Object-Oriented Multi-Methods in Cecil
Craig Chambers

Department of Computer Science and Engineering, FR-35
University of Washington, Seattle, WA 98195
chambers@cs.washington.edu

Abstract

Multiple dispatching provides increased expressive power over single dispatching by
guiding method lookup using the values of all arguments instead of only the receiver.
However, existing languages with multiple dispatching do not encourage the data-
abstraction-oriented programming style that is encouraged by traditional single-dispatching
languages; instead existing multiple-dispatching languages tend to foster a function-
oriented programming style organized around generic functions. We propose an alternative
view of multiple dispatching that is intended to promote a data-abstraction-oriented
programming style. Instead of viewing a multi-method as “outside” of all objects, we view
a multi-method as “inside” the objects for which the multi-method applies (on which it
dispatches). Because objects are closely connected to the multi-methods implementing their
operations, the internals of an object can be encapsulated by being accessible only to the
closely-connected multi-methods. We are exploring this object-oriented view of multi-
methods in the context of a new programming language named Cecil.

1 Motivation

1.1 Single Dispatching

In most object-oriented languages, a message is sent to a distinguished receiver object, and
the run-time “type” of the receiver determines the method that is invoked by the message.
Other arguments of the message are passed on to the invoked method but do not participate
in method lookup. This style of object-oriented language is termed a single-dispatching
language, since method lookup (a.k.a. dispatching) is performed only with respect to the
single receiver argument.

Single dispatching works well for many kinds of messages, especially those in which the
first argument is more “interesting” that the others, in the sense that the first argument alone
determines what code should be run to carry out the operation. However, for some kinds of
messages, several arguments may be “interesting,” with no clear reason to prefer one
argument over another. For example, for most standard binary arithmetic messages such as
+, both arguments are equally interesting, and dispatching on only one is unnatural.

If this problem were confined to pre-defined abstractions like numbers and arithmetic, then
perhaps it could be overlooked as an irksome complication of arithmetic, solved once and
for all by the system implementors and ignored from then on. However, the asymmetry of
single dispatching complicates other kinds of messages. For example:

» Most data types define an equality testing binary operation, and many kinds of objects
define ordering relations. The same issues arise as with the standard arithmetic
messages.

» The pairDo(cl, c2, block) message takes two collections and a closure block
and iterates through the two collections in parallel. Neither collection is more important
than the other, yet in single-dispatching languages the programmer must favor one
collection over the other when selecting the initial implementation of pairDo.

34

« The displayOn (shape, device) message displays a shape on an output device.
The particular implementation for displayOn depends on both the kind of shape and
the kind of output device: rectangles are displayed differently from splines, and a fancy
graphics accelerator uses a different rendering strategy for filled polygons than does an
X window. Neither the shape nor the output device is more important, and so neither
should be treated differently than the other.

Similar examples arise in other programming tasks. The problems of single dispatching thus
extend beyond the realm of system implementors to that of the everyday programmer.

1.2 Double Dispatching

In a single-dispatching language, the best solution to the asymmetry problem is double
dispatching [Ingalls 86]. With double dispatching, the programmer can apply single
dispatching to each interesting argument in turn, hand-simulating the effect of dispatching
on all interesting arguments. For example, if the programmer wanted to write an equality
operation for a pair of two-dimensional points, the programmer could write the following:

--in Point:

self = aPoint {
return self.x = aPoint.x && self.y = aPoint.y; }

However, if the programmer wanted to be able to compare points against arbitrary objects,
this code would be insufficient: the code additionally needs to dispatch on the argument to
make sure it’s also a two-dimensional point. Using double dispatching, the programmer
could rewrite this method as follows:

--in Point:
self = aPoint { return aPoint.equalsPoint (self); }

self.equalsPoint (originalself) {
return originalSelf.x = self.x && originalSelf.y = self.y; }

- in Object:
self.equalsPoint {(originalsSelf) { return false; }

In general, with double dispatching, for each original method, the programmer must add at
least two methods for each additional dispatched argument: one that starts the double
dispatching by resending the message to the argument with the type of the receiver encoded
in the new name, and one that does the default action for arguments of other types.
Maintaining this double dispatching code can be difficult and error-prone.

1.3 Multiple Dispatching

To surmount the limitations of the asymmetric messages of single-dispatching languages,
some object-oriented languages include a more powerful form of message passing in which
multiple arguments to a message can participate in method lookup. These languages are
called multiple-dispatching languages; methods in a multiple-dispatching language are
called multi-methods. Perhaps the best-known multiple-dispatching ianguage is CLOS
[Bobrow et al. 88]; CommonLoops [Bobrow et al. 86], one of CLOS’s predecessors,
pioneered support for multi-methods.

In a multiple-dispatching language, the programmer can handle several “interesting”
arguments by writing multi-methods that dispatch on each interesting argument. For
example, one + multi-method would be specialized for the case where both arguments are
fixed-precision integers, another + multi-method for the case where both arguments are
floating-point numbers, and two more multi-methods for the mixed-representation addition
cases. Similarly, multiple dispatching would simplify the programming of the other

35

troublesome cases described earlier: object equality, pairwise iteration, and displaying
shapes on output devices. For example, point equality could be written as follows:;

-- the defawlt implementation of equality returns false (don’t dispatch on either argument):
x =y { return false; }

-- implementation of equality for a pair of poinis
-- (v@ob j means dispaich on argument v, and match only for actuals that are equal to or inherit from ob j):
pl@Point = p2@Point {

return pl.x = p2.x && pl.y = p2.y; }

Supporting multiple dispatching at the language level avoids the need for double
dispatching. Since only methods with useful code bodies need to be written, programmers
can spend more time writing productive code.

Each multi-method can be written with the knowledge of the implementations of all
dispatched arguments, thus streamlining method bodies and improving both coding speed
and readability. Programmers can see more easily those argument combinations that have
methods defined for them; under double dispatching, programmers would need to trace
through lots of extraneous code to determine which argument type combinations had
implementations defined for them. Finally, requiring programmers to implement their own
argument dispatching manually opens the door for programming errors that may be hard to
locate. Multi-methods specify method lookup declaratively, while double dispatching
specifies method lookup procedurally. In this particular case, where dispatching is highly
stylized and idiomatic, declarative specification is superior to procedural specification.

1.4 Butis it Object-Oriented?

Since multiple dispatching appears to be more expressive, more natural, more readable, and
less error-prone than single dispatching, why do so few object-oriented languages support
multi-methods? In fact, the apparent advantages of multiple-dispatching languages are far
from universally acknowledged. Some reasons are that multiple-dispatching languages have
been more complex that competing single-dispatching languages, and their
implementations have not been as efficient. However, even ignoring these disadvantages,
many practicing programmers used to single-dispatching object-oriented languages
complain that multi-methods “just don’t feel object-oriented.” This common feeling reflects
a basic difference in the programming styles encouraged by single- and multiple-
dispatching languages.

When using a single-dispatching language, the programmer associates methods with the
data types (or classes, or objects) for which they are implemented. The programmer’s
mental model is one of defining abstract data types, with their associated state (i.c., instance
variables) and operations (i.e., singly-dispatched methods). These abstract data types are
organized into inheritance hierarchies based on implementation and/or interface similarity.
A whole design and implementation methodology has been developed around this data-
abstraction-oriented programming style fostered by single-dispatching languages.

