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Abstract

Version management services have traditionally focussed on versioning individual objects, and espe-
cially text files. This approach ignores the fact that (versions of) different objects are not independent
from each other, and introduces the problem of finding consistent version combinations. One way
to alleviate these problems is by expanding the unit of versioning, i.e. by applying integral version
management to collections of objects.

This paper describes implementation techniques for integral version control. The techniques are applied
to an object model which is characteristic for modemn (engineering) object management systems, i.e.
a model in which data is represented through objects and relationships. The techniques we propose
support for both linear development and general, branching history. Furthermore, the techniques are
incremental: they only store the difference with respect to the previous version.

1 Introduction

Object management systems (OMSes) have an increasing popularity, especially in engineering environ-
ments [PCT, BCG*87, BMO*89, F*88, KL89]. These object management systems provide mechanisms
for storage of typed objects, plus mechanisms to handle references between objects. It is expected that
they will replace traditional file systems for many applications, especially as a basis for engineering
support environments.

Object management systems give new possibilities and new problems for version control. Traditional
version control systems apply version control to individual files. The equivalent in object management
systems would be that version control is applied to individual objects. We argue that version control
should not be limited to individual objects but instead be applied to larger units (see section 2). We refer
to this approach as integral version management. Integral version management forms the basis of the
CAMERA system [LFB89, LF91], a version control system aimed at supporting (software) developers
that use loosely coupled distributed networks. In CAMERA integral version management is applied to
the entire contents of an OMS.

Efficient implementation of versioning is hard. Therefore, the main part of this paper is concemed with
possible implementations of integral version management when applied to a data model consisting of
objects and relationships. We will discuss data structures for storing and retrieving versions that can be
used for linear (section 5) and non-linear (section 6) version history.
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2 Version management

Version management is concerned with handling versions of objects in a systematic way. The main
applications of version management are the recording of the history of developments, and support and
coordination of parallel activities'.

Versions (or revisions) are used to record the evolution of data. In software development for instance it is
important to trace the modifications that were made to a set of programs. Modifications often introduce
new bugs; and in such a case it is very important to know exactly what was changed. Another application
for historical versions is release management. All entities that are needed to recreate a specific release
of a software product are stored on a safe medium, so that this release can be recreated (and possibly
corrected) at a later point in time. Historical version management can also be used to “undo” unwanted
modifications, if versions are created sufficiently often. When a user has made a mistake, (e.g. deleted
an important object) an old version can be used to continue work.

Version management can be used to support parallel activity, where a group of users is working on (a
version of) a set of objects at the same time. In such situations users often want to have their private
workspace, which they can modify without interference from others. If we look at a multi-user hypertext
system, for instance, users may want to add new links without seeing the links that are added by others.
However if each user has a private version of all data, it is very hard to discover when new versions
of objects are created, and what the contribution of a single line of development is to the overall result.
Version management systems can help in managing and tracing these parallel developments.

Units of version management

Traditionally, version control is applied to individual objects. In this section we provide some arguments
for the claim that this is not sufficient (see also [LFB89]). Instead version control should be applied to
collections of objects and their mutual references.

Versions of one object depend on specific versions of other objects, since a new version is developed
using specific versions for the other objects. In general it is not possible to combine arbitrary versions of
some objects, since these versions need not be mutually compatible. For example, in an object oriented
environment, a version of a method in one class may depend on the existence of a method in second
class. Inconsistency problems arise if a version of the second class has been selected that does not contain
this method.

Ideally, a version management system should only allow “consistent” version combinations. This is a
difficult problem since the number of possible combinations grows exponentially. Furthermore, it is in
general impossible to determine automatically which combinations are consistent, because the definition
of consistency depends on the semantics of the objects that are involved.

However, there seems to be a reasonable choice for obtaining consistent combinations. It is likely that the
set of versions that were used to develop a new version of some object will form a consistent selection.
This can be supported by recording which versions of related objects were used in the creation of a
particular version of an object. One particular way to do so is by shifting the unit of versioning up to
collections of objects, and the references between them.

This approach has an intuitive appeal. Often changes that are seen as a conceptual unit by a user will
involve modifications to a group of related objects. For example, adding a new feature to a program may
involve changes to several program modules. The changes to all these modules are of course closely
related and can be seen as one compound modification to the group as a unit. Again, it seems more
appropriate to apply version management to the group as a whole (see [NSE88, BGW89]).

