpretation by manipulating causally connected representations of the computational
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Figure 2: A system with an open implementation, besides providing a familiar interface to its func-
tionality called a base level interface, reveals aspects of its implementation through a metalevel
interface. The metalevel interface defines points in the implementation that can be tailored by the
user.

process. Causal connection means, on one hand, that the representations accurately render the state
of the computation and, on the other, that mutating the representations will influence subsequent
computation.

The concept of a reflective architecture can be reformulated in terms of the implementation of a
system. A system with an open implementation (depicted in Figure 2) provides (at least) two linked
interfaces to its clients, a base level interface to the system’s functionality similar to the interface of
other such systems, and a metalevel interface that reveals some aspects of how the base level interface
is implemented. In particular, the metalevel interface specifies points where the user can add code
that implements base level behavior that differs in semantics and/or performance characteristics from
the default base level behavior. Since this metalevel code directly implements aspects of the base
level, the causal connection requirement of reflection is straightforwardly met.

Whereas features that provide limited access to a system’s implementation provide some measure
of system flexibility, an open implementation provides a more open-ended framework for exploring
a space of implementations or semantics. Returning to earlier examples, whereas the primitives
in Lisp do not support exploring alternative stack or environment implementations or semantics, a
metaobject protocol for CLOS does allow implementing a range of instance representation strategies.
And whereas the one request in the X window system does not facilitate exploring alternative window
system implementations or semantics, a window system with an open implementation would.

1.2 Designing the Metalevel Interface

An obvious consequence of providing an open implementation is that a system is forced to make
commitments to particular implementation details. This does not, however, mean that every aspect
of its implementation is specified or that users can alter the implementation arbitrarily. In the
parlance of the reflection community, an open implementation reifies some aspects of implementation,
and absorbs others, meaning some aspects are made explicit and other are left implicit. In the sense
of [Smi84, Smi82], an open implementation is based on a theory (i.e. model) which determines the
reach of the system’s metalevel, i.e. the extent to which base level behavior can be altered by the
user. Smith calls this the theory relativity of reflection. This concept is illustrated in [Mae88] by
contrasting several metacircular interpreters for Lisp, each of which reifies different aspects of Lisp
interpretation.

In more traditional terms, just as a system provides an interface to its base functionality, an open
implementation provides a well-defined interface (i.e. the metalevel interface) to the implementation
of the system. The elaboration of a metalevel interface must address two, sometimes competing, sets
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of concerns. On one hand, the architecture or facilities prescribed by the metalevel interface must not
prevent efficient and effective implementation of the base level. On the other, the metalevel interface
must give the user access to aspects of the implementation which can be exploited to create either
useful semantical variations or more efficient implementations for particular situations. Balancing
these two sets of concerns is the major challenge in designing a system that supports implementational
reflection.

2 Window Systems

In this section, we present an account of the functionality provided by window systems (i.e. what
they are about) that provides the basis of a theory for Silica’s open implementation. We also present
two scenarios in which reflection on a window system’s implementation would be useful. Later in
the paper, we will explain how Silica can be used in these scenarios.

A window system allows multiple applications to share the bounded interactive resources of an
computer system, in particular, its input devices and screen(s). The fundamental concept in window
systems is a windowing relationship. A windowing relationship defines how a region in one coordinate
system, either a real piece of screen real estate or a virtual region (arising from another windowing
relationship), is divided or shared amongst a number of independent virtual regions called windows,
each of which has its own coordinate system. Window systems often make assumptions in their
support for windowing relationships. For example, most window systems provide windows that
occupy a “two and a half” dimensional space that are stacked and thus may appear to overlap other
windows, though some window systems just support tiled windows.

Many early window systems did not support the broad use of windowing relationships within an
application, but rather focused on the desktop level as the primary client. However, others, especially
more recent window systems (e.g. X and NeWS[Sun87}), allow the nesting of windows within other
windows, thus creating many-level hierarchies of windowing relationships.

