Exceptions in Guide, an Object-Oriented

Language for Distributed Applications

Serge Lacourte
Unité Mixte Bull-Imag, Z.1. de Mayencin, 38610 GIERES, FRANCE

email: Serge.Lacourte@ gu.bull.fr

Abstract:

This paper describes the design of an exception handling mechanism for Guide,
an object-oriented language based on a distributed system. We confront the usual
exception techniques to the object formalism, and we propose conformance rules
and an original association scheme. A specific tool to maintain the consistency of
objects in the face of exceptions is provided. System and hardware exceptions are
integrated to the mechanism, and parallelism is handled in an original manner.

Some details of the implementation are given.

Key words: exceptions, consistency, object-oriented languages, concurrency

1 Introduction

The concept of exception handling has been refined in the last decade and is now an
integral part of most high-level languages. Exceptions provide a means to separate a "normal"
flow of control from an "exceptional" one, where the semantics of "normal” and "exceptional”
may be predefined in the language or specified by the programmer. The advantages are
twofold: the textual separation of the exception handling code from the normal one greatly
improves the structure and readability of the program, while the semantical separation ensures
that the normal flow is stopped when an exception occurs, and may resume only after the

proper exceptional handling code has been executed.



269
1.1 Issues

Most of the work on exception mechanisms has been done for traditional languages.
Experience with exceptions in object-oriented languages is still limited. The integration of an
exception mechanism in an object-oriented model should be coherent with the structuring
principles of that model, especially as regards the delegation of responsibility and the internal
consistency of the objects. This axiom has constantly directed our design, built around the
method invocation on an object, the basic executing unit in object-oriented languages. An
exception becomes an exceptional variation of the invocation, allowing the dialogue between
caller and callee to be enriched.

When an operation cannot fulfil its requirements, it raises an exception. Control is then
transferred to a calling entity which provides an exception handler. The handler executes some
code and may choose between three main policies; resumption resumes the execution at the
level of the signalling entity, termination (or alternate policy) resumes at the level of the
handling entity, propagation signals a possibly different exception to a higher calling entity.
The handler may also retry the failed call, as a variation of termination. Handlers are
associated to invocation statements in the caller. These are parts of a standard mechanism that
needs to be refined in an object-oriented language. Is resumption to be provided? How does
exception raising relate to interface checking? What is the scope of handlers? What is the
precise effect of termination? What is the impact of inheritance on all these points? How do we

declare default handlers?

An object-oriented language must also address the issue of the consistency of the objects,
particularly if they are persistent. Are the standard mechanisms sufficient, or do we need a
specific one? There is also the specific issue raised by concurrency. How is the normal
termination of two parallel invocations related to the normal termination of the same
invocations in sequence? The underlying system can also fail. How does it report exceptions?

How are system and hardware exceptions handled?

This paper is an attempt to contribute to these issues. It is based on our experience of
integrating an exception mechanism in Guide [1], a strongly typed object-oriented language
for distributed applications, jointly developed with a supporting operating system
environment [2].



270

1.2 Previous work

Most current object-oriented languages offer an exception handling mechanism similar to
those of modular languages. Ada, CLU and Modula2+ have all three chosen a termination
model. Their main characteristic is that they associate a handler with a block of instructions,
syntactically as well as semantically. A handler with a termination policy resumes the
execution at the instruction following the block. In Guide, execution resumes just after the call.
Another point is the propagation "as is" of an exception through operation frontiers, except in
CLU, where the FAILURE exception is propagated. In a similar way, the frontier of method

invocation is not bypassed in Guide.

1.2.1 A termination model

The mechanisms offered in Modula-3 [9], Trellis-Owl [12], ANSA [3], Argus [4], NIL
[10], are more or less related to the model shortly described above. Their main improvement
consists of a strict control of the exceptions a method may raise, or propagate. Usually, when
an exception is not handled by the caller, a special exception is propagated, like the
FAILURE exception of CLU. Only Modula-3 does not conform to this rule. Guide propagates
the UNCAUGHT EXCEPTION system exception.

But all the above languages have kept the association of a handler with a block of
instructions, with the related termination behaviour explained above. The drawback of this
model is that the control flow depends on the place where the handler is declared. In particular
if the handler offers an alternate computation to a precise method call, then it has to be
associated to a block which contains only this call. In fact the advantage of this model is to
avoid the handler having to execute a local control transfer instruction to exit the block.
However it prevents a clear separation of the exception handling code from the main
algorithm. In Guide the handler just applies to the raising invocation, without relation to its

declaration.