"Traditionally variant management is also seen as a form of version management. Variants are different objects that share
functionality. This notion is mainly used in program development were different variants of a program (e.g. for different
machine architectures) may share a large portion of their source code. In our opinion variant management is orthogonal to
history management, and should be solved by the modeling capabilities of the OMS.
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Versioning larger units also provides a direct solution to the problems of versioning references between ob-
jects. Object systems provide mechanisms to store and manipulate references between objects. References
can occur in two forms: as instance variables that act as pointers to other objects (most object-oriented
languages), and in the form of relationships (some object-oriented databases and engineering object man-
agement systems). Since references constitute important information, they must be subject to version
control, too. A problem here is, how version control on references is related to version control on the
individual objects. For example, what must happen if a new version is created of an object that is ref-
erenced by another object. Must a new version of the referring object be created as well? This problem
can be solved by putting both objects (and the reference) in one group and creating a new version of this
group. Thus we version graphs of objects.

Certain object oriented systems use the notion of composite or complex object to define the sub-graphs
that are subject to version management (e.g. [KBC*87, PAC89]). A disadvantage of this approach is that
it makes it impossible to apply version control to references berween objects that are not part of the
same composite object. This places a rather severe restriction on the use of references. This is especially
important since it is not always easy to define a particular composition structure, in advance. In hypertext
systems, for instance, one often finds overlapping views, each of which could be a complex object. In
some cases composition structures are even determined by the operations that are performed [Rum88].
Furthermore, the same combination problems that we saw for individual objects reoccur, but now on a
different level. Le. combining versions of several complex objects may give rise to consistency problems.
Consequently, a reasonable solution appears to be integral version control: version control is simultane-
ously applied to a self-contained collection of objects and the references among them.

Systems for integral version management

There are several systems that provide some form of integral version management. Systems like NSE
[NSE88], and Plan 9 [PPTT90] store versions of (a part of) a file system, see also [Hum89]. Other exam-
ples of systems that provide integral version management on a graph of objects are Gandalf [BGW89], and
[LCM*89]. Postgres [SR87] also offers a form of integral version management in a relational database.
By tagging each tuple with the time at which it was created, the system supports linear history recording
for a complete database.

In a certain sense it can be said that Smalltalk gives a form of integral version management in the
Smalltalk images. But because images are large, it is highly impractical to store many of them. PIE
[GB86] attempts to solve some of these problems by adding a notion of layers, a (sub)-graph of related
objects that is treated as a unit, and that can be exchanged between users. A similar notion of layers can
be found in [GMS89] for a software development system that is built on top of a traditional file system,
Sun’s Translucent File System [Hen88] where the notion of layer is incorporated into the file system
itself, and [Pre90] for hypertext systems.

The CAMERA system, currently under development at SERC [LF91], also incorporates integral version
management. CAMERA is aimed at supporting teams of (software) developers who cooperate across
loosely-coupled networks. CAMERA has a two-level architecture. Integral version control is applied to
object worlds containing the data (e.g. the design, the software) that is under development. Versions of
these object worlds (called snapshots) are stored in a higher level object management system (called the
Album), which supports and records the development process.

In the remainder of this paper we focus on implementation techniques for integral version management
that were developed for the CAMERA system. This emphasis means that we will not discuss usage aspects
of versioning service, such as whether version creation is implicit or explicit (via checkout/checkin), or
policies that determine when new versions should be created. The reader is referred to [LF91] for further
background on this.
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Figure 1: Examples of linear and branching history

3 A model for integral version management

In this section we will give a model for integral version management which is used in the description of
the implementation techniques.

The example object model

This section describes the sample object model that will be used in the rest of this paper. We assume
that data is stored in an object management system that is based on a hybrid data model, i.e. a model
providing both objects and relations.

Objects are identified by an object identifier OID. The object identifier of an object remains the same
when the object is changed. Every object has a value. The internal structure of the objects is not relevant
for the rest of this paper, but we should point out that the internal structure cannot contain references to
other objects.