Besides managing one or more windowing relationships, window systems also provide output and
input functionality. On the output side, window systems implement the graphics capabilities of
windows, ensuring that output on one window does not affect the area allocated to other windows.!
They generate repaint events on a window when window management causes it to be exposed. On
the input side, window systems determine which windows to distribute input device events to, and
how to deliver the events to the clients of those window. In short, a window system provides a
basis for building graphical user interfaces by providing windows which support nesting or sharing
of space, and output and input operations.

The first scenario illustrates that window system functionality is very similar to the functionality
needed within applications for managing space, input, and output. Unfortunately, even though the
needed functionality is of a kind provided by the window system, the user must often abandon the
window system and build ad hoc support because it is impractical to use the monolithic window
system implementation.

2.1 Building a SpreadSheet

In this scenario, we explore building a spreadsheet. In a spreadsheet, an array of cells is nested
within a grid as illustrated in Figure 3. The relationship between the cells of the spreadsheet and
the spreadsheet itself can be seen to be a kind of windowing relationship. The spreadsheet needs
functionality for managing this nesting of regions, for generating repaints of subsets of the cells, and
distributing input to cells.

Given these observations, the code shown in the figure accurately reflects the essence of the
desired behavior. Unfortunately, this code is not likely to be practical in a window system with a

!If windowing is viewed as the virtualization of display space, this integrity constraint is analogous to not corrupting
another application’s memory in a virtual memory system.
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for row from 1 to 100

2 for col from 1 to 100
3 make-window( row * cell-width,
s 00 col * cell-height )

Figure 3: A spreadsheet application divides a grid region into a set of cell regions that display values
and receive input. The code on the right succinctly captures the essence of this behavior.

closed implementation. The problem is that windows in the typical general-purpose window system
implementation must support at least the desktop level of a window environment and maybe others.
This requirement places demands on the algorithms and storage structures used within the window
system that are not necessarily appropriate for spreadsheet cells. For example, X supports arbitrary
overlapping of windows, which affects the implementation of various internal operations, whereas in
this case, the cells never overlap. Furthermore, much of the storage associated with an X window is
not necessary for every cell since they all, in general, can share a number of properties.

One possible solution to this problem is to provide other kinds of objects that address different.
In fact, support for extremely light-weight window-like objects has been provided in a number of X
toolkits including InterViews{CL90] and Motif[Ope89]. One problem with approach is that the new
objects are now tuned to a different, but still quite specific set of needs.

A more fundamental problem is that the different implementations do not share structure, in
code or necessarily in conception, and hence they do not lend support to one another. Besides the
loss of conceptual clarity, this has the material consequence that code based on one system can’t be
easily mixed with that written for another. For example, suppose we now wanted to nest window
system windows within the cell windows, so that window-based code, even entire applications, could
be used within the cell. The problem is that this requires adding support to the cell window type
for embedding window system windows.

An open implementation, on the other hand, provides an open-ended framework for introducing
new types of windows and capturing commonalities across various types. It does this by allowing
the user to participate in a well-chosen set of system design choices. Rather than providing a single
implementation or a number of disconnected implementations, the user is allowed to specify a tailored
solution within a design space.

2.2 Regenerating Output

As a second scenario, consider the problem of redisplaying a window when it becomes exposed by
a user- or application-initiated window manipulation operation. Suppose the output on an applica-
tion’s window is particularly complex and that it takes substantial computation to regenerate. As a
consequence, when the window is fully or partially exposed, this computation may lead to sluggish
repaint of the window.

One solution is to write code for the application that caches the graphical results of this com-
putation so that re-executing it during redisplay can be avoided. This solution places an additional
requirement on the application and unless the programmer is disciplined, the redisplay issue can get
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Figure 4: A representative Silica hierarchy. The rectangles represent windows. The ellipses repre-
sent contracts which implement part of the functionality of one or more windows. There are three
kinds of contract: windowing, input, and output. A windowing contract implements the windowing
relationship between a parent window and a set of children windows.

entangled with other application issues.

Moreover, the need for output recording or the choice of an appropriate output recording seman-
tics or implementation may not be the same for all situations. For example, the same application
may be used on machines with varying processor speeds or memory capacity, or even display archi-
tectures (e.g. one that supports display lists but not bitmaps). This could mean that the application
programmer would need several mechanisms.