In contrast, existing multiple-dispatching languages do not provide much linguistic or
programming environment support for a data-abstraction-oriented programming style.
Instead of defining methods as part of abstract data types, multi-methods are defined
externally to objects. In multiple-dispatching languages such as CLOS, multi-methods with
the same name are grouped into generic functions. Generic functions have a decentralized,
case-analysis-style implementation similar to pattern matching as found in functional
programming languages, but this implementation is hidden from clients: a generic function

36

can be invoked by clients as if it were a simple function.” To a large extent, this approach to
multi-methods integrates the function-oriented and object-oriented programming styles;
merging Lisp and object-oriented programming was an explicit goal for CLOS
[Gabriel et al. 91].

However, the extant generic-function-based approach to multiple-dispatching object-
oriented languages tends to encourage a function-oriented programming style at the expense
of a data-abstraction-oriented programming style. Since multi-methods cannot be viewed as
completely contained within any single data type, the generic-function-based approach
treats multi-methods as outside of all objects. However, the data-abstraction-oriented
programming view seems to depend on methods being contained within some data type (or
class, or object). Consequently, encouraging a data-abstraction-oriented programming style
in the presence of multi-methods appears problematic. For example, in the future research
section of his introductory paper on Flavors, Moon mentions that Flavors could be extended
to support “multiadic operations,” but expresses the concern that first “a coherent and useful
framework for organizing programs needs to be developed” [Moon 86]. Before multi-
methods will feel object-oriented to programmers used to single-dispatching languages, the
programming methodology must support data-abstraction-oriented programming.

Furthermore, the view that multi-methods exist external to all objects impedes
encapsulating the internal implementation decisions of data types (or classes, or objects).
Single-dispatching languages commonly support object-level encapsulation, and the data-
abstraction-oriented programming methodology relies on this facility. Encapsulation
appears to hinge on the fact that private methods and instance variables are contained
wholly within a data type, and only other methods also completely contained within the data
type can access the private information; only the interfaces of public operations are exported
beyond the boundaries of the encapsulated data type implementation. In the generic-
function-based view, multi-methods are considered outside of all objects, thus precluding
object-level encapsulation.

1.5 Towards Object-Oriented Multi-Methods

We believe that for multiple-dispatching object-oriented languages to become more widely
accepted and their benefits to become available to a larger number of programmers, they
must support a data-abstraction-oriented programming methodology. This paper describes
an alternative to the generic-function-based view of multi-methods that we believe is more
compatible with a data-abstraction-oriented design and programming style. The central idea
is that a multi-method is viewed as part of each data type (or class, or object) for which the
multi-method dispatches, rather than outside of all data types. Since multi-methods are
closely connected to the objects on which they dispatch, objects can be encapsulated: only
the closely-connected multi-methods are granted privileged access to an object’s private
internals.

* Generic functions are not mere implementation devices; rather, they are visible to the CLOS
programmer. In particular, all multi-methods with the same name must have congruent lambda lists,
meaning that they must have the same number of required arguments, the same number of optional
arguments, and similar &key and &rest argument declarations. This prevents individual multi-
methods from being developed independently.

¥ Packages in CLOS can help organize the program’s name space by hiding names within modules,
but this provides a different kind of encapsulation unrelated to data types. Of course, CLOS’s Lisp
tradition has not emphasized encapsulation.

37

We are exploring these ideas in the context of a new purely object-oriented programming
language named Cecil. Much of Cecil’s design arose by identifying facilities that in single-
dispatching languages are specific to the receiver argument and then extending these
facilities so that any argument can receive special treatment. Several of Cecil’s features are
direct consequences of this design approach:

* In single-dispatching object-oriented languages, a message is sent to the distinguished
receiver argument, which in turn determines the appropriate method for this message;
other arguments do not participate in method selection. In Cecil, the special properties
of the receiver are conferred on all arguments: a message is sent to all its arguments,
and together these arguments select which method is appropriate to implement the
message.

* Inasingle-dispatching language, methods are contained within a single monolithic data
type (or class, or object) implementation. This can be modeled by making the receiver
formal argument explicit and then specially constraining the receiver argument by the
appropriate data type). The constraint link between the receiver formal argument and
the data type represents the “contained within” or “part of” relationship between
methods and data type implementations in single-dispatching languages. Once viewed
in this way, however, the relationship between the receiver and the containing data type
can be generalized for multiple-dispatching languages by allowing any argument to be
constrained by a data type implementation. These argument constraints correspond to
the parameter specializers of CLOS. Thus a multi-method can be viewed as “part of”
several data types, specifically those for which it dispatches.

* In programming environments for single-dispatching languages, such as the
Smalltalk-80° environment [Goldberg & Robson 83, Goldberg 84], browsers allow the
programmer to view all the methods associated with a particular class. For Cecil, the
programming environment should continue to allow the multi-methods associated with
an object to be browsed from that object, but any particular multi-method may be
browsed from any of its linked objects. The programming environment thus plays a
crucial role in reinforcing a data-abstraction-oriented programming style.

* In most single-dispatching languages, methods are granted privileged access to the
private features of their enclosing data type implementation, i.e., to the internals of the
object of which the method is a part. This same encapsulation model is used in Cecil,
with the extension that a multi-method is granted privileged access to all objects of
which the multi-method is a part, i.e., to the objects that are the method’s argument
constraints.

1.6 Outline of this Paper

This rest of this paper describes in more detail Cecil’s support for object-oriented multi-
methods. The next section outlines Cecil’s object and message passing model, focusing on
the ways in which Cecil supports multi-methods while fostering data-abstraction-oriented
programming. Section 3 describes Cecil’s object-based encapsulation model. Section 4
reports on the current status of the Cecil language project. Section 5 discusses related
research. Section 6 concludes and identifies some questions this work leaves unanswered.

* Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

38

2 The Cecil Object Model

A Cecil program consists of a collection of object and multi-method definitions, plus an
expression that is evaluated when the program is invoked. Objects define implementations
of data abstractions. These data abstractions provide a set of operations (some externally
visible, others hidden), linguistically specified as methods defined on the object
implementing the data abstraction.

2.1 Objects and Inheritance

Cecil has a classless (prototype-based) object model: self-sufficient objects implement data
abstractions, and objects inherit directly from other objects to share code. Several other
prototype-based models have been proposed [Borning 86, Lieberman 86, Lal.onde et al. 86,
Ungar & Smith 87, Lieberman et al. 87]. Cecil uses a classless model primarily because of
its elegance and simplicity. Our approach to object-oriented multi-methods, however, does
not hinge on this decision; our approach also could be adopted in a class-based multiple-
dispatching language.

For example, the following declarations define a simple hierarchy for integers:

int = object inherits number -- behavior for integers
-- integer operations here

smallInt = object inherits int --fixed-precision integers
-- fixed-precision operations here

bigInt = object inherits int --arbitrary-precision integers
-- arbitrary-precision operations here

zero = object inherits int -- special zero object behavior
-- 2ero operations here

In Cecil, inheritance of code as in this example is distinct from subtyping (inheritance of
interface or of specification). A special type annotation on an object definition declares
that the object also specifies a type (a set of method signatures), and subtypes
declarations separate from the inherits declarations describe an object’s relationship to
types in the subtyping lattice. This distinction enables an object to be a subtype of another
without being forced to inherit any code, and enables an object to inherit code without being
restricted to be a legal subtype of the parent object. Other researchers also have argued the
benefits of distinguishing between inheritance of implementation and inheritance of
interface or specification [Snyder 86, Halbert & O’Brien 86, Cook et al. 90].