References are handled via relations. Relations are sets of relationships, n-tuples of object identifiers
or primitive values. Each relation is identified by a relation identifier RELID. We can use relations to
describe how version control on inter-object references can be implemented. Relations are also treated
separately because references between objects could change faster or slower than the contents of the
object. This makes it more efficient to separate the version control of references from the version control
of the contents.

Snapshots

Under integral version management versions of the entire contents of an object management system are
recorded. Versions of the OMS are called snapshots. Since snapshots are used to record history we will
assume that old snapshots (i.e. snapshots for which a successor has been created) are immutable. If errors
are discovered in an old snapshot, a new snapshot with the modifications must be created. Possibly, the
erroneous snapshot could be deleted.

Every snapshot is uniquely identified by a time stamp, also known as version identifier. The time stamps
are unique labels, that need not have any relation to actual clock times. Time stamps have an ordering
imposed on them, that describes the successor relation between the versions.

Two different types of history can be distinguished: linear and non-linear version history. In linear version
history every version (except for the most recent one) has a single successor. This happens if there is one
central version that is developed. The ordering that corresponds with linear history is a total ordering of
the time stamps.

In a non-linear version history versions can have more than one successor, and more than one predecessor.
This version history is characterized by branches and merges. This occurs during parallel development,
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Figure 2: Architecture for integral version management

when several persons use the same version as basis for their work. The ordering in a non-linear version
history is a partial ordering of the time stamps, i.e. the successor relation forms a directed acyclic graph.

As we have seen above inside the OMS every object has a unique object identifier (OID) and likewise
every relation is identified by a relation identifier (RELID). Thus a version of an object (relation) can
be identified by the combination of its object (relation) identifier and the time stamp of the snapshot to
which this version belongs.

The two most important operations on snapshots, are creation and retrieval. Users can retrieve any existing
snapshot, and use that as the contents of their workspace. At certain points in time a new snapshot is
created of the entire contents of this workspace. Users can also examine parts of existing snapshots, e.g.
to determine the values of objects and relations inside the snapshot.

4 The implementation model

An overview of the model for integral version management is given in figure 2. Versions of the entire
contents of an OMS are stored by the system, and one such version is called a snapshot. Users operate on
specific snapshots, each of which contains a particular state of the OMS. The snapshot manager handles
operations on these snapshots, and maintains the successor relation between snapshots.

All snapshots are stored in one global snapshot storage, and this paper describes data structures for the
efficient implementation of this global store. Different techniques can be used for objects and relations,
and the following sections will introduce the functionality of these data structures. This section will
introduce a global framework that will be used to describe the specific data-structures for linear and
non-linear history, in sections 5 and 6, respectively.

Storing versions of objects

At an abstract level the functionality of an OMS can be described as a data structure that associates an
object identifier of an object with the value (the contents) of this object, i.e..

OMS : OID — value
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If we add integral version management on objects, this can be described as:
Indez : OID x TimeStamp — value

i.e. this data structure maps a combination of an object identifier and a time stamp to the value of this
object in the snapshot.

A straightforward approach for implementing integral version management is to store a complete copy
of the entire snapshot. This is effectively what is done in Smalltalk, where the equivalent of a snapshot
is a Smalltalk image. It is obvious that for virtually all practical applications this will soon become
prohibitively expensive, unless the number of snapshots remains very small.

A somewhat more advanced solution is based on the observation that successive snapshots will tend to be
very similar, since most objects and relations will not change between snapshots. It is therefore wasteful
to make separate copies of all objects — especially when objects are large — for all snapshots in which
the object occurs, since the value of the object will be the same in most of these snapshots.

An obvious implementation technique is to let snapshots share common values of objects. This can be
done by adding an extra level of indirection. Every different value of an object is stored in a separate
data structure, and can be identified by a value identifier (VALID). The data structure now consist of two
parts:

VersionIndex : OID x TimeStamp — VALID
and

ValueIndez : VALID — value

The ValueIndex contains for each object all values of this object. In order to retrieve a specific version, first
the VersionIndex is searched to find the corresponding VALID, which is then used as key in ValueIndex
to retrieve the value of this version. In a functional notation this can be described as

Indez(oid, timestamp) = ValueIndez( VersionIndez(oid, timestamp))

The implementation of the Valuelndex will be dependent on the type of the values. With text files,
for example, compression techniques such as delta compression ([Tic85]) can be used. For objects that
contain fixed length records the techniques from [KL84] might be used. A data structure that can be used
to store different versions of a set in a compressed way is described in sections 5.2 (linear history) and
6.2 (non-linear history).