This type of output regeneration functionality is useful in a broad range of cases, and it seems
a natural part of the window system. Specific functionality can clearly be built into the window
system, but this approach will eventually lead to a bloated window system that is hard to implement,
maintain, and use. On the other hand, we will show later that an open implementation allows adding
this behavior in a modular and elegant way as a metalevel abstraction.

3 Silica’s Open Implementation

In the last section, we presented an account of window systems and two scenarios that could poten-
tially benefit from an open implementation. In this section, we describe the open implementation of
the Silica window system. Silica is implemented in Common Lisp, which includes CLOS, though the
aspects described here can be readily implemented in other object-oriented languages.

Silica provides a base level interface that is similar to the interface of other window systems. In
addition to this base level interface, Silica specifies an architecture that prescribes the skeleton of
the base level interface’s implementation. In particular, this architecture is specified as a metalevel
interface that consists of two parts: (i) the components that implement the base level behavior and
(ii) the object-oriented protocols that govern how these components interact to achieve this end. We
cover each of these aspects in turn.

Silica’s base level interface is based on the same fundamental abstraction as many existing window
systems: a tree of light-weight windows that support input and output operations. This interface,
among other things, supports constructing and managing window trees;? querying their structure;
and performing output operations on and receiving input from windows.

2Windows are actually called sheets in the existing version of Silica.
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output contract—determines the output capabilities of the window (i.e. how the client can
draw images on the window) and how repaint of the window is invoked (e.g. how the client is
notified of repaint requests).

input contract—determines the input interface of the window (i.e. how the client is notified of
input events which are distributed to this window).

youth windowing contract—determines how the window’s youth windowing relationship, the
one in which it is a child, is managed (i.e. determines how a window behaves as a child). It
must be the same or compatible with the adult windowing contract of the window’s parent.

* adult windowing contract—determines how the window’s adult windowing relationship, the
one in which it is the parent, is managed (i.e. determines how a window behaves as a parent).
It must be the same or compatible with the youth contracts of the window’s children.

Table 1: The responsibilities of a window’s four contracts.

In previous window systems, the input, output, and windowing functionality provided for all
windows is the same. Silica departs from these window systems by implementing the three areas
of window system functionality as distinct manipulable metalevel objects called contracts,® that can
be selected for each window independently. This departure allows clients to select the functionality
and implementation of their windows according to their needs, either statically or dynamically to
accommodate changing runtime needs.

Figure 4 depicts a metalevel view of an exemplar Silica window hierarchy. Each rectangle repre-
sents a window; and each ellipse, a contract of one or more windows. As is shown for window? or
window3 in the figure, each window has four contracts, each responsible for a different portion of the
window’s implementation as described in Table 1. The specific mechanism that associates windows
with their four contracts is described in Appendix A.

Contracts are Silica’s primary metalevel objects. Input and output contracts implement the input
and output functionality respectively of a single window. The case with windowing contracts is more
complex (and more interesting) since they implement a windowing relationship involving more than
one window. In particular, a windowing contract implements the functionality of one window vis-a-
vis its role as a parent, and also the functionality of a number of other windows vis-a-vis their roles
as children. A windowing contract, an input contract, and an output contract, thus, comprise the
bulk of a local window system for a single window.4

The implementational responsibilities of each metalevel component as well as the interactions
among components are specified as a set of object-oriented protocols. A protocol consists of one or
more functions that together perform some subtask in the implementation of the base level interface.
In CLOS, protocols include both ordinary Common Lisp functions for fixed portions of the protocol
and CLOS generic functions that take one or more of the metalevel objects as specializable arguments
for specializable portions of the protocol. Some protocol functions may actually be part of the base
level interface, while others implement necessary supporting services. Table 2 presents most of Silica’s
major protocols, along with the metalevel objects involved in the protocol and a description of the
protocol. The details of these protocols are not relevant here; what is important is that each of
these protocols performs some task in the implementation of the base level interface and that they
circumscribe the aspects of Silica’s base level interface that can be changed at the metalevel by the

3This term may be unfortunate, since Silica contracts are actually real objects that provide methods rather than
declarative specifications. The contracts of [HHG90] are actually more related to what we call a protocol here.