Additonally, object declarations can be annotated with the role of the object in executing
programs, in support of static type checking. For example, the int object above could be
annotated as abst ract implying that it will only be used as a packet of behavior and/or
specification and not as a run-time manipulable object, the smallInt and bigInt
objects could be annotated as template objects implying that they will only be used as
patterns for new objects created from them at run-time, and the zero object could be
annotated as unique implying that it is a one-of-a-kind object not to be inherited or
instantiated from but otherwise fully manipulable. The type checker will verify that
programs observe these annotations and consequently guarantee that certain potential run-
time errors cannot occur.

Further details of Cecil’s static type system are beyond the scope of this paper.

39

2.2 Methods

In Cecil, multi-methods specify the kinds of arguments for which their code is designed to
work. For each formal argument of 2 method, the programmer may specify that the method
should apply only to actual arguments that are implemented or represented in a particular
way, i.e., that are equal to or inherit from a particular object, called an argument constraint.
Formal arguments with such restrictions are called constrained arguments. An
unconstrained formal argument can accept any actual argument. Any number of arguments
may be constrained, supporting three idioms:
« If zero arguments are constrained, the multi-method acts like a normal procedure. This
sort of method can be useful as a default case, overridden by other more specific multi-
methods with constrained arguments.

+ If only the first argument is constrained, the multi-method acts like a normal singly-
dispatched method. The semantics of such a one-constraint multi-method is intended to
exactly mimic the semantics of a method in a single-dispatching object-oriented
language.

« If several arguments are constrained, the method is a true multi-method.

Callers are unaware of implementation decisions made in terms of which arguments, if any,
are constrained and how many different multi-methods are cooperating to implement the
behavior.

To illustrate, the following method implements addition for objects represented as
smallInt objects:
x@smallInt + y@smallInt
-- primAdd performs primitive arithmetic of (children of) primInt
-- primAdd takes a failure block which is invoked if an error (e.g., overflow) occurs
T primAdd(x, y, { &errorCode | --code to handle failure (e.g., reiry as biglnts) -- }) }

Details of the syntax are as follows:

» The x@smalllInt notation constrains the x formal argument by the smallInt
object; formals without @... suffixes are unconstrained. There is no implicit self
formal; all formals are listed explicitly.

« The body of a method is a sequence of expressions. These expressions can be constants,
variable references, assignments to local variables, or messages. Usually, Algol-like
syntax is used to specify a message send; again, all actual arguments are listed
explicitly. Syntactic sugar exists for two common cases: p.x is syntactic sugar for
x(p),and p.x :=yis sugar for set x(p, y).

+ A sequence of expressions enclosed within braces and nested inside of a method
describes a lexically-nested closure object. If the closure takes arguments, they are
listed just inside the closure and prefixed with a & symbol (intended to be reminiscent
of the A symbol) and separated from the closure’s body by a | symbol. All control
structures in Cecil are implemented at user level using messages and closures.” The
body of a closure is invoked by sending the closure object the eval message.

» The last expression in the body of a method or closure may be prefixed with a T symbol
to indicate that the result of the last expression is returned as the result of the method
or closure; a method or closure without a T does not return a result. Nested closures may

* The one exception is the predefined 1 cop method inherited by all closures that repeatedly invokes
its argument closure over and over, until some closure performs a non-local return out of the loop.
We use the 1oop method instead of user-defined recursion and required tail-recursion elimination
as in Scheme [Rees & Clinger 86] because the latter precludes complete source-level debugging
[Chambers 92, Hélzle et al. 92).

40

force a non-local return (a return to the caller of the outermost lexically-enclosing
method rather than to the caller of the closure, much like a ret urn statement in C) by
using the TT symbol instead of the T symbol.

The following declarations exiend the ongoing integer hierarchy example with additional
methods:

int = object inherits number -- behavior for integers

isZero(x@int) { T false } --the default case for integers; overridden below for zero

factorial (x@int) {

~- 1 f invokes a user-defined method, with different definitions for the t rue and the false objects
1f{x <=1,

{1, -- return from the factorial method, not from the closure
{ T x * factorial(x - 1) }))

for(from@int, to@int, block) {

i ::= from --declare and initialize a new local variable
while({ i <= to }, {

eval (block, 1) --invoke the block (closure) with an argument
1 =1 +11})
-- do not return a result (no 1)

}

smallint = object inherits int, primInt --fixed-precision integers

x@smallInt + y@smallInt {

-- primAdd performs primitive arithmetic of (children of) primInt

- primAdd takes a failure block which is invoked if an error (e.g., overflow) occurs

T primadd(x, Y, { &errorCode | --code to handle failure (e.g., retry as bigints) -- }) }
x@smallInt + y@bigInt { T asBigInt(x) + y } --support mixed-representation arithmetic

asBlgInt {x@smallInt) {
-- code to create an arbitrary-precision integer from a fixed-precision integer --

bigInt = object inherits int --arbitrary-precision integers
x@bigInt + y@bigInt { --code toadd arbitrary-precision integers --)
x@bigInt + y@smallint { T x + asBigInt (y) |} -- support mixed-representation arithmetic

zero = object inherits int -- special zero object behavior
z@zero + x { T x } -- zero plus anything is that thing
x + z@zero { T x)

zl@zero + z2@zero { T z1 } -- resolve the ambiguity between the previous two methods
iszZero(z@zero) { T true } -- override the default method above

Cecil also allows methods to be defined whose body is only the keyword abst ract. Such
abstract methods serve as placeholders for real implementations that will be defined later in
children and as specifications of expected interfaces. An abstract method cannot itself be
invoked but instead should be overridden with a non-abstract method for all concrete
children. Section 3.3 will describe how abstract methods help control object encapsulation,

Cecil’s classless object model combines with its definition of argument constraints to
support something similar to CLOS’s eql specializers without additional mechanism. In
CLOS, an argument to a multi-method in a generic function may be constrained to apply
only to a particular object by annotating the argument constraint with the eql keyword.
Cecil can achieve a similar effect, since methods already are constrained by objects. In
Cecil, a method constrained by an object will also apply to an.object’s children, if any.

41

Argument constraints guide method lookup.’t Informally, when a message is sent to the
argument objects, the system finds all methods with the same name and number of
arguments as the message. The system then weeds out those methods whose argument
constraints are too restrictive to apply to the actuals passed in the call. (If after this step no
methods are applicable, a “message not understood” error is reported.) Of the remaining
applicable methods, the system locates the most specific one (the one whose argument
constraints are most specific), and invokes that method to implement the message. (If no
single method is most specific, a “message ambiguous” error is reported.) Section 2.6
describes method lookup more precisely.

2.3 Programming Environment Support

Methods and objects are connected through the argument constraints of methods.
Programmers are intended to view objects and their connected methods as a unit which
implements a data type; the methods defined for a particular object should always be
directly accessible from the object. This is the essence of data-abstraction-oriented
programming.