Few of these languages answer the issue of the consistency of objects. Argus integrates a
mechanism whose purpose is to restore the state of a guardian and to restart it after a failure, but
nothing is done for internal objects. Modula-3 keeps the try ... finally tool provided in
Modula2+, that ensures the finally part being executed whatever happens during the
execution of the try body. This is more a finalization tool than a restoration one, because the

code is executed even if the body ends normally.



271

122 Eiffel

Exceptions in Eiffel [7] are handled in a very specific way. The rescue clause can be
simulated by a handler associated to the method with the above semantics. The only
authorized policies are either to retry the execution of the whole body, or to propagate the
exception. This tool is rather primitive, but it turns out to be appropriate to ensure the
consistency of objects. In fact it has been designed for that purpose: it ensures the correctness
of the postconditions of the method, which include the invariant of the object. However
nothing special is offered to deal with an exception raised during the execution of this rescue
code, as we have tried to do in Guide with the RESTORATION FAILED exception.

1.2.3 Exceptions as data objets

The model proposed in C++ [S]is close to those described in section 1.2.1. The semantics
of association is still related to the syntax, the control of propagated exceptions may be
bypassed, and nothing is done to ensure consistency. However there is a major change with
exceptions being considered as objects. To raise an exception is to pass an exception object as
a parameter to a handler. The handler declares its parameter as being of a given class, but may
catch exception objects of any subclass. It allows the signaller to pass any type of parameters
by declaring them in the state of the object. It allows the catching of specialized exceptions by
general handlers. However it gives an exception a universal meaning, and allows two
unrelated classes to raise a similar exception. In Guide an exception depends on the type that

may raise it.

We call these objects data objects despite the possible definition of methods on them
because behaviours specific to exception raising and handling are not offered through

methods defined on a root exception class (see the following section).
1.2.4 Exceptions as full objects

The object orientation of exceptions has been developped to its completeness in some
Lisp-based languages and also recently in Smalltalk-80 [11]. To raise an exception is to create
an instance of the related class, then to call it with a raise method. The behaviour of any of
the termination, retry, resumption policies can be defined as a method of a root Exception
class from which all exception classes inherit. The conclusions from the Lore proposition are
summarized in [8].



272

This approach is interesting because it tries to integrate exceptions into the standard
invocation mechanism; however by doing so it complicates its semantics. A raise method
call eventually resolve into a return (termination), a normal call (resumption), or something
more complicated (retry). How then can such a method be formally defined? Keeping the
exception as a possible response to the method invocation, as we have done in Guide, leads to

a semantically simpler model.

The remainder of this paper is organized as follows. Section 2 describes the main features
of the mechanism. We first present in section 2.1 the Guide project, and the relevant concepts
of the language. We then describe the core of the mechanism in three sections, touching in turn
on exception raising, handler association, and handling policies. Section 2.5 tries to bring
new arguments to the debate about resumption, and it is followed by a concise summary of our
proposal in section 2.6. Section 3 touches on more specific issues. Section 3.1 shows how
we integrate system and hardware exceptions to the main scheme. Section 3.2 describes a
specific tool to maintain the consistency of objects. Relationship with inheritance and
conformance is developed in section 3.3. Section 3.4 reports on the integration of exceptions
in the parallel construct of Guide. In the final part of the paper, section 4, we discuss three
future developments of the mechanism.

2 The Guide proposal: general features

2.1 The Guide language and system

The Guide programming language has been designed and implemented for the
programming of distributed applications. Its run-time support is provided by the Guide
object-oriented distributed operating system, designed and implemented at the University of
Grenoble as a joint project of IMAG and Bull Research Center [2].

The object model implemented in Guide is characterized by the following main features:

e Objects are typed. A type describes a behavior shared by all objects of that type, in
terms of the signatures of the operations applicable to the objects. Objects are accessed
through views. A view is essentially a typed pointer; the effective type of the object
must conform to that of its view. The conformance rule is statically checked. Types are

declared apart from classes, which describe specific implementations of types.