*The rest is provided by components that manage global resources. In particular, two other key components are
ports and event distributors. Ports manage a connection to a host or remote window system. A port can also be seen
as a software port of Silica to a particular host window system or display architecture. Event distributors oversee the
distribution of raw input events coming in from ports.
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Responsibility

Window Construction

global

Windowing Relationship

windowing contract

Viewing Parameters

windowing contract

Mirroring

port, windowing contract

Output Protection
output

Graphics Functionality

output contract

Repaint
windowing contract, output
contract
Input Distribution
port, distributor, windowing
contract, tnputl contract
Input Delivery

input contract

Provides a simple interface for constructing windows and establishing
windowing relationships. This interface hides the details of realizing a
window’s contracts. This protocol consults all contract classes to obtain
implementation parts for the window.

Provides functions for adopting, disowning, and “enabling” children; and
query methods for asking about parents and children. It also provides
functionality for managing window region and coordinate system map-
ping.

Provides functions for calculating clipping regions and composing trans-
formations from a window to any of its ancestors (and vice versa) and
maintaining a cache for these values. These values are used by, among
others, the output protection and the input distribution protocols.

Provides the means for allocating and managing host (or remote) window
system windows. Allowsimplementing top level windows and other kinds
of windows that can benefit from the full functionality of a typical heavy-
weight window.

Ensures that graphics operations applied to a window are transformed
and clipped as appropriate for the window’s region and position in the
window hierarchy; and that they are appropriately synchronized with
changes to the window hierarchy.

Provides graphics routines that can be applied to windows and ancillary
functionality (e.g. drawing state or graphic context construction and
manipulation).

Provides mechanism for repainting a window when portions are exposed
that were previously covered or otherwise not visible.

Determines which window should be the recipient of user input events.
Protocol supports extensive participation by local windowing and input
contracts.

Translates from port specific event representations (the lowest level rep-
resentation available) to a representation appropriate for the recipient
window. Defines how input is delivered to the client of the recipient
window.

Table 2: An Overview of Major Silica Protocols.
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user.

Each of Silica’s metalevel objects plays a well-defined role in the architecture that is specified
by the protocols in which they participate. Some areas of functionality are largely implemented by
a single metalevel component, but others are the shared responsibility of several metalevel objects.
For example, access to graphics primitives and the delivery of input are primarily the responsibility
of the output and input contracts respectively, whereas hit detection and window repainting involve
interactions between these contracts and windowing contracts.

An important and familiar technique used to allow responsibility to be divided amongst a num-
ber of objects is the layering of protocols. A layered protocol invokes subprotocols which implement
various subtasks within the protocol’s overall task. For example, the repaint protocol invokes subpro-
tocols to calculate what subwindows need repainting and in what order, and to repaint them. Another
important benefit of layering is that it allows users to specialize protocols at a level of granularity
appropriate to and a cost commensurate with their requirements (discussed further below).

In summary, Silica’s metalevel components and protocols provide an architecture for implementing
Silica’s base level interface and for using this implementation to build window systems with specialized
functionality or implementations. Since most Silica protocols are implemented by or consult one or
more of a window’s contracts and each window has its own contracts, a window’s implementation can,
to a large degree, be altered locally without affecting distant windows or windowing relationships.

4 Reflection in Silica

An important property of Silica is that its objects and protocols divide into two separate levels, one
implementing the other. The collection of windows (the rectangles in Figure 4) form the base level
and the collection of contracts (the ellipses) form the implementational or meta level. Similarly,
Silica’s protocols are layered with their base layer providing standard functionality to the user, and
lower meta. layers performing various subtasks in the implementation of that functionality.

This separation of Silica into two levels is the basis for allowing users to participate in design
and implementation decisions, either statically or dynamically, either implicitly or explicitly. A
program that uses Silica reflects when it provides contracts which variously define or implement
some aspect of the base level interface or an extended or reduced interface. This form of reflective
act, where a system (an interpreter) invokes user code at specific points during its implementation
(the interpretation process), has been called implicit in [Mae88]. Silica also supports so-called explicit
reflective acts by allowing users to manipulate window system functionality explicitly at runtime.
This, for example, means that window system behavior like logging input can be added temporarily.

