Representation of Complex Objects :
Multiple Facets with Part-Whole Hierarchies

Francis Wolinski & Jean-Francois Perrot
LAFORIA, Institut Blaise Pascal,
Université Paris VI & CNRS, Paris
Boite 169, 4 Place Jussieu, 75252 Paris Cedex 05, France

1- INTRODUCTION

1.1- General

We study a problem in object-oriented knowledge representation. The traditional
class/instance and inheritance paradigms form a sound basis for a computer simulation of
real-world objects "as they are described", thereby giving a tool for expressing knowledge
about the world in a specific way which is neither procedural nor declarative, and which
we propose to call "object-oriented". In our opinion, knowledge representation differs
from programming in that it has to be practised by experts of the domain and not by
professional programmers. Hence, the programming tools it uses must be designed to fit
the intellectual processes of the domain expert rather than to suit the needs of the
implementer. In this respect, we consider that the class/instance mechanism is a very
satisfactory machine realization of the "general concept"/"specific instance” way of
thinking, whereas inheritance (simple or multiple) is far less acceptable as a classification
scheme. As a consequence, we shall concentrate on improving the instanciation process
and use inheritance in a standard way purely as a programming tool.

Anyhow, this well-known, well-implemented and well-understood paradigm must be
extended in at least two ways in order to become a really usable tool for representing
substantial amounts of knowledge about complex objects. Namely, it has to deal with two
dimensions of structural complexity. First, objects usually must be considered from
various points of view. Second, many objects are thought of as being composed of various
parts that are themselves considered as sub-objects (and not as attributes). These two
dimensions have been repeatedly explored in the past (Points of view : Goldstein &
Bobrow in PIE [9], Bobrow & Stefik in LOOPS [2] and lately Carré in ROME [5] [6]. Part-
whole : the LOOPS and Thinglab [3] systems, lately Blake & Cook [1]). But nowhere have
they been treated together: for instance the LOOPS primitives dealing with points of view
(classes Node and Perspective) are not easily combined with metaclass Template catering
for part-whole hierarchies.

289

1.2- Aim of paper

In this paper, we propose to bring these two dimensions together in an analysis and an
implementation based on a restricted application domain, that of robot representation. We
claim that by restricting the field we are able to formulate some proposals about the
intellectual processes used by domain expersts and thus to motivate our solutions.

More precisely, the aim of this paper is to study both dimensions together and to propose a
set of tools which insures their harmonious cooperation. Our proposal extends the

approach of Goldstein & Bobrow in PIE [9] on the multi-facet aspect by integrating the part-
whole hierarchy aspect.

‘Previ(1) Previ(1): metrel

Previ(1)l

Fichier: previOs

Robot: previ

Nb actionneurs: 4

Nb positions: 31

Pos. courante: 11

[direct
inverse

STOP

Fig. 1 : A view of manipulator Previ as represented in Systalk

290

2- CONTEXT OF WORK

2.1- Robotics at EDF

The work partially reported here was done in the Robotics Group of Electricité de France
(EDF). Its aim was to provide the various specialised teams dealing with robots at EDF
{mechanics, control, sensing, CAD, trajectory generation) with a computer system where
their various approaches would be housed in a uniform way. The requirements included
an interface with CAD tools for reading in robot specifications as well as input of
trajectories computed off line and their execution. We chose Smalltalk-80 as a base and
developed the Systalk system [15].

About 12 different operational domains totalling 40 classes or so were covered, with 50
predefined robotic components. The system was used in two main robotic fields :

- manipulators, with execution of off-line computed trajectories and force and
torque calculation (see [14]). All manipulators used or studied by EDF were modelled in
Systalk.

- mobile robots, with simulation of sensors and qualitative control (see [7]).

2.2- User specification

Our application caters for 4 levels of user competence :

- (a) the system developer : he has full knowledge of the architecture of Systalk at its
various levels of implementation, he is able e.g. to improve on implementation efficiency.