273

¢ Subtyping defines a hierarchy of types. The subtyping hierarchy is paralleled by a
subclassing hierarchy, with single inheritance. Subtyping and inheritance ensure

conformance.

o Objects are persistent. They are named by system references (system-wide uniquely
generated internal names). Complex structures may be constructed by embedding

references to objects within other objects.

o Concurrency is provided by a co_begin ... co_end construct allowing for the creation

of parallely-executed sub-activities.

The execution model involves distributed jobs and activities. Execution structures extend to a

remote site when needed.

The characteristics of our proposal are described in the following sections. We first present
an example which will be extensively used throughout our presentation. A basic Editor
allows the user to browse through a Document, Page by Page. It caches the Pages it has
read into ShadowPages until Commit. It gets the needed ShadowPages from an
ObjectManager of ShadowPages, to lighten the load of the garbage collector. A Garbage
method allows it to free its clean ShadowPage s. Two other methods are described to print the
current ShadowPage and to create a new one. A Page is read Char by Char, and a
ShadowPage is a Page with a "dirty" flag. An ObjectManager provides and gets objects
back with the methods Ger and Free. The keyword type introduces the definition of an
interface. The keyword class introduces an implementation. Only state variables are shown

below in the implementation of Editor, the methods are described later in the document.

type Editor is type Page is
method Commit; method GetChar: Char;
method PrintPage; signals end of line,
method CreateNewPage; end of page,
method Garbage; error;

end Editor. end Page.

type Document is type ShadowPage
pages: ref List of subtype of Page is

ref Page; isDirty: Boolean;
end Document. end ShadowPage.

class Editor implements Editor is
// state variables
shadowPages: ref List of ref ShadowPage;
shadowPageManager: ref ObjectManager of ref ShadowPage;
currentPage: ref ShadowPage;

end Editor.



274
2.2 Exceptions in the object-oriented design

Object-oriented languages encapsulate data and code in an object (an instance of a class).
The basic computation unit is the method invocation on an object, in which a message is sent to
and interpreted by the called object; this allows polymorphism. Exceptions naturally fit in this
scheme, as a possible response to this message. Thus the exception handling mechanism
should also be defined at object level.

Due to the choice of a termination model (see section 2.5), the calling object does not

answer to the raising of an exception. Raising an exception exits the method in the same way as

a return statement does.

This dialog between caller and callee is controlled by the interface of the called object. As
this interface is explicitly defined in Guide, it must include exception declarations. This affects

the conformance rules checked by the compiler, which are detailed in section 3.3.

The nature of Guide exceptions are mere symbols. In this way an exception remains
attached to the method, and more generally to the type, where it is declared. However this
does not help to solve the parameter passing issue. We chose not to allow extra parameter
passing, but to give sense in the handler to the standard "out" parameters of the signalling
method. When a method whishes to pass parameters while raising an exception, it can use its
standard "out" ones. This solution has the advantages of allowing parameter passing, while

keeping the simplicity of exception raising and the attachment of an exception to a type.

The implementation uses a string variable for each activity. Raising an exception sets this
variable and returns the control to the calling entity, which is in charge of testing the variable.
Since an activity may be distributed (see section 2.1), the system ensures that this variable

remains consistent across multiple nodes. The compiler generates code to test it after each

system/object call.

2.3 Handlers in the object-oriented design

We have just seen that exception raising is associated to a method call. This holds as well for
exception handling. What it means is that the alternate or retry policies mentioned in section

1.1 apply only to the method call itself and not to a possible block in which the call would be



275

located. A characteristic of our proposal is that a handler may be semantically associated only
to a method call, and not to a block of instructions. When the call currentPage.GetChar
raises an end_of line exception, the handler supplies a replacement value (replace is

discussed later) and PrintPage continues with a call to output. WriteChar to print it.

method PrintPage; // of class Editor
begin
while TRUE do
output.WriteChar (currentPage.GetChar);
end;
except
end of line from Page: replace '\n’;
// gives the printable character for a newline
end_of page from Page: returmn;
// exits the method PrintPage
end PrintPage;

A handler can be associated to one instruction. Its declaration can be syntactically factorized
to a block of instructions, to the whole method as in PrintPage, or even to a class of objects,
but the handler is semantically associated to each operation (method call) of the block, or of the
method, or of each method of the class. The programmer can then declare semantically precise
handlers at the method level, and that allows him to clearly separate exception handling from

the main flow of control.