The two scenarios described above can each be handled in Silica by providing reflective code that
defines a window system more suited to particular needs. Both cases involve defining a new contract
(a windowing contract in the first and an output contract in the second) that specializes one or
more Silica protocols. Though in both cases, the code written for the new contracts could clearly be
written outside of a window system, Silica allows the framework provided by the window system to
be reused by adding such code inside the window system.

4.1 SpreadSheet Revisited

In Silica, the spreadsheet scenario can be handled by implementing a windowing contract specifically
tuned to its needs. In particular, this contract can make assumptions about its windowing relationship
that can be exploited in its implementation. For example, a windowing contract for this scenario
can make two assumptions: first, its children are laid out in a uniform 2-d grid and second, they do
not overlap. An appropriate storage representation for storing the children of this contract is a 2-d
array indexed by location in the grid.

As part of picking a tuned storage representation, the contract provides specialized methods for
various protocol functions. For example, as illustrated in Figure 5, the general purpose method for
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Figure 5: A tailored window system that exploits the regularity of the spreadsheet layout is created by
combining a specialized windowing contract with the default input and output contracts. In this way,
the spreadsheet window system inherits much of the behavior of the standard window system—only
the windowing behavior is specialized. (The projection of the windowing contracts into the window
system indicates that windowing contracts form only part of the total window system behavior.)

hit detection (invoked by the input distribution protocol) can be replaced by a special one that uses
simple arithmetic and array reference. Similarly, a special method like the following can be provided

for a function in the repaint protocol.
repaint-children (parent x y w h)

for col from (y / cell-height) to ({(+ y h) / cell-—height)f
for row from (x / cell-width) to ({(+ x w) / cell-width)
repaint( children{col] [row] )

An important point to note is that the methods provided by the specialized contract are metalevel
code: they are about the implementation of a new kind of windowing relationship, not about the use
of a windowing relationship. Metalevel code is like the code system implementors write to implement
a window system rather than the code that users typically write to use one.

Using the specialized windowing contract, the spreadsheet application can efficiently create a
window for each cell. However, this implementation does require each cell of the spreadsheet to
be explicitly created as an object. Though the overhead associated with the window-ness of the
cell was reduced significantly, there is still overhead associated with its object-ness. This issue
can be addressed in two ways. One, the reflective capabilities of CLOS can be used to reduce
unnecessary overhead associated with the cell window as an object.® An alternative approach would
be to implement a windowing contract which avoids explicitly creating children objects unless or
until they are necessary (e.g. for cells that actually have subwindows).

This spreadsheet example suggests an even more ambitious reuse of the window system design and
implementation. Traditionally, window systems and toolkits have dealt with the part of the hierarchy

5This suggests that reflection on at least partially orthogonal system’s used by a program can accumulate benefits.
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that deals with objects that act as surfaces to be drawn on, and applications have built their own
local mechanisms for dealing with their own hierarchies of objects. Alternatively, window systems
have provided a number of predefined window types or user interface toolkits have provided extensive
libraries of new window-like objects outside the window system. In contrast, Silica supports adding
such facilities (e.g. display lists) as metalevel abstractions by defining new windowing contracts.

4.2 Output Regeneration Revisited

Output capture facilities are not provided primitively in Silica, but rather can be implemented as
special output contracts. Such output contracts can extend the standard output semantics to manage
the process of output recording. Different implementations of these semantics that optimize this
behavior variously can be provided. If the code is running on a very fast processor and performance
is not a problem, then a simple implementation that ignores output recording operations can be
used. Other output contracts can make other implementation choices: maintaining a backing store
(a pixmap) to regenerate the output; recording the output primitives as a display list; and recording
output as host display lists in systems that directly support them. Moreover, since Silica supports
switching contracts at runtime, different output recording mechanisms can be selected based on
changing situations.

Though support for output recording or backing stores could be built directly into the window
system, building them as metalevel extensions provides a better solution for several reasons. First,
new implementations and semantics for this extension can be explored not just by the implementor
of the window system, but also by users. Furthermore, the extensions can be used in cases where
they are indeed useful without complicating the base level window system or increasing the builtin
overhead for all users. Finally, there are a large number of other possible extensions which may be
of equal value to other users. Supporting all such extensions would make any single interface and
implementation extremely complex and even then, the single interface could not address the range
of needs that an open implementation could.