For objects that are small or that have very dissimilar values, these compression techniques cannot be
used: in this case the different values will be stored completely. Very small values (e.g. integers) can
even be stored in the VersionIndex itself, instead of their VALID, thereby avoiding the extra overhead of
using the Valuelndex.

In the rest of this paper we will ignore the Valuelndex, and concentrate on implementations for Ver-
sionIndex. These will be described in sections 5.1 and 6.1.

Storing versions of relations

It is of course possible to treat a relation as an object that has a set (of relationships) as its value, and
then to use the techniques from the previous section. Special algorithms would be needed to compress
the values of relations. Since relations are sets, we could use the techniques like the ones described in
sections 5.2 and 6.2. However, the speed of access for relations can be greatly improved by defining
special index structures, which reflect the common use of the relation.

A standard method for the implementation of relations is as one or more indexes on search keys of the
relation. Such an index has the following functionality:

RELID x Key — P Relationship
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The index takes a relation identifier plus a search key, and returns the set of relationships with this key.
These indexes are commonly found in databases but can also be used for the navigational behaviour
found in most OMS applications, by using object identifiers as search keys.

A modified form of these indexes can be used to store old versions of relations. We define a two level
index:

Relindez : RELID x Key — RVALID

RelVersionindez : RVALID x TimeStamp — P Relationship

RelVersionIndex implements versions of sets (of relationships). Specialized data structures for storing
versions of sets will be described sections 5.2 (linear history) and 6.2 (non-linear history).

Relindex can be implemented using traditional indexing techniques, e.g. B-trees [Knu73].
Because these indexes have a key, fast access to the tuples is possible.

S5 Linear version history

An important special type of history is the linear version history in which each time stamp (except for the
last one) has precisely one successor. The restricted nature of the linear version history makes it possible
to use more efficient data structures than those for the general non-linear version history, which will be
described in section 6.

This section, that describes data structures for linear version history, is divided in two parts, The first
part (section 5.1) concentrates on implementations for VersionIndex, the data structure that is used for
integral version management on objects, while section 5.2 describes a data structure for storing versions
of sets that can be used for integral version management on relations.

5.1 Sparse index

An obvious implementation for VersionIndex is to use a B-tree [Knu73], with the combination of OID
and TimeStamp as key. If the index is sorted lexicographically on (OID, TimeStamp), all entries with
the same OID will be adjacent in the index, and ordered by increasing TimeStamp.

It can be expected that successive entries in the index will tend to have the same value, since typically
an object will not change between two snapshots. In a certain sense these repeated entries are redundant,
and can be omitted.

A more precise definition of when an entry can be omitted is the following. We define that an entry (oid, t)
immediately precedes an entry {oid, t'} in the index if there is no entry {oid, ¢} in the index with t < " <
t'. An entry (oid,t) can be omitted from the index if there is an entry (oid, t') that would immediately
precede (oid, t) if it were present in the index, such that indezval({0id,t)) = indezval({0id,t')).

A sparse index is an index where the value of each entry is different from the immediately preceding
entry. In order to handle deletions of objects correctly, the domain of object values is extended with the
special object value null, i.e. an entry ({oid, ¢t} — null) would indicate that at time ¢, object identifier
oid was not referring to an existing object.

The insertion algorithm for a new entry ({oid, t) » val) is:

if  the index contains an entry (oid,t) that immediately precedes (oid, t)
such that indezval((oid, t')) = val

then do nothing

else insert ({oid,t) — val) in the index
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Obviously, the deletion of an object oid at time ¢ is indicated by inserting an entry ({oid,t) + null) in
the index.

The algorithm to retrieve the value of an object oid at time ¢ is:

if  there is an entry for (oid,t)

then retum indezval((oid,t))

else if  there is an immediately preceding entry (oid, t')
then retum indezval({oid, t'))
else return null

This sparse index can be implemented using traditional data structures, e.g. the ubiquitous B-trees.