The mental model of the program as a collection of objects exerting “spheres of influence”
over connected methods depends heavily on non-hierarchical relationships among objects
and methods. Traditional programming environments are text-based, and text is particularly
bad at showing non-hierarchical relationships. Consequently, achieving our goal of data-
abstraction-oriented programming in the presence of multi-methods depends on support
from a graphical interactive programming environment that can display non-hierarchical
relationships and dynamically-varying views of the relationships. We imagine this
environment to show objects on the screen with their associated multi-methods. The user
could view the same multi-method from each of its constraining objects; the identity of the
multi-method would be illustrated graphically by showing the various “views” of the multi-
method as linked to the same object. This interface might look something like the following:

IsZero(iny
factorial(ing E
for(int, int, 7

~eeriie~ Inherits
-4+—p constrained by

x@smallint « y@smallint

smallint TprimAdd(x, v, (...}) bial
smaliint + smallint ; gint 2er0
smallint + bigint x@smallint + y @bigint smallint + bigint zero+ ?
bigint + smallint TasBiglnt (x) + y bigint + smaliint § 7+ zoro
int E 2ero0 + zero
asBigint(smalliny X@bigint + y@smallint
Tx + asBigInt(y)

x@TbigIm + y@bigint

I us?lglnt(x @smallint

* Multi-methods dispatch on particular object implementations (i.e., those objects that inherit from the
argument constraints) rather than on particular types. Undispatched arguments may be annotated
with type declarations, but these type declarations have no impact on message lookup.

42

Programmers would design, code, and debug Cecil programs entirely within such an
environment; programmers would never need to look at a flat textual form of a Cecil
program. The prototype SELF user interface [Chang & Ungar 90] could provide a good
starting point for the design of the Cecil uscr inlerface, since it is graphical, interactve, and
good at displaying non-hierarchical relationships among objects and at refigcting the
identity of shared objects.

Of course, an object-based view of the program is not the only view that may be of interest
to the programmer. The programming environment also should be able to present alternative
views of the program where all the methods that together implement some algorithm are
displayed simultaneously on the screen. This algorithm-based view is subtly different than
a generic-function-based view, since the algorithm-based view could contain related
methods with different names and could exclude unrelated methods that happen to have the
same name,

2.4 Mutable State

In existing multiple-dispatching languages such as CLOS, instance variables (slozs in CLOS
terminology) are defined with the objects, while methods are defined externally in generic
functions. The instance variables are accessed directly using special linguistic constructs,
while multi-methods are invoked through generic functions. Such distinctions between
methods and instance variables reduce expressiveness. If different rules apply to variables
and methods, programmers of abstractions cannot easily change their minds about what is
stored and what is computed. In particular, the restriction in most object-oriented languages
that instance variables cannot be overridden limits the reusability of code to only those
abstractions which wish to use the same representation. Other object oriented languages
such as SELF [Ungar & Smith 87, Holzle et al. 91a] and Trellis [Schaffert et al. 85,
Schaffert et al. 86] have demonstrated the advantages of accessing instance variables solely
through special get and ser accessor methods.

In the traditional generic-function-oriented view of multi-methods, however, accessing
instance variables solely through multi-methods appears problematic. Since these methods
are defined “outside” of any particular object, how can each object have its own local state?
How can the accessor multi-methods be connected to the object “containing” the instance
variable? Cecil’s alternative data-abstraction-oriented view of multi-methods provides a
way of resolving this dilemma. Instance variable accessor methods are constrained by the
object “containing” the instance variable, thus establishing the link between the accessor
methods and the object, and the accessor methods accordingly will be considered part of the
object’s implementation. Section 3 describes how in Cecil these accessor methods can be
encapsulated within the data abstraction implementation and protected from external
manipulation.

In Cecil, a method declaration whose body is the keyword £ield defines a pair of accessor
methods which share hidden mutable state. The get accessor method (whose name is the
same as the declared field) takes a single argument, constrained by the object “containing”
the field, and returns the contents of the field. The set accessor method (whose name is
set_ followed by the declared field name) takes two arguments: one constrained by the
object containing the instance variable and the second unconstrained. When invoked, the set

43

accessor mulates the contents of the field o refer 10 its second argument; set accessors do
not return results, To illustrate, the declaration:

var (o@obj) { field }
defines two methods;

var (o@ob3j) { T <field_contents> }

set_var(o@obj, v) { <field contents> := v }

The argument constraint of the get and set accessors establishes the connection between the
accessor methods and the object “containing” the memory location. Accessor methods are
invoked just like other methods and can be overridden by other methods and vice versa,
thereby streamlining the language’s semantics and increasing flexibility.

In class-based object-oriented languages, instance variables declared in a superclass are
automatically “copied down” into subclasses; the declaration is inherited, not the variable’s
contents. Class variables, on the other hand, are shared among the class, its instances, and
its subclasses. In some prototype-based languages, such as SELF and Licberman’s
delegation language, instance variables of one object are not copied down into inheriting
objects; rather, these variables are shared, much like class variables in a class-based
language. To get the effect of object-specific state, in SELF most data types are actually
defined with two objects: one object, the prototype, includes all the instance-specific
variables that objects of the data type need, while the other object, the traits object, is
inherited by the prototype and holds the methods and shared state of the data type
[Ungar et al. 91]. New SELF objects are created by cloning (shallow-copying) the
prototype, thus giving new objects their own instance variables while sharing the parent
traits object and its methods and state. Defining a data type in two pieces can be awkward,
especially since it separates the declarations of instance variables from the definitions of the
methods that access them. Furthermore, inheriting the instance variable part of the
implementation of one data type into another is more difficult in SELF than in class-based
languages, relying on complex inheritance rules and dynamic inheritance
[Chambers et al. 91].

In Cecil, these problems with other prototype-based languages are addressed by allowing a
field to be declared as local (the default) or shared (by prefixing the field keyword with
the shared annotation). A shared field is shared by all inheriting objects, and so acts like
aclass variable or like a data slot in SELF. A single memory location is allocated for a shared
field, and its get and set accessors manipulate this same memory location for all inheriting
objects. A local field, on the other hand, maintains a different memory location for each
inheriting object, and so acts like an instance variable. When an accessor method of a local
field is invoked, the identity of the accessor method’s first argument determines which
memory location to fetch or update. Each object effectively receives its own copies of the
memory locations for all its inherited local fields. Thus Cecil programmers can define a data
type as a single object and still support both shared and object-specific variables.

Cecil allows a field to be given an initial value in the form of an expression that will be
evaluated the first time the field is accessed; this supports functionality similar to the once
functions of Eiffel [Meyer 88, Meyer 92] and other languages. Cecil also allows a shared
field to be annotated as read_only (implying that no set accessor method should be
generated, thus supporting constant fields) and allows a local field to be annotated as
init_only (implying that no set accessor method should be generated but still allowing
an initial value to be specified whenever an object inheriting the field is created).

44

The following declarations illustrate fields and multi-methods by defining a hierarchy for
immutable lists:

list = object inherits orderedCollection

isEmpty (1@list) { T size(l) = 0 }

size(16@1list) { abstract } -- sizemust be implemented in all concrete children

do(l@list, block) { abstract } --iteration; implemented below

pairDo(11@list, 12@list, block) { abstract |} --pair-wise iteration; implemented below

maxSize (1@list) { shared field := 0 |} --records maximum length of any list

nil = object inherits list --emptylist

size(nenil) { T 0}

do(n@nil, block) { } --iterating over all elements of the empty list: do nothing
pairDo{(n@nil, 1@list, block) { } --donothing

pairDo(l@list, n@nil, block) { } --donothing

pairDo(nl@nil, n2@nil, block) { } --donothing

cons = object inherits list -- non-empty lists

head (c@cons) { init_only field }

tail (c@cons) { init_only field }

size(c@cons) { T 1+ size(c.tail) } --c.tailissyntactic sugar for tail (c)
do{c@cons, block) {

eval (block, c.head) --call block on head of list
do{c.tail, block) } --recurdown tail of list

pairDo(cl@cons, c2@cons, block) (
eval (block, cl.head, c2.head)
pairDo(cl.tail, c2.tail, block) }
All lists will share the one maxSize field, but each cons cell will have its own head and
tail fields. These latter two fields can only be set when a cons cell is created; no
set_head or set_tail methods are generated.