- (b) the programming specialist : he is a Smalltalk programmer, but only knows the
outward description of Systalk, he is therefore unable to modify structural implementation
choices. His task is to manage and extend the set of specialised classes that represent the
various facets of robots (see under § 3 for more details). Typically, he would have to
improve the speed of computation of forces and torques, and to program a new facet "robot
compliance under external contraints”. He also may have to extend the library of
predefined robotic components (such as various sorts of primitive geometric bodies and
more sophisticated joints).

- (c) the robot conceptor : he knows nothing of Smalltalk, but has a complete
knowledge of Systalk’ s functionalities. His task is to build classes modelling actual robots,
using the representation tools we propose via the user interface.

- (d) the basic user : he knows neither Smalitalk nor the full structure of Systalk, but
is well acquainted with Systalk’ s user interface. His job is to instantiate one or several
robot classes and to use the instances for simulation purposes and thereby derive
informations of interest for his project.

291

Systalk was designed mainly to accomodate user (c). We assume that our robot conceptor
thinks of the robot he has to represent as a hierarchy of sub-systems ultimately made up of
standard robot components to be picked off the shelf. The various facets of the complete
robot (visible form to be drawn on screen, articulated motion, constraints that are applied
at various points of the structure etc.) are correspondingly built up from those of the sub-
systems in an automatic way, provided the communication schemes that link the various
sub-system facets are specified. Note this simulation of the mounting of a robot results in a
kind of multiple reuse of software components, since robotic components are re-used
whereas each of them does reuse more elementary software components corresponding to
its facets.

2.3- Example : A construction of a “simple"” robot : the Previ manipulator (figs. 1 and 2)

2.3.1- Facets

Robots in our application context have a number of facets, or activities, which will be
implemented as independent objects (see infra § 3.1). Here are the most important :

- Cartesian frame : The position of the robot in space is given by a three dimensional
coordinate system bound to the robot, expressed in the coordinates of the supersystem of
the robot. Accordingly, a move of the robot relative to its supersystem will be appear as a
transformation of its cartesian frame. Class cartesianFrame defines 4 instance variables
O, X, Y, Z with values in R3, as well as methods for algebraic computation of translations,
rotations and transpositions.

- Shape : The visible shape of the robot, to be drawn on the screen. The actual
drawing is obtained by top-down activation of the shape facet objects attached to the
subsystems that make up the robot (see § 4). Eventually, each elementary component has
its own shape, described by some subclass e.g. Cylinder, Cone, Parallelepiped, which
defines the necessary instance variables (e.g. for Cylinder, variables height and radius)
as well as the display methods (which of course will make use of the cartesianFrame
facet).

- Solid : Mass and centre of gravity, the last being recomputed at every instant in
function of the state of the (articulated) robot.

- Kinematics : Expresses the role of each part of the robot as a motion transformer :
when a move is applied to it, it executes the move (transforming its cartesianFrame) and
transmits it to the objects with which it is bound.

- Force (and Torque) : Computes the forces from which elastic deformation may be
deduced.

- Control : Logical organization of motion operators.

- Measurements : idem for motion, speed and stress sensors.

292
2.3.2- Subsystems

Robots are usually analysed in 3 levels : the robot is composed of a number of articulated
bodies, each of which is made up of a few geometric solids and joints, which are all
predefined and available in store. Constructing a robot is thus accomplished in two steps,
first the building of the individual parts, second the assembly of the parts.

In our example the following standard elements will be used :
- Geometric solids : bars, boxes and fingers
- Joints : static and revolute

Our Previ robot is made up of five articulated bodies :

- a base, comprising 3 bars, one static joint and one revolute joint.

- one link of kind linkl, of 4 bars, 2 boxes with one static joint and one revolute
joint.

- two links of kind link2, of 2 bars, one static joint and one revolute joint.

- a gripper, made up of 2 boxes, 2 fingers and one static joint.

According to this analysis, the Systalk user of type (c) wishing to represent a Previ
manipulator involves:

- making sure that classes Bar, Box and Finger, as well as SJoint and RJoint are
predefined in the system ;

- defining 4 new classes PreviBase, PreviLinkl, Previlink2 and PreviGripper ;

- defining a new class Previ.