In order to help the user to precisely define the scope of his handlers, we allow a handler to
be associated not only to an exception name, but also to a type and a method name. The
handler may only handle exceptions of the given name, raised by a method call of the given
name on a reference to a type which conforms to the given one. The type and method name
can be omitted when unnecessary. Besides, the keyword ALL may be used in each field, in
order to factorize the declaration. Note that the handler in PrintPage is associated to the type
Page, but it can handle the end of line exception raised by currentPage which is a
ShadowPage , because ShadowPage is a subtype of Page and conforms to Page (see
section 2.1 about the Guide model).

The implementation uses a stack variable, local to each method call, which refers the in
scope handlers with a mask of the exceptions (and optionally the related method and type) that
they may handle. This stack is updated once for each handler declaration, and the order is
significant, high priority first. When an exception is raised, the first handler with a matching

mask is executed.



276

2.4 Exception handling policies

Separating the exceptional code from the normal one seems a clean technique, but it raises
the following problem. In Guide a method may return a value, which may be used as
parameter in another method call. This is the case with GetChar. If it raises an exception, the
handler may want to do the work by other means, so it must be able to provide an alternate
character to be printed. This is the aim of the replace keyword used in the handler. The
conformity relationship between the replacement value and the one expected by the operation

is checked at compile time.

The retry policy is provided through the retry keyword that only a handler may use. This
is a generic way to ask for a new execution of the call that raised the exception; so it allows
general fault recovery policies to be programmed. The new execution should be done in the
same environment as the first one, with optionally new handlers set by the programmer.
However this induces a risk of recursively calling the same handler. To prevent this, the system
ensures that a handler cannot be called again while it has not terminated. The following
handler associated to the class Editor tries to recover from a failure of the ObjectManager
(called in method CreareNewPage ).

class Editor implements Editor is

method Garbage;
page: ref shadowPage;
begin
page := shadowPages.First;
while page do
if page.isDirty then
shadowPageManager .Free (page) ;

page := shadowPages.Delete;
else
page := shadowPages.Next;
end; end;
end;
except

noObjectLeft from ShadowPageManager.Get: begin
self.Garbage;
retry;
end;
end Editor.
We also provide a default handler to handle otherwise unhandled exceptions. The
encapsulation of code guarantees that the calling object knows only the signature of the called
method. So, when the method CreateNewPage of Editor calls the method Ger of the

ObjectManager, it does not know how it is implemented. The ObjectManager can use a



277

memory allocator which may raise a NO_MORE_MEMORY exception, but the Editor
cannot understand this exception. It must be handled by the ObjectManager, or a default
policy has to be applied, but it cannot be propagated unchanged. The Guide system provides
a default handler which propagates the UNCAUGHT EXCEPTION system exception (cf
section 3.1). This insures that an exception will either be handled or will eventually terminate
the task.

method CreateNewPage; // of class Editor
begin

currentPage := shadowPageManager.Get;
end;

The implementation of retry and replace is allowed by the generic access respectively to

the last method invocation, and to the optional return parameter of this invocation.

2.5 Resumption versus termination

Let us now explain why we have chosen a termination model in Guide. Whether
resumption should be provided or not is an old debate. It has been supported in [13] and
rejected in [6]. We now try to bring new arguments to this discussion, in relation to the

object-oriented formalism.

We identify two main uses of resumption, depending on the provider of the handler. The
handler may be provided by the user, through a debugger or a specialized shell, or it can be
included by the programmer in the original code. The question is: what is the meaning of

resumption after handler execution, and does it preserve the object encapsulation principle?

When an exception is raised inside the debugger, the stack of the nested calls is somehow
saved, and control is given to the user. He can browse the stack, change a value at some level,
and then resume at a possibly different level, perhaps the deepest. This means that the part of
the saved stack between the level of the changed value and the resumption level is considered
to be valid. This supposes a complete analysis of the concerned code, so it violates the frontier
between the calls. However it could be left to the user’s responsibility, in such specialized tools
as the debugger. But to supply basic tools allowing other applications to do the same is another

issue.

The call of a resumption handler must then be viewed from the other side, as the invocation
in a nested context of code provided by the calling entity. The question becomes: do this code



278

passing and invocation respect the encapsulation principle of objects? The aim of
encapsulation is to allow to prove (formally or informally) the correctness of the
implementation of an object interface, using only the interfaces called by this object. The
correctness of an object may not depend on the implementation of the objects that use it. In that
particular case, the signalling method would have to be proved using the interface of the

handler, defined as a procedure argument passed to the signaller.