2.5 Object Creation
New objects are created at run-time in Cecil using existing language features: object and
inheritance declarations. For example, the following method creates a new list object:

prepend(h, tQlist) { --dispatchon second argument (!)
-- create new child of cons with the given initial field values

c ::= object inherits cons [head := h, tail := t]
c.maxSize := max(c.maxSize, c.size) --3 instances of syntactic sugar here
c }

A new object is created by evaluating an object expression, inheriting from existing
objects to get the desired behavior. Object-specific values for local fields that are not
annotated as read-only can be specified as part of the inherits clause as a series of (field
name, field value) pairs. This same functionality is available for objects defined at program-
definition-time.

2.6 Method Lookup

All computation in Cecil is accomplished by sending messages to objects. The lion’s share
of the semantics of message passing specifies method lookup. In single inheritance
languages, method lookup is straightforward. Multiple inheritance is more expressive, but
it introduces the possibility of ambiguity during method lookup: two methods with the same
name may be inherited along different paths, thus forcing either the system or the
programmer to determine which method to run or how to run the two methods in
combination. Multiple dispatching introduces a similar potential ambiguity even in the
absence of multiple inheritance, since two methods with differing argument constraints
could both be applicable but neither be uniformly more specific than the other.

45

Consequently, the key distinguishing characteristic of method lookup in a language with
multiple inheritance or multiple dispatching is how exactly ambiguities are resolved.

Some languages resolve all ambiguities automatically. For example, Flavors linearizes the
class hierarchy, producing a total ordering on classes based on each class’ local lefi-to-right
ordering of superclasses that can be searched without ambiguity just as in the single
inheritance case. However, linearization can produce unexpected method lookup results,
especially if the program contains errors [Snyder 86]. CLOS and CommonLoops extend this
linearization approach to multi-methods, totally ordering multi-methods by prioritizing
argument position, with earlier argument positions completely dominating later argument
positions. Again, this removes the possibility of run-time ambiguities, at the cost of
automatically resolving ambiguities that may be the result of programming errors.

Cecil takes a different view on ambiguity, motivated by several assumptions. First, we
expect programmers will sometimes make mistakes during program development. The
language should provide the programmer with feedback about errors rather than silently
resolving them. Our experience with SELF leads us to believe that bugs that are hidden by
such automatic language mechanisms are some of the most difficult and time-consuming to
find. Our SELF experience also encourages us to strive for the simplest possible inheritance
rules that are adequate. Even the most straightforward extensions can have subtle
interactions that make the extensions difficult to understand and to use [Chambers et al. 91].
Finally, complex inheritance patterns can hinder future program evolution. If method
lookup can depend on program details such as parent ordering and argument ordering, the
programmer must constantly be concerned with such details. Even worse, usually it is
unclear from the program text which details are important for method lookup. Accordingly,
for Cecil we sought for as simple a system as was reasonable that supported multiple
inheritance and multiple dispatching. We hope that this emphasis on simplicity will reduce
the complexity traditionally associated with multiple dispatching.

Cecil’s method lookup rules interpret a program’s inheritance graph as a partial order on
objects: an object C is greater in the partial order than another object P if and only if C is a
descendant of P. This ordering on objects in turn induces analogous orderings on the
connected methods that determine when one method overrides another: in the partial order
on methods with a particular name and number of arguments, one method M is greater than
another method N (i.e., M overrides N) if and only if for each argument position i, the i*
argument constraint object of M is greater than or equal to the j*# argument constraint object
of N; constrained arguments are greater than unconstrained arguments. Since the system can
include at most one method with a particular name and sequence of argument constraint
objects, this ordering implies that M has at least one argument constraint object that is
strictly greater than the corresponding argument constraint object of N. In other words, one
method overrides another if it uniformly is at least as specific as the other, and is strictly
more specific for at least one argument. Methods left unordered by this rule are considered
mutually ambiguous.

Once the methods are ordered, method lookup is simple. First the set of applicable methods
is computed as those methods with the same name and number of arguments as the message
and whose formal argument constraint objects are less than or equal to the corresponding
message argument objects. Then the single greatest method is extracted from the set of
applicable methods, and this method is returned as the result of method lookup. If the set of
applicable methods is empty, the message results in a “message not understood” error, If
more than one method applies but none is strictly greater than all others, the message results
in a “message ambiguous” error.

46

The following inheritance graph illustrates the method lookup rules in the presence of
multiple inheritance but only single dispatching:

The partial ordering on objects in this graph defines ABC to be greater than both AB and AC,
and both AB and AC are greater than A. Therefore, methods defined for ABC will be greater
than (will override) methods defined in A, AB, and AC, and methods defined in either AB or
AC will be greater than (will override) methods defined in A. The AB and AC objects are
mutually unordered, and so any pair of methods defined for both AR and AC will be
unordered and ambiguous.

If the message m1 is sent to the ABC object, both the implementation of m1 whose formal
argument is constrained to the ABC object and the implementation of m1 constrained by A
will apply, but the method constrained by ABC will be greater than the one constrained by
A (since ABC is greater than A), and so ABC’s m1 will be chosen. If instead the m1 message
were sent to the AB object, then the version of m1 constrained for the A object would be
chosen,; the version of m1 constrained by ABC would be too specific and so would not apply.

If the m2 message is sent to ABC, then both the version of m2 whose formal argument is
constrained by A and the one whose formal is constrained by AC apply. But the partial
ordering places the AC object ahead of the A object, and so AC’s version of m2 is selected.

If the m3 message is sent to ABC, then both AB’s and AC’s versions of m3 apply. Neither AB
nor AC is the single greatest object, however; the two objects are mutually incomparable.
Since the system cannot select an implementation of m3 automatically without having a
good chance of being wrong, the system therefore reports an ambiguous message error. The
programmer then is responsible for resolving the ambiguity explicitly.” Sends of m3 to
either AB or AC would be unambiguous, since the other method would not apply.

* Typically these ambiguities are resolved by writing a method in the child object which redirects the
message to a particular parent. To support delegating messages to any parent or to a specific parent,
Cecil provides a variant of SELF's resend mechanism extended to the multiple dispatching case.
Other languages provide related facilities such as CLOS's call-next-method, Smalltalk-80’s
super, and C++'s : : operator.