Then any number of instances of Previ may be created by instantiating class Previ (the
work of a Systalk user of type (d), and used ad libitum via the various facets (executing
trajectories, displaying motion etc).

The essence of Systalk is to give means to express that class Previ is obtained by
composing classes PreviBase, PreviLinkl etc. in an intelligible way, and that in turn
PreviBase is composed of classes Bar, SJoint and RJoint in an analogous way etc. To
formulate the structural and functional relationships that constitute the definition of these
entities, we introduce three categories of discourse :

- a system (robot) has several facets, or activities ;
- a system is composed of several subsystems ;
- facets of the same kind in different subsystems are linked by communication schemes.

Previ(1) i

293

Previ components

Bar

Bar
PreviBase Bar
SJoint

RJoint

Previlink1

SJoint

RJoint

Previ
Bar

Bar

Previtink2

SJoint

RJoint
Bar
Bar

Previlink2
SJoint

ﬂ\ W W © W O o
M M O M O N
N N X O~ x =

RJoint
Box
Box
PreviGripper Finger

Finger

AN

SJoint

Fig. 2 : Manipulator Previ : its Shape facet (top left), its decomposition tree (top right),
and (the Shape facets of) its five components (below)

PreviGripper(1)|

|PreviLink2(2)|
{

B

PreviBase(1)[

i

Previlink 1(1)

Previlink2(1)I

294

As we said before, the first two have been considered many times, whereas the third is (to
our knowledge) new. It is needed to link facets and hierarchy together. The originality of
our work is to present an integrated architecture with all three aspects working smoothly
together.

One might choose to translate this analysis directly at the level of the implementation
language (supposing it powerful enough). That is, part-whole hierarchy and multi-facets
could be rendered using the standard object-oriented techniques of aggregation of attributes
and (multiple) inheritance. See B. Carré [5] for a thorough discussion.
Clearly, the programming tools at the disposal of users (c) and (d) must be distinct from
the general-purpose Smalltalk primitives accessible only to (a) and (b).

3- MULTI-FACETS

3.1- Explicit delegation

3.1.1- Our choice

The traditional choice for implementing multi-faceted objects is between multiple
inheritance and explicit delegation. Rather than endowing Smalltalk with a refined
multiple ihheritance scheme such as the point-of-view approach of Carré [6] , we chose to
materialize each facet by an independent object, to which the messages corresponding to its
activities are delegated, and which in turn is able to delegate parts of its work to other facet-
objects. Apart from its comparative easy implementation in Smalltalk, it has the
advantage of allowing dynamic modification of the facets. In this we follow the approach
of PIE, whose conclusion we adopt

"In most cases, we have found that the sender knows the point of view that the recipient
should employ to understand the message” [9, p. 77)

Our syntax for delegation uses a method function:, to send message msg to a given facet
of a certain system, write:

(system function: facetName) msg

3.1.2- "Contractual backing” between facets

Facets possess a backward pointer to the system to which they belong (an instance variable
called system), thus they have indirect access to the other facets of the same system. For
instance, facets of the shape kind have recourse to the facet cartesianFrame of the
system for display. We call this kind of cooperation between facets contractual backing.

295

Although it was virtually present in PIE, its authors don't seem to have made use of it,
since they defined functionally independent facets such as resistor and plane location. Here
is a simple example for facet Solid which defines the instance variable mass :

!Solid methodsFor: 'access' !

density
~ mass/(system function: #Shape) volume !!

Communication between facets using contractual backing accurately reflects the laws of
physics and in the same time allows a high degree of code sharing.

3.2- Prototypes

3.2.1- Problem statement

The problem is then to write only one class hierarchy per facet (e.g. for the "visible shape"
facet Shape, classes Cylinder, Parallelepiped, Cone, Sphere etc.), which will be "used"
by all the robot classes that possess the facet. This raises a well-known problem which we
summarize as follows.