Performance

The index will only contain an entry for an object, if that object has been changed with respect to the
previous snapshot. In general, it is to be expected that most objects will not change between snapshots.
Therefore, a sparse index will be much smaller than the corresponding full index that stores all object
values for all time stamps.

Searching the sparse index can be somewhat faster than with the full index due to the smaller size of the
index. In a similar way the creation of a new snapshot can be faster because only objects that have been
changed since the previous snapshot must be entered into the index.

5.2 Versions of sets

This section describes a data structure that can be used to handle versions of sets for a linear version
history, that can be used to store versions of relations. This data structure is called version list. A version
list consists of a list of 3-tuples (el, birth, death), where el is an element of the set, birth and death are
both time stamps. The meaning of a 3-tuple is that el is a member of the set at all times ¢ such that
birth < t < death. All elements that are in the set at the most recent time stamp have a death time stamp
of +o0.

The 3-tuples in the version list are sorted on decreasing death time stamp. This means that all the entries
that are currently alive are located near the head of the list. When a new element r is added to the set at
time ¢, a new entry (r, ¢, +oo) is added to the version list. For a deletion of a element e! at time ¢ the
death time of the corresponding 3-tuple is changed to t. In order to keep the list sorted this 3-tuple may
have to be moved to the rear of the list, this can be arranged by swapping this entry with the last 3-tuple
that is currently alive.

The algorithm for reconstructing the set of elements for a given time t from a version list v is:

i=1
result ;= §
while i < size(v) and v[i].death > t do
if v[il.birth <t
then result := result U v[i].el
=i+l

Observe that we can terminate the search loop when an entry is found for which v[i].death < t because
the list is sorted on decreasing death time. So we know that for all j > i, v[i].death < t.
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Performance

Because old snapshots are immutable it is only possible to insert and delete elements for the most recent
snapshot. Therefore, insertion and deletion operations will be O(s) where s is the size of the current
version of the set.

From the algorithm that retrieves old versions of the set, it can be seen that newer versions can be
retrieved faster than older versions. This is desirable, because it can be expected that recent versions will
be used much more frequently than older versions. The time needed to retrieve the most recent version
is O(s), where s is the size of the current version of the set, and this is of course the best achievable.

6 Non-linear version history

In the general case, version histories are not linear — i.e. timestamps can have more than one suc-
cessor/predecessor — due to branching and merging. The techniques that were used in the previous
section cannot be applied in this case. This section will describe some extensions that can be used in the
non-linear case as well.

Like the previous section, this section is split into two parts. The first part describes techniques for
storing objects. The second part describes data structures for storing versions of sets that can be used to
implement versioned relations, as was explained in section 4.

6.1 Storing versions of objects

The sparse index technique, that was described in section 5.1, cannot be used immediately in the case
of non-linear history. The most important problem is that in this case time stamps are not completely
ordered. Therefore, they cannot be used as key in the sparse index. This problem can be solved by adding
yet another indirection.

The procedure works as follows. There is one global mapping table: map : TimeStamp — N, that is
used to convert a TimeStamp to a (totally ordered) natural number. The resulting number is used to index
the modified sparse index

VersionIndez' : OID x N — VALID

This mapping table will contain one entry per snapshot. It will thus be relatively small, and could be
kept in core. It can be implemented e.g. as a hash table.

Example

An example sparse index for the data in figure 3 is shown in figure 4. In this example, we have two
objects OID; and OID;, and a set of snapshots with timestamps T, ... Ty. The initial snapshot is T,, that
only contains the object OID; with value A. In one line of development (T}, Ty, T.), the object OID,
is created and modified. In the other development line (T,.) object OID, is modified. The final snapshot
Ty merges the results of both lines of development.