47

The following inheritance graph illustrates Cecil’s method lookup rules in the presence of
multiple dispatching (methods dispatched on two arguments are shown twice in this
picture):

A

X

ml(@A, i@X) E
ml(i@A, j@XZ) §
m2(@A, k)
m5(@A, p@XZ)|
m2(j@AB, k)
m3(@AB,k) |
m3(@AB, k@XY)E
m5(n@AB,]

ml(i@A, ;@X) [
m4(k@ABC, I@X)

AB

AC

m6(i@AC, j) B

m4(k@ABC, 1@X)

Methods m1l in A and m3 in AB illustrate that multiple methods with the same name and
number of arguments may be associated with (constrained by) the same object, as long as
some other arguments are constrained differently. The following table reports the results of
several message sends using this inheritance graph.

message invoked method or error | explanation

ml1(ABC, XYZ) | m1(i@A, j@XZ) XZ overrides X

m2(ABC, XYZ) | m2(j@AB, k) AB overrides A

m3(ABC, XYZ) | m3(@AB, k@XY) XY overrides unconstrained

m4(AB, XY) “message not understood” | ABC too specific for AB =5 no applicable method

mS(ABC, XYZ) | “message ambiguous” AB overrides A but XZ overrides X = no single
greatest applicable method

m6(ABC, XYZ) | “message ambiguous” AC overrides unconstrained but XYZ overrides
umrzc;lgitramed = no single greatest applicable

This partial ordering view of multiple inheritance has several desirable properties. First, it
is simple. It implements the intuitive rule that children override their parents (they are
“greater” in the partial ordering), but does not otherwise order parents or count inheritance
links or invoke other sorts of complicated rules. Second, ambiguities are not masked;
programmers are warned about potential ambiguities before the program runs. Third, this
form of multiple inheritance is robust in the face of programming changes. Programmers
can change programs fairly easily, and the system will report immediately any ambiguities

48

which may arise. More complex inheritance rules tend to be more brittle, possibly hindering
changes to programs that exploit the intricacies of the inheritance rules and hiding
ambiguities that reflect programming errors. Finally, Cecil’s partial ordering view of
multiple inheritance does not transform the inheritance graph prior to determining method
lookup, as does linarization, This allows programmers to reason about method lookup
using the same inheritance graph that they use to write their programs.

3 Encapsulation

Our alternative view of multi-methods is intended to foster data-abstraction-oriented
programming. Towards this end, multi-methods are closely connected with the objects that
they dispatch on, and only weakly connected with each other, just as in a single-dispatching
language. Programmers can concentrate on designing and implementing abstractions;
multi-methods enable programmers to build cooperating implementations of abstractions.
However, true data abstraction requires some sort of encapsulation of the internal
implementation details of an abstract data type. The clients of an abstraction should be
aware only of the externally-visible interface to the abstraction (the set of operations
supported by the abstraction), and clients should be unaffected by any changes to how these
externally-visible operations are implemented.

Most languages achieve encapsulation by dividing up the operations of the data type into
public, externally-visible operations and private, internal operations. Anyone may invoke a
public operation, but only methods that are part of the object’s implementation can invoke
one of the object’s private operations.” The difference between public and private operations
hinges on the notion of “inside” and “outside” an abstract data type: only methods “inside”
the data type can access private operations. But in a language with multiple dispatching,
multi-methods cannot be seen as inside any single abstract data type implementation. How
can a multi-method get access to an internal operation without forcing that operation to be
made public? How can a multi-method itself be made private? If these questions cannot be
answered satisfactorily, then languages with multiple dispatching will not fully support
data-abstraction-oriented programming.

3.1 Privileged Multi-Methods

Fortunately, these questions can be answered in a way that still provides the benefits of
encapsulation and abstract data types. The key insight is that a multi-method is “inside” of
all the objects which are its argument constraints, and so a multi-method is granted access
to all the private operations of all of its constrained arguments. Multi-methods are not
granted privileged access to unconstrained arguments; an unconstrained argument may be
manipulated only using the externally-visible public interface of the argument. This is a
direct extension to the situation in single-dispatching languages, where a method is granted
access to all the private operations of its receiver argument.

This model of encapsulation seems reasonable from a practical programming point of view.
When writing a multi-method that is intended for arguments implemented in certain ways
(indicated by the formal arguments’ constraints), it seems natural to invoke operations

* Some object-oriented languages such as C++ and Trellis further subdivide private operations into
operations private to a single class and operations private to a class and its subclasses. Whether or
not this distinction exists is orthogonal to support for object-oriented multi-methods, and so we do
not delve into the issue further, other than to note that Cecil currently does not include the distinction,
i.e., Cecil does not provide support for encapsulating a parent from its children.

49

internal to those arguments’ implementations. For example, the earlier non-empty list
abstraction might be rewritten with a protected representation:

cons = object inherits list
private head(c@cons) { field }
private tail (clcons) { field }

size (cBcons) { T1+ size(c.tail) }

do(c@cons, block) {
eval (block, c.head)
do(c.tail, block) }

pairDo(cl@cons, c2@cons, block) {
eval (block, cl.head, c2.head)
pairDo(cl.tail, c2.tail, block) }

The head, set_head, tail, and set_tail operations would be hidden from public
view; only operations that dispatch on the cons object (or one of its children) could access
these private operations. The operations that are part of the cons implementation must be
granted access to the protected representation, however, or they could not do their job. In
particular, the pairDo operation needs privileged access to both dispatched arguments.
Allowing multi-methods privileged access to their constrained arguments doesn’t represent
a serious breach of encapsulation, since these multi-methods already have some amount of
special knowledge about their constrained arguments beyond what a normal client would
know: they know part of each constrained argument’s ancestry, conveying a certain amount
of internal implementation information.

Granting privileged access only to operations that dispatch on the object also seems
reasonable from the standpoint of an implementor of an abstract data type. Encapsulation is
intended to limit the potential dependencies on internal implementation details which might
change, so that these potential dependencies can be found and updated whenever the
implementation changes. Multi-methods with argument constraints are just as easy to locate
as are normal singly-dispatched methods, especially in Cecil where multi-methods are
closely linked to their argument constraints. In the above example, if the representation of
non-empty lists is to be changed, it would be an easy matter to identify those methods that
might need to be updated.

3.2 Private Multi-Methods

Multi-methods must also be able to be declared private, particularly in Cecil where all
methods potentially are multi-methods. With singly-dispatched methods, the meaning of
private is fairly clear, but with multi-methods, the language designer is faced with two
choices: are private multi-methods private to each of the argument constraints individually,
or private to them all as a group? The distinction between these two choices is exposed by
some caller that is “inside” the implementation of one of a private multi-method’s argument
constraints but not another. For example, the implementation of displayoOn for filled
polygons on a fancy graphics device might rely on an internal private method:
displayOn(shape@filledPolygon, device@fancyGraphicsHardware) ({

setUpDisplay(shape, device)
.. rest of code ... }

private setUpDisplay(shape@filledPolygon, device@fancyGraphicsHardware) {

... initialize graphics hardware for filled polygon displays ... }
The setUpDisplay method for filled polygons and fancy hardware is declared private,
but the displayOn method for filled polygons and fancy graphics hardware should be
granted access since it is a part of both the filled polygon implementation and the fancy

50

graphics hardware implementation. However, some other programmer might write the
following method:

draw(shape@filledPolygon) {
setUpDisplay(shape, standard_display{})
...more code ... }

If standard_display() returns fancyGraphicsHardware at run-time, should
this method be granted access to setUpDisplay, even though draw’s argument
constraints imply that it is part of only the filled polygon implementation? Under the first
design where private multi-methods are accessible from any of their connected
implementations, the draw method would be granted access. Under the second design
where private multi-methods can only be accessed from multi-methods that also are part of
the same abstract data type implementations, the draw method would be denied access,
since it is not part of the implementation of the fancy graphics hardware data type. Cecil
adopts this second design, since it provides stricter encapsulation and makes it easier to
identify code that may depend on internal implementation details.