Creating a multi-faceted object is a rather heavy process, since it demands the creation of
all facet-objects, hence the creation method must provide all their relevant instance
variable values for due initialization. This is admissible when the object is created for the
first time, much less so when it is to be reused. Hence, one would wish to adopt another
approach and be able to duplicate complex object instead of buiding them ex nihilo.
However, physical copying (deepCopy) carries with it more information than is actually
needed (irrelevant details about the actual state of the object). So we are led to defining
equivalence relations between complex objects that are intermediate between complete
identity (equal values of attributes) and belonging to the same class. For instance, the
general notion of a cylinder (class Cylinder, with attributes height and radius), may be
refined as cylinder-with-radius-10, cylinder-with-height-50, cylinder-with-radius-10-and-
height-50, this last notion being clearly distinct from any given instance of a cylinder
having those values in its instance variables. Whereas the general notion is adequately
represented by class Cylinder, the other three don't seem to require independent classes
to represent them, since they do share most of the information they carry with the said
class. Therefore a new implementation concept is needed, different from class as well as
from instance. In PIE, this concept was called contextualization and implemented as a

pair (class, dictionary).

296
3.2.2- Multi-parameter classes

We follow here the same line with a different terminology : PIE contextualizations are
called here prototypes, and seen as named contexts, i.e. pairs (name, dictionary). To use
them we introduce multi-parameter classes, the metaclasses of which define an instance
variable (for this technique, see Cointe [4, 8]) called prototypes, pointing toward a
dictionary of contexts (dictionaries). In these classes the instantiation method new: takes
as an argument a contextName and yields as a result an instance of the class initialized
according to the context which is the value of contextName in the dictionary
prototypes. They are defined as subclasses of the abstract class MultiParaObject, and
all facet classes of Systalk belong to this hierarchy.

Object subclass: MultiParaObiject
instanceVariableNames: ''
classVariableNames: '' !

'MultiParaObject methodsFor: 'initialization'!

init: aPrototype
aPrototype associationsDo:
[:a | self perform: (a key, ':') asSymbol
with: a value]!!

MultiParaObject class
instanceVariableNames: 'prototypes'!

'MultiParaObject class methodsFor: ‘creation'!

new: contextName
“super new init: (prototypes at: contextName) !!

For instance, class Cylinder will inherit from MultiParaObject, and the value of its
variable prototypes is the dictionary containing all the cylinder prototypes corresponding
to all the various robot parts of cylindrical shape that are currently available in the system.
The names to be used as keys for this dictionary are generated automatically as the path
(see section 4.2.2) referencing the part in the part-whole hierarchy of the robot being built.
Actually the dictionary itself will have a hierarchical structure (see section 4.2.3).

For the Previ manipulator only there will be no less than 11 such prototypes,
corresponding to PreviBase (3 parts), PreviLinkl (4 parts) and PreviLink2 (2 parts, used
twice). When an instance of Previ is created, class Cylinder is accordingly instanciated 11
times:

Cylindre new: 'Previ.l.l' asSymbol (first part of the base)
Cylindre new: 'Previ.l.2' asSymbol (second part of the base)
Cylindre new: 'Previ.2.2' asSymbol (second part of first link)
etc...

297

Zero

PortD
Structure F‘on—{

PortS

Noeud —————————NoeudB

Repere

Face

Polyedre <P!ismg

Parallelepipede

Cone
TroisD
Revolution Cylindre
\ DemiCylindre

Activite Sphere ————————DemiSphere

Activite subclasses

TroisDAmer

Solide ——————————Solide...rmable

Solide..ntaire

Encastrement
, X Liaison Pivot
Cinematique
Glissiere

Couplage

Fonction

Effort ——————TorsecrEffort

Comman...cielle
Commande <COMMIn...eriqug

Comman...orelie

MesureTorseur
Mesure <MuureNumerique

Mesure...nnelle

Fig. 3: The class hierarchy of Systalk facets
(note that 3D is French for Shape, Effort idem for Force&Torque, and Repere for CartesianFrame)

CoFonction

4- PART-WHOLE HIERARCHIES

4.1- Problem statement

In some sense, giving the set of facets of a system (robot) amounts to defining its type. Once
this type is fixed, the structure of the system is defined by its decomposition in subsystems.
It is therefore natural to try and describe a system in terms of its subsystems and relations
between them, without explicitly mentioning the facets. Such a description will be
formalized as the writing of a class (e.g. class Previ).