Insertion algorithms

The size of the index VersionIndex’ depends on the mapping table in the following way : for all TimeS-
tamps A and B let d( A, B) be the number of objects that are different between snapshot A and snapshot
B. The TimeStamps in the index are sorted by the increasing value of the mapping function. If we arrange
all TimeStamps in a sequence {; ... ¢, such that map(t;) < map(t;,,), the total size of the index is

U= Y00 d(k, i)
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Figure 3: Example data for sparse index. This figure shows a partially ordered set of time
stamps, and the contents of the corresponding snapshots.

map function VersionIndex’

T | map(T) OID | map(T) | Object-Version
T, 1 0ID, 1 A

T, 2 OID, 5 D

T, 6 OID;, 2 B

Ts 3 01D, 4 C

T. 4 0ID, 6 null

T,| s

Figure 4: A sparse index

This table shows an example sparse index and the corresponding mapping function. null indicates a
deleted entry.
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A bad choice for the mapping table will give a very large index. Unfortunately it is not very easy to
discover the optimal mapping table for a given set of snapshots, that gives a minimal value for . Appendix
A contains a proof that this problem is NP-complete. Because the problem of finding an optimal mapping
table is NP-complete, for a practical insertion algorithm heuristic methods must be used. Which particular
method is most suited depends very much on local branching pattems. The index will be relatively small
if every snapshot is similar to its neighbors in the index. It can be expected that every snapshot is similar
to its predecessor, thus a simple heuristic would be to insert every snapshot as a neighbor in the index
of its predecessor.

It is not always possible to insert a successor of a snapshot with time stamp ¢ as a neighbor, this happens
if map(t)+ 1 and map(t)— 1 are already used in the mapping table. In this case the new snapshot must be
inserted elsewhere. A useful (greedy) heuristic, is to insert this snapshot at a place in the index where it
causes the smallest increase in the total index size, i.e. between two snapshots to which it is very similar.
Simulation experiments with this heuristic indicate that the size of the produced index is normally very
close to the size with the optimal mapping table.

Performance

The performance of retrieval operations on this data-structure can be very similar to that of the standard
sparse matrix for linear history. The only extra overhead is one lookup in the mapping table. When the
relevant part of the mapping table is kept in core (as it probably will be) the additional overhead is
negligible.

6.2 Implementations for versioned sets

This section describes implementation techniques that can be used to store versions of sets, in the case of
non-linear version history. As was explained in section 4 this data structure can be used to store versions
of relations.

Several standard data structures like lists and hash tables can be used to represent sets. But these data
structures cannot be used to store multiple versions of the set in an efficient way. Two data structures,
delta lists and modified AVL-trees, that are more space efficient will be described in the next sections.

Delta lists

A first data structure for the implementation of versioned sets makes use of delta lists. This data structure
consists of two parts. Certain versions of the set are stored in full as base versions, using a traditional
data structure (hash tables are suitable). Other versions are stored as sets of changes to a base version
in the delta lists. A delta list is a list of deltas, every delta contains the differences (additions/deletions
of elements) with respect to the previous version of the set. Every delta in a delta list is marked with a
time stamp. The first delta in every delta list contains the modification with respect to a fully stored base
version.

To retrieve a specific version of the set with a specific time stamp 7, first the corresponding base version
must be retrieved, and then all delta’s that have time stamps between that of the base version and 7 must
be applied. Thus the average access time will depend on the size of the delta lists. If base versions are
made more often access time will get shorter, but storage demands will increase.

The average amount of storage per set with this data structure is:

e fonte-(1—f)-k



Figure 5: Shared subtree implementation for sets

The black tree and the shaded tree represent two different versions of the same set that
share common subtrees.

where f = proportion of the versions that are stored as base versions
ci = storage size per element in a base version
n = average number of elements in a set
c; = storage size per element in a delta
k = average number of elements in a delta
The average access time is:
1
2 (1—f) k+d
where d; = time to access one element in a delta
d, = time to access one element in a base version

The proportion of versions that are stored as base versions (f) is an important parameter when imple-
menting this data structure. It represents 2 classical space/time tradeoff, a low value for f gives a compact
data structure while a high value gives good access performance.

Trees

Another standard way to implement sets is by using trees, e.g. AVL trees (see e.g. [Knu73]). This data
structure can be used in a slightly modified form to store different versions of sets in an efficient way, by
sharing common subtrees. In large trees successive different versions of a set, that differ in only a few
elements, will have large subtrees in common, and these can be shared between the different versions,
see figure 5.