In a standard object-oriented environment a procedure is always associated to an object. A
resumption handler must then be a closure, which embodies both a procedure and an
environment. This notion of closure must appear in the language, because the callee has to
provide the interface of the awaited closure in order to allow the control of the validity of the
proposed handlers. A language which does not offer this notion will be reluctant to define it
Jjust for handling resumption handlers. Closures are defined in Lisp-based languages, where
methods are or tend to be first class objects [8], and in a less rich way in Smalltalk with the
Block class. However it is generally not the case in strongly typed object-oriented languages
like Trellis-Owl, Eiffel or Guide.

We can conclude from this discussion that resumption is related to the existence in the
language of closures, blocks of code including an environment. If the latter is provided by the
language, then the former may be provided. In Guide this is not the case, so we adhere to a

termination model, with the retry variation.

2.6 Summary

Exceptions are associated to object methods. Exceptions potentially raised by a method

appear in its interface. Conformance rules are modified to take exceptions into account.

Handlers are associated to method invocations. The normal continuation after the execution
of a handler is from the point just after the raising method invocation. It has nothing to do with
the syntactic declaration of the handler, which may be factorized at the method or class level. A
type and a method modifier help to refine the scope of the handler.

We have chosen a termination model. A handler may provide a replacement value when the
raising method invocation is functional. The retry keyword allows a handler to reexecute the
raising call in a generic manner. A default handler guarantees that an exception, once detected,

cannot be unintentionnally discarded.



279

3 The Guide proposal: specific issues

3.1 System and hardware exceptions

Up to now we have only considered exceptions raised by method calls. However programs

also ask services from the system, which may not be able to provide them. The problem is how

to report these exceptions to the programmer.

In Guide we have decided to consider the system as a special class, and each instruction as a
method call to the system class. In this way we handle system exceptions in the same way as
other exceptions. They are predefined and may be handled with the keyword SYSTEM as
a type, which may be omitted.

Examples of hardware exceptions are segmentation fault or arithmetic overflow. Such
exceptions also appear as exceptions raised by the system. However this raises an
implementation issue because such exceptions can effectively occur at nearly each instruction,
so it is no longer possible to detect them by a test after each call, as it is done for system

exceptions.

Interrupts are asynchronous events. They are not provided in Guide, except when an
activity aborts. The system converts this event into a QUIT exception, which is detected later

on, at the following system/method call.

3.2 The need for consistency

Our exception handling mechanism allows the programmer to implement alternate or retry
policies when a call fails. However it does not insure that the called object is in a consistent
state after it has raised an exception. Consistency depends on the validity of data relationships
called invariants that are assumed to be true, except for the periods when an object operation is
executed. The invariant must be restored at operation exit. This is especially needed in a
parallel environment where the object can be used by another task, or in a persistent object

system in which objects may be reused.

A (seemingly) obvious way to achieve this is for the programmer to declare some restoration

code before each normal or exceptional exit point of the object. The problem is that an
exception handling mechanism spills exit points throughout the whole code. They are raises

and returns from the main code, and also from handlers which in turn may be called from



280

various points of the main code if they are general (for example if they are defined at the
method level), and also from handlers which could be inherited or from the default system
handlers. The last cases show that restoration code specific to the object cannot be provided

before each exit point of the object. This is why we need a specific restoration mechanism.

In Guide, the restore keyword allows to define a restoration block which is executed
whenever the method exits abnormally (raises an exception). The block is not executed if the
method returns normally, as would do a finalization mechanism, because we want to address
the problem of consistency, and the object is assumed to be consistent in this case. The block is
executed just after the raising of the exception and prior to the search for and execution of the
handler. In turn if the handler propagates an exception then a restoration block of the calling
object is executed before the search for a new handler. As an example, a restoration block
associated to the class Editor allows us to save the dirty Pages of the Editor whenever it

exits abnormally.

class Editor implements Editor is
restore

page: ref ShadowPage;

shadowDocument : ref Document;
begin

page := shadowPages.First;

while page do

if page.isDirty then
shadowPageManager.Free (page) ;

else
shadowDocument .pages.Append (page) ;
end;
page := shadowPages.Delete;
end;

if shadowDocument .pages.nbItem > 0 then
output .WriteString("abnormal exit\n");
output .WriteString("modifications saved in " + <name>);
(shadowDocument, <name>);
end; end;
end Editor.
The programmer can optionally associate a restoration block with a class and with a method.
If the method raises an exception, then the block associated to it is executed, after which the
block associated to the effective class of the object is executed. Note that this class may be

different from the definition class of the executed method, if this method is inherited.