At the class level, only the classes of the subsystems will appear. This implies a certain loss
of information that must be compensated by an equivalent injection of knowledge in
those classes on the one hand and into the composition methods on the other hand. Our
purpose is to give some techniques for doing so (preliminary report in [12]). Typically, we
must be able to specify that a certain subsystem not only belongs to a certain class, but also
has some fixed parameters, or that it must satisfy some constraints. Since most of the

298

properties of our systems are attached to their facets, our first task will be to get together
part-whole hierarchies and our multi-facet technique.

The hierarchical decomposition of a system induces a corresponding hierarchical structure
for each of its facets. The corresponding trees are identical to the decomposition tree of the
system where a label nil at a node denotes the absence of the facet for the corresponding
part (compare fig. 4 with fig. 2 top right).

nil Repere

Previ function: #TrcisD] Previ function: #Heperel
Cylindre Repere
Cylindre Repere
TroisD Cylindre Repere Repere
nit Repere
nil Repere
Cylindre Repere
Parallelepipede Repere
Cylindre Repere
Parallelepipede Repere
TroisD Repere
Cylindre Repere
Cylindre Repere
nil Repere
nil Repere
Trois0 Repere
Cylindre Repere
Cylindre Repere
TroisD Repere
ail Repere
nil Repere
Cylindre Repere
Cylindre Repere
TroisD Repere
nil Repere
nil Repere
Parallelepipede Repere
Paralielepipede Repere
TroisD nil Repere Repere

nit Repere

Fig. 4 : The decomposition trees of Previ’ s facets Shape(= TroisD)
and CartesianFrame(= Repere)

299

As an example of the hierarchical structure of facets consider the Previ manipulator,
defined as the composition of 5 articulated bodies (one base, one gripper, three links):

- its shape facet (visible shape) is clearly composed of the Shape facets of the 5
bodies.

- its Solid facet is composed in a way that is less visible, but not less real, via an
algebraic summation of the masses and the centres of gravity of the subsystems (i.e. from
their Solid facets).

- the strucure of its facet cartesianFrame, on the contrary, is not to be seen as a
decomposition, but in the expression of the cartesian frames of the 5 subsystems with
respect to that of the system.

This example shows that the induced hierarchical structure is not the same for every facet.
Actually, the way this structure is derived from that of the system depends on the facet
class, but only on it. It is an integral part of the definition of the facet.

At the implementation level, the hierarchical structure of a facet is not explicitly
represented. It is computed on first demand from the structure of the system, then (to save
computation time) it is stored in its associated communication link (see § 5.1.). We must
now find means to automate the definition of subfacets from the definition of subsystems.

4.2- Hierarchical prototypes

4.2.1- Lazy instanciation

We start again from the instanciation problem. Creating a system involves creating all its
subsystems, hence all the facets of its subsystems. The facets of a subsystem are also
subobjects of the facets of the system, so that there are two ways to create them :

System —————» Facet
|
|

\

Subsystem ————— Subfacet

In order to save memory and speed up the instanciation process, we use a kind of lazy
instanciation, where all subsystems are instantiated, whereas facets are created only when
required. Therefore, subfacets will be reached through the subsystem they belong to and
not from their "superfacet".

300
4.2.2- Paths

Now subsystems are referred to as paths (following Thinglab) in the decomposition tree. If
S is the name of the system, its subsystem n°® i will be denoted by S.i, and subsystem n° j
of S.i will be denoted by S.ij etc. Such a path (e.g. 'Previ.3.1")is the only name of the
subsystem known to Systalk. Hence we must deduce from it all the prototypes that we
need for the different facets of the subsystem it refers to. Recall that, for each facet, these
prototypes are to be found inside the class of the facet. Thus we must set up an

interpretation scheme for subsystem paths that works with every such (multi-parameter)
class.