The procedure for inserting/deleting elements is almost the same as that for a standard AVL tree, but
instead of modifying existing nodes in the tree, a new copy of the node is made that contains the new
value. When a node is copied, all of its ancestors must be copied as well. Each copied ancestor will point
to the copies of its children, and if a child is not modified, the copied parent will use the original child
node, which will then be shared between the old and the new version of the tree. If, for example, two
successive sets differ only in one element, they will only differ in the nodes that form the path from the
root to that element. All other nodes can be shared between the two versions.

Every individual tree is a normal balanced AVL-tree, so average access-times are logarithmic in the size
of the tree. Also the worst case access-times are logarithmic, since the maximum depth of an AVL-tree

of size N is 1.44041og,(N +2) — 0.328 [Knu73].
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For single deletions/insertions the storage requirement to store the new version is logarithmic in the
total size of the set, since all elements of the path to the root must be copied. However when multiple
additions/deletions are made the overhead per individual modification is less than log n.

Analysis of AVL-trees for versioned sets

An important question about the implementation of versioned sets with AVL-trees is the amount of storage
that will be consumed by this data structure. This section attempts to give some approximate answers.

The storage requirements are determined by the overlap between successive versions. If they can share
many common subtrees, they will require less storage. So the question is: how many nodes will on the
average be shared between a tree and its successors?

The key observation for this analysis is that a node will only be shared with the next tree if the subtree
that is rooted at this node, is left completely unchanged. Thus, the expected number of nodes that can be
shared with the successor of tree T is:

o(T) = Lier p(s)

where p(s) is the probability that subtree s will not be modified.

We now split the newly created nodes into two different groups: primary and secondary nodes; primary
nodes are those that would also be changed in a normal AVL tree, while secondary nodes are those nodes
which are not primary, but are created because one of their subtrees was modified. We assume that the
possibility that a node does not undergo a primary change is the same for all nodes and equal to ¢, and
that the probabilities for the different nodes are independent from one another. Under these assumptions
the expected number of shared nodes becomes

o(T) = T,er M

where |s| denotes the number of nodes in the tree s.

The value of o(T) depends on the shape of T. Therefore, we will analyze the two extreme shapes that
an AVL tree can have: a fully balanced tree (best case) and the Fibonacci tree (worst case). These are
the most balanced and most unbalanced shapes that an AVL-tree can have [Knu73].

Balanced trees

A fully balanced tree can be defined as a tree in which every node has either no children or two children
that have the same height. In a fully balanced tree of height A there are 2" subtrees of height n, each
of which contains 2**! — 1 nodes. Thus in this case:

o(T) = Thoo2ne™*'!

Fibonacci trees

Fibonacci trees are the most unbalanced AVL trees. The Fibonacci trees Fg, F, ... can be defined in the
following way:

Fo is the empty tree, F; is the tree consisting of one node, and F, is the tree that has F,_; and F,_;
as children.

It can easily be proved by induction that |F,| = Fib{(n + 1) — 1 where Fib is the Fibonacci function,
Thus we have

s(n) d&ef o(F)=s(n—-1)+s(n—-2)+ cFib(n1)-t



355

Before rebalancing

Figure 6: Rebalancing an AVL tree

In these 2 cases (and their mirror images) additional rebalancing can be performed without destroying
the AVL property. The balance factors are indicated at the individual nodes.

This recurrence relation can be transformed to:
s(n) = X Fib(n — i) - cFe(n+1)-1

This could be further transformed using the identity
Fib(n) = (" - 3")

where & = (1 +v/5) and & = (1 - V/5):

R L (en+1_3"H!
s(n) = Tlo p(@" = 3" 7). Cw( )

Rebalancing

The algorithm can be further enhanced by performing some extra rebalancing to get a better weight
balance. This will make the creation of new sets somewhat slower, but can speed up access to the new
set, without incurring additional storage overheads. The enhancement is based on the fact that at certain
places in an AVL tree it is possible to rebalance subtrees without loosing the AVL property. These cases
are shown in figure 6 (the mirror images are not shown). In these cases rebalancing obviously does not
disturb the AVL-property: the balance factor? for the individual nodes still remains within [-1,1]. However,
the weight-balance for these nodes could be improved by this rebalancing operation. If we denote by #X
the total number of nodes in subtree X, and by N the total number of nodes in the tree, then rebalancing
will change the average path length by MI‘VM. Thus, additional rebalancing is advantageous if #E > #A.