A last characteristic of the Guide proposal is related to exception handling in the restoration
code. Class handlers and method handlers are active during the execution of the restoration

block associated to the method. Only the former are active for the restoration code of the class.



281

The block can also declare its own additional handlers. The main point is that if the restoration
code does not handle an exception, or if it raises an exception itself, then the system
propagates the RECOVERY FAILED system exception. This ensures that the caller will not
try some recovery operations on a called object which has not restored a consistent state. This

is a first step to address an issue which is further discussed in section 4.2.

The implementation is different depending on the association. The compiler ensures that a
method has only one exit point, tags it with a flag, and puts the method restoration code just
after the flag. The class restoration code is directly called by the system.

3.3 Inheritance and conformance

The conformance rule between types has to be modified to take exceptions into account. It
has been stated that an exception cannot be raised by an operation if it was not declared in its
signature. Thus, in the method PrintPage, the call currentPage.GetChar cannot raise any
other exception than end _of line, end_of page or error which are declared in and inherited
from the type Page. It implies that the method GetChar of any type that conforms to
ShadowPage may raise only a subset of the three exceptions. This is the same rule as for
output parameters. In Guide a subtype conforms to its super-type, so the definition of type
ShadowSpecialPage below is not correct.

type ShadowlLonglLine type ShadowSpecialPage
subtype of ShadowPage is subtype of ShadowPage is
method GetChar: Char; method GetChar: Char;
signals end of line, signals end of line,
error; end of page,
end ShadowLongLine. unprintable, error;
// this type is correct end ShadowSpecialPage.

// this type is incorrect

Inheritance is also a tool to factorize code, and it impacts the handling code and the
restoration code. Handlers that are associated with a method or with some instructions of a
method are not inherited apart from the method. This means that either the subclass inherits the
method and then it gets the related handlers, or it redefines the method and then it has to
redefine handlers. This is natural because these handlers are supposed to heavily depend on
the method code. On the other hand, handlers that are associated with a class are automatically
inherited in the subclasses. This would be the case with the "garbage handler” for a subclass of
Editor. This also allows to define default handlers for an application by the means of a

common super-class.



282

We conclude this section with the inheritance of restoration code. As for handlers, only the
block associated to the class is inherited. However a restoration block defined in a subclass

overrides the one defined in the class.

3.4 Managing concurrency

A sequential algorithm assumes that an operation has succeeded before executing the next
one. This is no longer the case with a parallel algorithm where one may want to perform

simultaneously two operations and be satisfied with the first that returns a useful result.

In Guide, the co_begin statement enables the programmer to make concurrent calls. One
variable per sub-activity is available, yielding TRUE if and only if the associated branch has
terminated normally, i.e. without raising an exception. The programmer can express the
termination condition with a and and or combination of these variables. If this condition
yields TRUE after the normal termination of a branch, then the remaining branches are stopped
and the parallel statement exits normally. On the other hand, if the failure of a branch prevents
the normal termination condition from ever being verified, then the remaining branches are

stopped and the system raises the JOIN_FAILED system exception.

This mechanism must be used with care: a TRUE branch variable means "I have
successfully terminated”, and not only "I have terminated”. In the following example of a
parallel producer and consumer, the condition co_end(producer and consumer) means that
the two tasks must correctly terminate. If one of them terminates abnormally, then
JOIN_FAILED is raised and <handler> is executed. The condition that the consumer has to
terminate when the producer has terminated must be expressed in another way, because a
co_end(producer) termination condition would induce an abnormal and rather rough
termination of the consumer, and this would not detect a previous abnormal termination of the

consumer.

me@thod Main;

begin
co_begin
producer: ... // producer code
consumer: ... // consumer code
co_end(producer and consumer);
except

JOIN FAILED: <handler>;
end Main;



283

Note that the parallel block may either satisfy its termination condition, or be sure that it will
never satisfy it, while some of its branches still run. In this case the system stops them softly by
raising a QUIT exception (see section 3.1). It allows them to perform some restoration before
exiting.