Now, we have to take into account the fact that a component may be considered at various
levels of integration. In the same way as we refined (in § 3.2.1) the general notion of a
cylinder as cylinder-with-radius-10 etc, we want to consider Bar (1) in itself, (2) as the first
element of PreviLink2 in itself, (3) as the first element of PreviLink2 taken as the third
component of Previ in itself and (4) should Previ be used as nth component of a
supersystem X, as the first element of the third component of the nth component of % in
itself, etc. These different notions of a bar are naturally denoted by paths 'Bar’,
'Previlink2.1', 'Previ.3.1'and 'X.n.3.1", etc.

We want to provide an explicit representation of those various notions in order to allow
the full reuse of them. Clearly, they have to be represented as prototypes attached to class
Bar. Moreover, each of these prototypes is included (as a dictionary) in the next one in the
above integration order. This order corresponds to an incremental specification of the

prototypes:

- path 'Bar' says nothing more than "it is a bar", leaving all parameters undefined
(generic bar).

- path 'PreviLink2.1' says that this bar is the first element of a super-system that is of
kind PreviLink2. This specifies the relative orientation of the bar, which is reflected in its
facet cartesianFrame, but not its geometric dimensions.

- path 'Previ.3.1" says that the abovesaid supersystem is indeed the third subsystem of
Previ and which completes the specification of the bar.

- other paths (like 'X.n.3.1') won't add any specifications to the bar.

4.2.3- Utilization trees

So, when referring to a bar, path "Previ.3.1' can be interpreted as a sequence of
increasingly constrained contexts, starting with the empty context and ending with a fully
specified one. We call each of these contexts a utilization of the bar. We further observe
that all such paths concerning a given system can be assembled as a tree, which we call the

301

utilization tree of the bar in the system. In some sense, the family of those trees for the
various subsystems is dual to the decomposition tree of the system. At the level of class
Bar, the utilization trees corresponding to the various robots available in Systalk are
collected as a single tree, with the empty context as root, which we call the utilization tree
of subsystem Bar.

Bar utilizations: Previ

PreviBase.1 Previ1.1
Previdase.2 Previ1.2
PraviBase.3 Previ1.3
Previllnk1.1 Previ.2.1
Previtink1.3 Previ2.3
Bar -Previlinki.4 Previ.2.4
Previlink1.5 Previ.25
. Previ.3.1
Previlink2.1 <F'revi.3.2
Previ4.1

ilink2.2
Previlink22<" ia's

Fig. 5 : The utilization tree of Bar in Previ

This solves our problem : suppose our subsystem Bar owns facet F, the utilization tree is
readily converted into a tree of prototypes to be given as a value to the variable prototypes
of class F. We only have to make a slight change to the mechanism of multi-parameter
classes in order to accomodate a tree of prototypes instead of a dictionary of contexts.

This requires the introduction of a class Prototype, subclass of Dictionary, which will
define the hierarchical tree structure by means of an instance variable superPrototype,
and to modify method init: of class MultiParaObject as follows:

'MultiParaObject methodsFor: ‘'initialization'!

init: aPrototype
aPrototype associationsDo:
[:a | self perform: (a key, ':')} asSymbol
with: a value].
self init: aPrototype superPrototype !!

302

5- COMMUNICATION SCHEMES

5.1- The idea and the three classes

So far, our implementation captures the structural relationships between subsystems.
There remain to express the functional ones. For instance, facet Kinematics works with a
number of contacts between homologous facets of static joints, revolute joints, links etc.
These communications between facets of the same kind are organized in communication
schemes which we represent by specific objects (which we call communication links)
having as attributes several communication channels (symbolized by mere numbers) and
an interconnection matrix [13]. They fall into three main classes which we call zero
(vertical communication of a father with all of its sons collectively), port (vertical
communication of a father with each of its sons individually) and Node (horizontal
communication between brothers).