The metalevel interface provides a separate level for introducing new abstractions. Just as 3-
Lisp allows constructs like catch and throw to be implemented as metalevel abstractions rather
than being built into the language, Silica allows constructs that would ordinarily be built into the
window system to be introduced as implementation extensions. The primary advantage of having
two separate levels for building such libraries is that each of the levels can be used to implement
different portions of the required behavior. Window system metalevel code is for handling issues that
window systems typically deal with, and base level code handles application computation.

5 Discussion

Many object-oriented languages that support reflection on their implementation—including CLOS,
3-KRS, and ObjVLisp—represent their metalevel as objects in the same object-oriented language
as used at the base level. This metacircularity is advantageous for several reasons. The reason of
primary concern here is that the benefits object-oriented programming provides to the user at the
base level can be equally valuable at the metalevel. For example, the user can localize changes to
the implementation to specific base level objects or to specific aspects of base level objects.

Silica’s metalevel, also, is implemented using the same object-oriented language as is used at its
base level interface. However, unlike the reflective object-oriented languages mentioned above, Silica
is not metacircular. Silica’s metalevel is not written in the base level language that it provides, nor
does it even make sense to write a window system in the “window system language” it implements.

Silica’s use of object-oriented programming raises the following question. What distinguishes Sil-
ica’s design from that of other object-oriented systems? After all, any object-oriented implementation
can be said to provide a representation of its implementation since it contains objects that provide
implementation methods in addition to interface methods. However, object-oriented programming in
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itself does not guarantee an open implementation. For example, neither the Smalltalk window system
nor the Symbolics window systems had the expressed goal of exposing aspects of the window system
implementation, though to a certain degree both do.® Rather, object-oriented programming is a
technology that is particularly well suited to our purpose; three aspects of object-oriented languages,
in particular, are relevant.

1. Object-centered specification of behavior allows building an implementation that closely maps
onto an understanding of the important design and implementation issues. Object-oriented
languages are similar to knowledge representation languages in this regard.

2. Polymorphism helps partition the world in a manner that allows multiple implementations to
peacefully coexist. This means users can implement their own version of the system without
disturbing existing versions of the system used by other users.

3. Inheritance provides a powerful mechanism for incrementally specifying new or different behav-
jors, such that clients can reuse portions of the standard implementation or incorporate stock
behaviors from available metalevel libraries.

The framework of implementational reflection provides a particular conception of how to build
a malleable system and to some degree a prescription that guides the use of object-oriented pro-
gramming. Many of the benefits genecrally attributed to object-oriented programming are, in fact,
benefits arising from opening up implementation or more precisely structuring the implementation
well enough to allow users to benefit from access to it. Many ob ject-oriented techniques can be cast
more specifically in terms of how they give access to a system’s implementation.

A salient example of this is the layering of object-oriented protocols, which greatly increases their
utility. Layering involves elaborating the substructure of a protocol by specifying auxiliary functions
that are invoked by the protocol to perform subtasks within the protocol’s overall task. The various
layers of a protocol can provide, on one hand, differing degrees of predefined behaviors (and hence
structure or functionality), and, on the other, greater latitude in specializing or recombining behaviors
at varying degrees of granularity. However, layering has costs and consequences. The process of
layering a protocol is exactly the process of refining, and hence further constraining, a system’s
implementation. Hence, the definition of a layered protocol has to take into account concerns of
effective implementation as well as potential utility. Many of these issues are discussed by [KdRB91]
in the context of the CLOS Metaobject Protocol and CLOS implementation.

A related point is that providing explicit representations of any aspect of a system’s implemen-
tation may have consequences for the system’s efficiency. Lazy reification or reification on demand
is a typical strategy used for making implementation state explicit. This approach can help ensure
a “Don’t use, don’t lose” policy.” However, there is still potentially a disadvantage in this area if a
promise to reify some aspect of the implementation has a constant or continual cost.