The parent activity cannot access the possible exception raised by a branch in the
termination condition. However it can interpret this exception by providing a new handler

specific to the branch.

To implement the failure detection, the system maintains another array of boolean variables,
one per branch, that yields TRUE if and only if the corresponding branch has failed. When a
branch fails, the system applies the termination function to the negation of these variables, and
a FALSE result indicates that the parallel block has failed. The proof is simple. The negation of
the variables identifies the activities that have terminated or may still terminate normally. This is
clearly a superset of the positive variables in the final state. As we use only AND and OR
modifiers, if the termination function yields true in the final state, it yields true with this

superset.

4 Future work

We have discussed so far the current design of the exception handling mechanism in Guide,
and the reasons behind the choices. Everything that is described in the two previous sections is
implemented and works, except for the aspects related to hardware exceptions. We now
. present the extensions we plan to implement.

4.1 Exception hierarchy

Exceptions currently are simple strings associated to a type. This solution has the major
drawback that an overloaded method in a subclass cannot raise another exception than those

declared by the method in the superclass (cf section 3.3). In fact what we want in a subclass is

to specialize each exception of the superclass. Exceptions must then be organized in a
hierarchy respecting the subtype hierarchy of the corresponding types. It now becomes
possible to declare ShadowSpecialPage as a subtype of ShadowPage (cf example in section
3.3), given the needed syntax which could be:



284

method GetChar: Char;
signals end of line, end_of_ page,
unprintable isa error, error;
This gives a new task to the system because when PrintPage is compiled, the compiler
does not know that currentPage may be a ShadowSpecialPage . So the system must be able
to turn a possible unprintable exception raised by the call currentPage.GetChar into an

error exception known to Editor.

Another advantage of this solution is that it would be easier for the compiler to check the
validity of an exception raised in a handler defined at the class level, because this exception
could be defined directly at the type level. Each exception would be a specialization of a
primary error exception defined in type Top, which is the supertype of every Guide type. In
the current design, one would have to check that the exception is declared in each method
which can potentially cause the handler to be activated; this check is not done because it is
complicated.

In addition this solution preserves the attachment of exceptions to a type. A subtype may
only specialize an exception which has been declared in one of its supertypes. Conceptually,
two unrelated types cannot raise the same exception, even if their exception names are

identical.

4.2 Restoration

The current design is also too rigid, because the restoration code is executed when the
method raises any exception, even when the programmer is sure that the object is in a

consistent state. We describe below how we plan to refine our mechanism.

The restoration code defined at the method level can be made dependant on the raised
exception. When an exception is raised the corresponding part of the restoration code is
executed, and if this part executes normally the functionality we offer is close to that of a
finalization tool. However when an exception occurs during execution of the restoration code

then the object is declared being in an inconsistent state.

At the time the object is declared inconsistent, each activity executing on the object is
stopped. The faulty activity then executes the restoration code associated with the class of the

object. If this code executes normally then the activity and all other stopped activities raise the



285

FINALIZATION_FAILEDsystem exception. If the class restoration code executes abnormally
then the activities raise the BAD_OBJECT STATUS system exception. To complete this

scheme, an activity which calls an object which is in an inconsistent state is notified of the
failure by a BAD_OBJECT STATUS system exception,

This solution seems to solve the issue introduced in section 3.2, about failure occurrence
during the execution of the restoration code. However it remains to be implemented and
evaluated.

4.3 Hardware exceptions

The aim is to handle hardware exceptions as the other system exceptions (cf section 3.1).
In fact we want to be able either to continue the execution after the raising point if the handler
exits normally, or to propagate the exception (i.e. to return with the exception parameter set).

We can then attempt to provide the retry, but it is not imperative.

Using C on Unix makes the propagation difficult. A hardware exception is turned into a
signal and the programmer can execute a standard procedure call, the signal handler. When
the call ends, the execution automatically continues. In the next phase of the project, we will
use a low-level distributed kernel, Mach or Chorus, which can make the problem easier. In
Mach and Chorus, a hardware exception stops the thread and is turned into a message sent to
the exception port of the thread. Another thread can then read this message, take some action
such as touching the stack of the stopped thread, and then restart it. To implement Unix signals
is to push a procedure call onto the stack. We propose instead to change the program counter
of the stopped thread, so that it executes the handler when it resumes. The return and the
propagation become easier to implement, and the continuation needs to get the former

program counter to be able to resume correctly.