Rebalancing can be done without causing any storage overhead if the operation is only performed on
copied nodes. Thus in our example rebalancing would only be performed if nodes B and D were copied

anyway.
2The balance factor of a node is equal to the difference in height between its left and right subtree.
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A comparison of delta lists and AVL trees

There are two candidates for the implementation of versioned sets: delta lists and balanced trees. These
data structures have different properties. The behavior of the delta list depends heavily on the value for
the parameter f, the proportion of all versions that are stored in full as base version.

If storage space is at a premium, the delta list with a low value of f is better than a tree, due to the
compact storage that is possible for delta-lists. But the access time will increase linearly with (1 — f) so
low values of f will give a bad access performance.

If, on the other hand, access time is more important than storage space, AVL trees will tend to be better,
since their access time is always logarithmic in the size of the set. It seems likely that the delta list
implementation with the same access speed as an AVL tree will consume more storage due to the large
proportion of base versions.

Whether or not AVL trees are really superior in this case depends on implementation parameters and
usage patterns.

7 Conclusions

Version management is an important ingredient of any software development process. It provides the
basis for keeping track of changes to a system, and for managing and coordinating parallel development.
Proper support for versioning is therefore a primary asset of any development environment.

In this paper we discuss an approach where version management is incorporated as a basic mechanism
into an object system. Versioning is applied to complete, self-contained object worlds. This approach
provides an intuitive and attractive way to improve consistency of version combinations, and avoids
some of the problems that exist in other approaches, most notably that of version control of arbitrary
references among objects.

Versioning does not come for free, and one of the main reasons that many systems do not provide version
management is because it is too expensive. Of course, decreasing hardware costs, increased cpu power,
cheaper storage media, such as WORM disks, make version control more attractive. Nevertheless, to
make large scale application of versioning — and especially integral version management — viable, it
is necessary to have suitable implementation techniques.

This paper presents several data structures and algorithms to implement integral version management
which will be applied in the development of CAMERA. Although the techniques are applied to versioning
of a self-contained object management system, we feel that it is possible to use them also in other
situations, e.g. for the versioning of complex objects.

We expect that the data structures in this paper will give acceptable performance for frequent versioning
during development. The results of our initial prototype implementations in this area are encouraging
(some of this work is described in [Lip90]). More experience will be gained from the current prototype
development of the complete CAMERA system.

This further research will also allow us to tune the algorithms to usage patterns. For example, the size
of the index for a non linear history, that was described in section 6 depends on the chosen mapping
function. Which mapping table performs best is determined by the actual usage pattems, e.g. the similarity
between successive snapshots, the rate at which development lines branch and merge etc.
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A Proof of NP-completeness

Lemma: Finding an optimal mapping function for a sparse index, as described in section 6.1 is NP-
complete.

Proof:

First observe that the corresponding decision problem is in NP, since if we are given an ordering and
its path length, it can be checked in polynomial time whether this ordering has indeed this path length.
Since the decision problem is in NP, the problem of finding an optimal ordering is in NP, too.

Now we will reduce a standard NP-complete problem, a version of the Hamiltonian path problem, to our
ordering problem. The Hamiltonian path problem can be stated as follows: Given a graph consisting of
aset of nodes: N = {v;---v,} and a set of edges: E = {¢; - - - €.} without double edges between nodes,
find a path that passes exactly once through all nodes.

Now we are going to construct an instance of the optimal ordering problem for an instance of the
Hamiltonian path problem. We construct a set of snapshots X = {X; - - - X, }, where

i1

»l
I

Tie
Every snapshot corresponds with a node in the Hamiltonian path problem. We represent a snapshot by
a column vector that contains the values of the objects, thus z;; contains the value of object 5 at time
stamp 2. For this proof we only need objects that can have integer values.

The contents of each X; is as follows:

z;; = 0 ife; is connected to v;
= 1 otherwise

This transformation can be performed in polynomial time.

Remember that the distance between two snapshots is equal to the number of objects that have different
values in both snapshots. Observe that the distance between two points that represent two connected
nodes is ¢ — 1 while the distance for unconnected nodes is e. Now there exists a Hamiltonian path iff
there exists an ordering of the X such that the total path-length is equal to (n — 1)(e — 1). O