Layering a protocol is, in fact, a form of reification. It involves making explicit various internal
places for attaching or installing tailored behaviors or decision-making machinery. An interesting
observation is that lazy reification techniques for layered protocols can be implemented using the
reflective capabilities of an underlying object-oriented language. In CLOS, this involves developing
optimization techniques that bypass entire subprotocols in cases where it is known the standard
behavior applies. Such techniques are in fact used in later versions of the PCL implementation of

CLOS[KR90).

$Similarly, Smalltalk or Flavors do not give the same level of access to the object system implementation as CLOS
does,
TOf course, a “Use, don’t lose” policy is also important.
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Conclusion

In this paper, we have argued that reflection can provide a conceptual framework for building not
just programming languages but malleable systems of all kinds. A typical consequence of broadening
a framework is that it can start to lose some of its resolution and hence may not seem much different
from some other set of concepts. Many of the ideas discussed, especially in the terms used here, are
probably familiar. Many systems do, in fact, open up aspects of their implementation. For example,
the Mach operating system allows users to write code that participates in an open-ended way in
decisions regarding secondary storage management and page replacement(YTR*87].

What, then, is the benefit derived from the framework of implementational reflection? Though,
we ourselves are not yet convinced that it is the only or even the best way of thinking about systems
that open up their implementation, we do believe that, for the time being, it provides intellectual
scaffolding in a number of significant ways. First, explicitly focusing on the metalevel as a separate
and first class interface to export to the user forces a greater attention to exposing important design
and implementation choices. For example, Silica carefully separates the various aspects of windows—
its roles as an output surface, as an input stream, and as participant in two different windowing
relationships. Second, this benefit is also exported to the client. The disciplined division of the
window system into its base level and a partial implementation as specified by a metalevel interfaces
provides the programmer with two separate levels for introducing abstractions.

Perhaps most important in the long run is that the separation of the implementation methods into
a metalevel allows a more radical shift from procedural reflection to declarative reflection. Currently,
a Silica client programs at the metalevel by specializing various methods on their own contract types
(i.e. in the same way that they program at the base level). A natural next step is to move from this
procedural specification of metalevel statements to one that is more declarative. For example, users
could state their requirements for a window system in a higher level language, and the system could
then automatically pick or even construct appropriate contract types. Though the causal connection
requirements are hard to meet in such a system, and some may argue should be loosened, such an
approach promises great value.
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output i parent

input  {  child
(define-window-class new-window-class (defclass new-window-class
(extra-behavior :parts) (extra-behavior
(... <slots> ...) window

(:youth-contract ’'my-windowing-contract) my-child-part
(:adult-contract ’my-windowing-contract) my-parent-part
(:output-contract ’my-output~contract) my-output-part
(:input-contract ’my-input-contract)) my-input-part)

(... <slots> ...))

Figure 6: The conceptual model as shown in the code and picture on the left is actually implemented
in CLOS in the manner shown on the right. Implementational part classes (provided by the contracts)
are inherited by a window class. However, because of various features of CLOS, no power is actually
lost by this choice.

A Implementation of Contracts in CLOS

An inheritance-based strategy is used to allow contracts to provide implementation methods to
their windows in the current CLOS-based implementation. Contracts, though conceptually separate
objects, are not allocated separately from the windows that use them. Rather contract implemen-
tation parts (i.e. classes defined by a contract implementor) are inherited by or “mixed-in” to the
window objects. In the case of a windowing contract, different implementation part classes are mixed
in depending on whether the window is to be a parent or a child controlled by that contract.

The essence of this strategy for the case of a statically defined combination of contracts is depicted
in Figure 6. In addition, a window class can be constructed dynamically by make-window which takes
the same keyword options as the define-window-class form. Automatically constructed classes are
cached so that subsequent attempts to use the same combination of contracts will reuse them.

This implementation strategy was appropriate for CLOS, since CLOS does not directly support
delegation[Lie86], but it does support changing an object’s class dynamically and constructing classes
at runtime. This strategy avoids the ineflficiency of allocating several objects as opposed to a single
larger one and of trampolining functions from windows to their contracts. CLOS’s runtime class
construction and change-class allow selecting and changing contracts at runtime. Furthermore,
since CLOS implements classes as objects, contract classes can be manipulated by Silica’s metalevel
interface.