Communication links of classes zero and Port answer to messages :

propagate: aSelector

propagate: aSelector arguments: anArray

those of class Node to messages (one for emission and one for reception) :
propagate: aSelector arguments: anArray target: aChannel

propagate: aSelector arguments: anArray source: aChannel

To each type of facet corresponds one type of communication scheme. For instance, facet
Shape communicates in mode Zero, Kinematics in mode Node. This correspondence is
expressed by an instance variable called structure in all the facet classes (defined in the
metaclass), with value the associated class of communication schemes. Every facet
instance accesses its own communication link through a method called comLink : here is
a simple example :

{Measurement methodsFor: 'work!' !

getValue
“self comlink propagate: #getValue !!

where it is understood that Measurement facets of elementary components have specific
getValue methods.

Conversely, every communication link accesses the facet object with which it is associated
through a method called function (with no argument). It owns an instance variable
subComLinks with value the set of the communication links of the subfacets, thus
representing in an indirect way the hierarchical structure of the facet as indicated in § 4.1.

303

5.2- An example of communication

Propagation of the display message to facet Shape. : displaying a shape needs a cartesian
frame which has to be transformed down the communication line according to the
relative positions of the subparts. This transform belongs to facet Shape but is operated by
the communication scheme thanks to a compound selector (trans. <propagated
selector>). As usual, Shape subclasses will have their own specialized display methods.

!Shape methodsFor: 'display' !

displayAt: aPoint frame: aCartFrame scale: aNumber
self comLink propagate: displayAt:frame:scale:
arguments: (Array with: aPoint
with: aCartFrame
with: aNumber) !!

!Shape methodsFor: 'transform’'!

trans.displayAt: aPoint frame: aCartFrame scale: aNumber
~“Array with: aPoint
with: ((system function: #CartesianFrame)
transform: aCartFrame)
with: aNumber!'!

Method trans.display of Shape is operated by method transform:arguments: of Zero
as shown in the code for propagate:

!Zero methodsFor: 'propagation'!

propagate: aSelector arguments: anArray
self subCombLinks isEmpty
ifTrue: "rock-bottom facet : execute”
[self function perform: aSelector
withArguments: anArray]
ifFalse: "intermediary facet : transform then propagate"
[self subComLinks do:
[:cl| cl propagate: aSelector
arguments: (cl transform: aSelector
arguments: anArray)]} !

5.3- Prototypes with translation

In the hierarchical contruction of a system S, if no coupling occurs, the channels of the
communication links of the various facets of the subsystems of § become automatically
channels of the links of the facets of S. For instance, assembling two robots with p resp.q
degrees of freedom (i.e. p resp. g input-output channels for facet kinematicControl)
yields a robot with p+4 degrees of freedom, i.e. p+g channels in the same facet. Coupling
between subsystems represents physical bindings and reduces the total amount of channels
in the supersystem. For instance, a rigid binding between subsystems A and B results in

304

identifying a channel of A with a channel of B, submitted to compatibility relationships
(e.g. male/female parts, see [14] for details).

Hence we have to set up some sort of algebra for interconnection matrices, which is part of
the definition of our communication scheme classes :

- Schemes of class zero have no channel at all, hence no matrix. They address
directly the subfacets of the same kind and establish a collective communication with
them (as demonstrated by the code for propagation above).

- In schemes of class Port, each channel of the subsystem corresponds to a channel
of the supersystem, through an automatic renumbering process. The interconnection
matrix is trivial.

- In schemes of class Node, the interconnection matrix may be arbitrary, and must be
explicitly given by the user.

Here is the matrix for the Kinematics facet of our Previ example. Each line corresponds to
one of the 5 subsystems (see § 2.3.2 and fig. 2), all of which happen to have the same
number of channels, namely 2. Each channel ¢ appears as a pair of integers (x y),
indicating that channel ¢ is connected to channel number y of subsystem number x (0
meaning the supersystem).

PreviBase : [(01) 2 1)] the 15t channel of the base is the input channel of Previ,
the 2nd one is connected to the 15t channel of PreviLinkl

PreviLink1: (123Dl

PreviLink2: [(22) (4 1)

PreviLink2: (32 (1]

PreviGripper: [(42)(02)] the 2nd channel of the gripper is the output channel of

Previ.
As a consequence, Previ has two kinematics channels left instead of the 10 channels
provided by its 5 subsystems.