We can now define precisely when one multi-method C sending a message m has privileged
access to a private multi-method P invoked by m. C is granted access to P at call site m if
and only if for each formal argument constraint a,, of P, the corresponding actual argument
of m is in turn one of C’s formal arguments, and this formal argument is constrained by an
object a, that is equal to, a descendant of, or an ancestor of a,. Privileged access is allowed
only where it is clear statically from the program text; that is why constrained formal
arguments must be passed through directly as arguments to the message seeking privileged
access. This rule grants children privileged access to the private methods of their ancestors
and also grants parents privileged access to the private methods of their descendents; both
directions are important for practical programming.

3.3 Possible Breaches of Encapsulation

With the encapsulation rules described so far, it is possible for an external client to gain
privileged access to an object simply by defining a new multi-method, one of whose formal
arguments is constrained by the target object. This new method would be considered part of
the constrained object’s implementation and so receive privileged access. We consider the
easy extensibility of existing objects to be one of Cecil’s strengths, but this extensibility
does not always require privileged access; new methods can be added to an existing object
that only manipulate the object through public operations. To protect the internals of an
object from future multi-methods added to the object, an object declaration could list
explicitly those multi-methods that are granted access to the object’s private operations; the
previous encapsulation rule would be amended to check this “access control list” in addition
to the other checks. Other multi-methods would be allowed to dispatch on the object, but
wouldn’t be able to access its private operations. To make this list easy to specify, the
programming environment could include a facility to construct an initial approximation to
the access list from the set of methods that currently dispatch for an object, and the
programmer could then edit this list as appropriate. Since this approach would complicate
the encapsulation model and might become a maintenance problem, the current Cecil design
does not include this support.

51

The encapsulation rules allow a multi-method dispatching on a parent to access a private
method of a child. This might be viewed as unwise, since it grants methods defined at the
roots of the inheritance graph nearly unrestricted access to private methods. However, a
practical need motivates this decision:

* An object should be granted access to its own private methods,

* A child should be allowed to override a private method inherited from a parent with its
own version, perhaps also private.

« If an object has access to one of its own methods, it should continue to have access to
a child’s overriding version.

For the parent’s method to be able to invoke the child’s overriding version of one of the
parent’s private methods, the parent must be granted access to the child’s method.

Fortunately, we can limit the scope of an ancestor’s privilege without sacrificing the ability
to override private methods. The earlier encapsulation rule could be amended so that a
parent would be granted access to a descendant’s private method only if the child’s method
is overriding some other method to which the parent would have access, i.e., to a method
defined on the parent or one of the parent’s ancestors. Since in many cases the parent may
not be able to provide a reasonable implementation, the parent can define a private abstract
method to reserve privileged access to future concrete implementations provided by
children. (Abstract methods were described in section 2.2.) Cecil currently does not include
this extension, since Cecil is intended to support exploratory programming in addition to
production programming and extra declarations just to allow private access may be too
cumbersome, but Cecil may be changed in the future to include this extension.

4 Project Status and Future Work

The Cecil language project has several goals. One is to explore the practicality of multiple
dispatching, in particular its integration with a traditional data-abstraction-oriented
programming style. Another is to produce a purely object-oriented language that supports
both exploratory programming and production programming, and supports gradual
evolution of programs from one style to the other. Towards this end Cecil includes a flexible
static type system and allows existing dynamically-typed Cecil programs to be annotated
incrementally with declarations to gradually migrate more and more of the type checking to
program-definition-time.

The design of Cecil’s dynamically-typed subset is reasonably stable with a denotational
specification of its semantics. Claudia Chiang is implementing an interpreter (in SELF) for
this part of Cecil. As of this writing, the interpreter is roughly half complete, and we hope
to have it finished by this summer. An initial design exists for Cecil’s static type system, and
type inference and checking rules have been written for the non-polymorphic core of the
type checker. Stuart Williams is extending the Cecil interpreter to perform static type
checking of Cecil programs.

After gaining programming experience using the interpreter and experimenting with
alternative language designs, we plan to construct an efficient Cecil implementation. We
first will extend the current SELF implementation to support Cecil-style multiple
dispatching and encapsulation, augmenting the existing SELF compilation techniques
(Chambers et al. 89, Holzle et al. 91b, Chambers & Ungar 91, Chambers 92] with support

* Experience with SELF’s encapsulation rules leads us to decide that a child should not be allowed to
override a public method with a private one. Otherwise, subtle changes in calling code and
consequently in privilege classification could lead to different methods being invoked.

52

for multiple dispatching. We expect that the bulk of the SELF implementation can remain
unchanged, since it does not depend on the details of method lookup or even on whether the
source language is based on single dispatching or multiple dispatching. This part of the
effort should produce an efficient implementation of the dynamically-typed subset of Cecil.
We then will extend this implementation to support static type checking to reach the full
Cecil language. We also will explore programming environments for languages like Cecil,
since we believe the presence of a supporting environment to be crucial for fostering a data-
abstraction-oriented programming style.

5 Related Work

Much of the related research has already been discussed. CLOS [Bobrow et al. 88] and its
predecessor CommonLoops [Bobrow et al. 86] pioneered the use of multiple dispatching.
CLOS’s inheritance rules are perhaps the most complcx of any object-oriented language,
based on linearization of the inheritance graph using parent and argument order to totally
order multi-methods, thus avoiding any possibility of ambiguity in the method lookup at the
cost of masking ambiguities introduced by programming errors. CLOS also provxdes
:before, :after, and :around methods which automatically combine with primary
methods to achieve interesting effects. In contrast, Cecil supports a comparatively simple
multiple inheritance system, with no order defined on parents or arguments, that admits the
possibility of ambiguity in method lookup; such ambiguities are viewed as programming
errors that need to be reported to the programmer rather than silently resolved. CLOS also
supports reflective capabilities [Kiczales ef al. 91], an interesting area which Cecil does not
address. Recently, some researchers have developed a static type system for CLOS-like
languages [Agrawal et al. 91]. However, their type system does not handle ambiguous
messages, abstract methods, or parameterized classes, nor does it provide a clean separation
between types and classes. The Cecil type system provides these additional features.

Only a few languages outside the CLOS family support multiple dispatching. Kea is a
polymorphic functional programming language with strong static typing
[Mugridge et al. 91]. In addition to several interesting type system features, Kea includes
multivariant functions (Kea’s version of multi-methods) whose static and dynamic
semantics is defined in terms of a translation into the lambda calculus. Leavens describes
NOAL, a statically-typed functional language that supports overloaded functions that are
resolved at run-time [Leavens 89, Leavens & Weihl 90]. This language was designed
primarily as a vehicle for explormg formal verification of programs with subtyping. A
theoretical treatment of typing issues by Rouaix included a similar toy language that
supported run-time overloading of functions [Rouaix 90]. The RPDE’ environment
supports subdivided methods where the value of a parameter to the method or of a global
variable helps select among alternative method implementations [Harrison & Ossher 90].
However, a method can be subdivided only for particular values of a parameter or global
variable, not its class; this is much like supporting only CLOS’s eq1 specializers. Finally,
a number of languages, including C++ [Ellis & Stroustrup 90] and Haskell [Hudak et al. 90],
support static overloading on function arguments, but all overloading is resolved at compile-
time based on the static types of the arguments rather than on their dynamic types as would
be required for true multiple dispatching.