5 Conclusion

This paper has described the exception handling mechanism we have designed and
implemented for Guide, a strongly typed object-oriented language supported by a distributed
system. The choices have always been directed by the encapsulation principle of the object
formalism, and by a concern for orthogonality to the other concepts of the language. This

resulted in the following characteristics:



286

conformance : exceptions are associated to object methods. Exceptions potentially raised by
a method appear in its interface. Conformance rules are modified to take exceptions into

account.

association: handlers are associated to method invocations. The normal continuation after the
execution of a handler is the invocation that immediately follows the invocation of the
method in which the exception was raised. It has nothing to do with the syntactic declaration
of the handler, which may be factorized at the method or class level. This contributes to
satisfying the main goal of an exception handling mechanism: to separate exceptional cases

from the main algorithm.

inheritance : a handler defined in a class is automatically inherited in the subclasses. This is a

convenient means of declaring default handlers.

restoration: restoration code may be provided at the method and class level. It is executed
whenever the method exits abnormally. This is a useful tool to ensure the consistency of

objects.

parallelism : exceptions are integrated in a natural and powerful way in concurrent

computations, allowing complex termination policies to be implemented.

Everything that is described in section 2 and 3 is implemented. The rather primitive current
implementation induces an additional cost of one assignment and one test per method call,
inducing a small executing overhead when no exception is raised, and even no overhead
considering the tests needed after the invocations when no exception handling mechanism is
available, but increasing the code size by 25 per cent. It also adds a few assignments per
handler declaration, but uses more execution time when an exception is raised, in order to find

the right handler to execute.

Acknowledgments

I have been constantly supported by the whole Guide team while specifying and
implementing this mechanism. I wish to thank Sacha Krakowiak, Véronique Normand and
Xavier Rousset for their detailed criticisms of previous drafts of this paper. Project Guide is
partly supported by the Commission of European Communities under the Comandos ESPRIT
Project (no 2071).



287

Bibliography

[1]1 S. Krakowiak, M. Meysembourg, H. Nguyen Van, M. Riveill, C. Roisin and X.
Rousset. Design and implementation of an object-oriented, strongly typed language for

distributed gplications. Journal of Object-Oriented Programming, 3(3), pp. 11-22,
September-October 1990.

[2] R. Balter and al. Architecture and Implementation of Guide, an Object-Oriented
Distributed System. to appear in Computing Systems, 1991.

[3] ANSA Reference Manual. Architecture Projects Management Limited, 24 Hills Road,
Cambridge CB2 1JP, United Kingdom, March 1989.

[4] B. Liskov, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler and W. Weihl.
Preliminary Argus Reference Manual. October 1983.

[5] M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[6] B. Liskov and A. Snyder. Exception Handling in CLU. JEEE Transactions on
Software Engineering, SE-5(6), pp. 546-558, November 1979.

[7] B. Meyer. Object-Oriented Software Construction. Series in Computer Science
Prentice Hall International, 1988.

(8] C. Dony. Exception Handling and Object-Oriented Programming: towards a synthesis.
Proc. ECOOP/OOPSLA 90, pp. 322-330, October 1990.

[91 L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow and G. Nelson. Modula-3
Report (revised). DEC SRC, October 1989.

[10] W.F. Burger, N. Halim, J.A. Pershing, R. Strom and S. Yemini. Draft NIL Reference
Manual. (42993), IBM, TJ Watson RC, P.O. Box 218, Yorktown Heights, NY 10598,
December 1982.

[11] Objectworks Smalltalk-80 V2.5. Advanced User’s Guide. Parc Place Systems, 1550
Plymouth Street, Mountain View, California 94043, 1989.

[12] C. Schaffert, T. Cooper and C. Wilpolt. Trellis Object-Based Environment, Language
Reference Manual. (DEC-TR-372), DEC, Eastern Research Lab, Hudson,
Masachusetts November 1985.

(13] S. Yemini and D.M. Berry. A Modular Verifiable Exception-Handling Mechanism.
ACM Transactions on Programming Languages and Systems, 7(2), pp. 214-243,
April 1985.