Communication scheme classes are submitted to the same process of incomplete
instanciation via prototypes as facet classes. However, what is practically needed are
prototypes that specify the total number of channels as well as the interconnection matrix,
but leave open the exact identity of the subsystems that they are going to interrelate. These
subsystems are represented by ad hoc placeholders (their numbers). The symbolic matrices
(such as the one above) are stored in instances of a special class, a variant (but not a
subclass) of Prototype. This class also supports the translation process of the placeholders
into the actual subsystems during instanciation.

305

In our example, in the course of instantiating class Previ, numbers 0 to 5 appearing in
the symbolic connection matrix will be replaced by the actual subsystems of the instance of
Previ thatis created.

6- CONCLUSION

We have presented a working system that integrates in a homogeneous way multi-facets
and part-whole hierarchies. Of course many improvements are in order, notably some
form of compilation to gain speed.

The main direction to be explored, in our opinion, is the meta-knowledge needed to
implement reasoning about the system. Our first attempt was to couple Systalk with our
version of OPUS [10], a Smalltalk-80 interpretation of OPS-5 (see Pachet [11]) and to have
OPUS production rules control a Systalk robot. The next will be to integrate a powerful
semantic network. Work is going on in this way.

ACKNOWLEDGEMENTS

We wish to thank Mr Michel Delbos, formerly head of the Robotics Group of the
Sureillance, Diagnostics and Maintenance Dept, Electricité de France, for his help and
support while developing Systalk.

REFERENCES

(1] Blake, E. and Cook, S : On including part hierarchies in object-oriented languages, with
an implementation in Smaltalk, ECOOP '87, p. 45-54.

(2] Bobrow, D. and Stefik, M. : The LOOPS Manual, Xerox Corp. (1983).

(3] Borning, A. : THINGLAB - A Constraint-Oriented Simulation Laboratory, Ph.D. thesis,
Stanford 1979.

(4] Briot, J.-P. and Cointe, P. : A Uniform Model for Object-Oriented Languages Using the
Class Abstraction, IJCAI '87, vol.1, p. 40-43.

[5) Carré, B. : Une méthodologie orientée objet pour la représentation des connaissances -
concepts de point de vue, de représentation multiple et évolutive d'objets,
These, Université de Lille, 1989.

[6] Carré, B. and Geib, J.-M. : The Point of View notion for Multiple Inheritance, OOPSLA-
ECOOP '90, p. 312-321.

[7] Coiffet, Ph., Zhao, J., Zhou, J., Wolinski, F., Novikoff, P., Schmit, D. : About qualitative
robot control, Nato Workshop on Expert Systems and Robotics, Corfu 1990.

[8] Cointe, P. : Metaclasses are First Class : the ObjVlisp Model, OOPSLA '87, p. 156-167.

306

[9] Goldstein, I. and Bobrow, D. : Extending Object Oriented Programming in Smalltalk,
First Lisp Conference, Stanford 1980, p. 75-81.

{10] Laursen, J. and Atkinson, R.: OPUS : a Smalltalk Production System,
OOPSLA '87, p. 377-387.

{11] Pachet, F. : Mixing Rules and Objects : an Experiment in the World of Euclidean
Geometry, 5th International Symposium on Computer and Information Sciences,
Nevsehir (Turkey) 1990, p. 797-805.

[12] Wolinski, F. : Gestion des contraintes induites dans la structuration des objets en sous-
objets, Reconnaissance des Formes et Intelligence Artificielle (RFIA), Paris 1989, p. 163-171.

[13] Wolinski, F. : Modeling and simulation of robotic systems using the Smalltalk-80
environment, TOOLS '89, p. 141-149.

[14] Wolinski, F. : Représentation de systémes robotiques en Smalltalk-80, Convention IA
1990, Paris (Hermes publ.) p. 685-699.

[15] Wolinski, F. : Etude des capacités de modélisation systémique des langages a objets
appliquées a la représentation de robots, These, Université Paris VI, 1990.