Hebel and Johnson developed a special browser to manage the highly-stylized double
dispatching code for arithmetic over numbers and matrices in Smalltalk-80
[Hebel & Johnson 90]. Their browser presents a two-dimensional spreadsheet-like view of
all combinations of numeric and matrix argument types for a particular arithmetic message,
with each entry reporting whether the corresponding argument type combination defines a
method or merely inherits one from either the receiver inheritance chain or the argument

53

inheritance chain. Programmers can manipulate implementations of arithmetic messages
through the interface provided by the browser, and it will in turn generate many of the
double dispatching functions automatically. While this browser makes double dispatching
more manageable, it does not completely solve the problems with double dispatching. Users
who examine numeric classes through the normal Smalltalk-80 browser still are confronted
with a large number of (automatically-generated) dispatching routines. Additional browsers
would be required for other kinds of messages (such as the displayOn message) to
receive the same sorts of benefits. In effect, their browser partially simulates the
functionality of multiple dispatching in the programming environment; we argue instead for
uniform language support of multiple dispatching. Nevertheless, their interface might be
useful even for a multiple-dispatching language such as Cecil to help display and organize
multi-methods.

Finally, Cecil owes much to SELF [Ungar & Smith 87, Holzle et al. 91a]. Cecil’s classless
object model and its uniform treatment of state and behavior are direct results of our
experience with SELF. Cecil departs from SELF in several respects, some of which have
been discussed in this paper: instance variables can be either local or shared, and new
objects are created by refining rather than cloning existing objects. Of course, Cecil also
extends SELF with multiple dispatching. Freeman-Benson independently developed a
proposal for adding multi-methods to SELF [Freeman-Benson 89].

6 Conclusions

Cecil is intended to support a data-abstraction-oriented programming style typical of single-
dispatching object-oriented languages despite its reliance on multi-methods as the basic
mechanism for procedural abstraction. Other multiple-dispatching languages such as CLOS
organize programs around generic functions and consequently foster a function-oriented
programming style. Cecil instead organizes programs around objects and their connected
operations which together implement abstract data types. Multi-methods are integrated into
this object-centered programming model by treating a multi-method as part of each of the
object implementations for which the multi-method dispatches. This approach also enables
the internals of abstract data type implementations to be encapsulated. Multi-methods are
granted privileged access to the private operations of all the objects of which the multi-
methods are a part; multi-methods themselves may be marked as private. An interactive
graphical programming environment can play an important role in reinforcing this object-
oriented view of multi-methods by displaying the non-hierarchical relationships among
objects and methods much better than can standard text-based environments. Other
multiple-dispatching languages, including CLOS, could adopt this alternative view to better
support data-abstraction-oriented programming.

The Cecil project is just beginning, with an interpreter under construction. More research
and experience is needed to determine fully the practicality of multi-methods and the
effectiveness of Cecil’s linguistic mechanisms at fostering a data-abstraction-oriented
programming methodology. One particularly crucial unanswered question is whether the
additional expressive power of multiple-dispatching object-oriented languages outweighs
the unavoidable increase in complexity of the language and the programming model.
Another question is whether the encapsulation model included in the current Cecil language
is adequate, or whether some extension or modification is needed to completely encapsulate
data structures in the presence of multi-methods. Nevertheless, we are excited by the
prospects for object-oriented multi-methods. We hope that this work at least will spark
discussion of these prospects.

54

Acknowledgments

The ideas in this paper and their presentation have benefitted greatly from discussions with
members of the SELF group including David Ungar, Urs Holzle, Bay-Wei Chang, Ole
Agesen, Randy Smith, John Maloney, and Lars Bak, with members of the Kaleidoscope

group including Alan Boming, Bjorn Freeman-Benson, Gus Lopez, Michael Sannella, and
Denise Draper, with the fledgling Cecil group including Claudia Chiang, Stuart Williams,
and Christine Sweeney, and others including Peter Deutsch and Barbara Lerner. A
conversation with Danny Bobrow and David Ungar at OOPSLA ’89 provided the original
motivation for this work.

References

[Agrawal et al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type
Checking of Multi-Methods. In OOPSLA '91 Conference Proceedings, pp. 113-128, Phoenix,
AZ, October, 1991. Published as SIGPLAN Notices 26(11), November, 1991.

[Bobrow et al. 86] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik,
and Frank Zdybel. CommonLoops: Merging Lisp and Object-Oriented Programming. In
OOPSLA '86 Conference Proceedings, pp. 17-29, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A.

Moon. Common Lisp Object System Specification X3J13. In SIGPLAN Notices 23(Special
Issue), September, 1988.

[Borning 86] A. H. Borning. Classes Versus Prototypes in Object-Oriented Languages. In Proceedings
of the 1986 Fall Joint Computer Conference, pp. 36-40, Dallas, TX, November, 1986.

[Chambers et al. 89] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of
SELF, a Dynamically-Typed Object-Oriented Language Based on Prototypes. In OOPSLA '89
Conference Proceedings, pp. 49-70, New Orleans, LA, October, 1989. Published as SIGPLAN
Notices 24(10), October, 1989. Also published in Lisp and Symbolic Computation 4(3), Kluwer
Academic Publishers, June, 1991.

[Chambers ef al. 91] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hélzle. Parents are
Shared Parts: Inheritance and Encapsulation in SELF. In Lisp and Symbolic Computation 4(3),
Kluwer Academic Publishers, June, 1991.

[Chambers & Ungar 91] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages
Practical. In OOPSLA °91 Conference Proceedings, pp. 1-15, Phoenix, AZ, October, 1991.
Published as SIGPLAN Notices 26(10), October, 1991,

[Chambers 92] Craig Chambers. The Design and Implementation of the SELF Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. Ph.D. thesis, Department of Computer
Science, Stanford University, March, 1992.

[Chang & Ungar 90] Bay-Wei Chang and David Ungar. Experiencing SELF Objects: An Object-Based
Artificial Reality. Unpublished manuscript, 1990.

[Cook et al. 90] William Cook, Walter Hill, and Peter Canning. Inheritance is not Subtyping. In
Conference Record of the 17th Annual ACM Symposium on Principles of Programming
Languages, San Francisco, CA, January, 1990.

[Ellis & Stroustrup 90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, Reading, MA, 1990.

(Freeman-Benson 89] Bjomm N. Freeman-Benson. A Proposal for Multi-Methods in SELF.
Unpublished manuscript, December, 1989.

[Gabriel et al. 91] Richard P. Gabriel, Jon L White, and Daniel G. Bobrow. CLOS: Integrating Object-
Oriented and Functional Programming. In Communications of the ACM 34(9), pp. 28-38,
September, 1991.

[Goldberg & Robson 83] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, MA, 1983.

55

[Goldberg 84] Adele Goldberg. Smalltalk-80: The Interactive Programming Environmens. Addison-
Wesley, Reading, MA, 1984,

[Halbert & O’Brien 86] Daniel C. Halbert and Patrick D. O’Brien. Using Types and Inheritance in
Object-Oriented Languages. Technical report DEC-TR-437, Digital Equipment Corp., April,
1986.

[Harrison & Ossher 90} William Harrison and Harold Ossher. Subdivided Procedures: A Language
Extension Supporting Extensible Programming. In Proceedings of the 1990 International
Conference on Computer Languages, pp. 190-197, New Orleans, LA, March, 1990.

[Hebel & Johnson 90] Kurt J. Hebel and Ralph E. Johnson. Arithmetic and Double Dispatching in
Smalltalk-80. In Journal of Object-Oriented Programming 2(6), pp. 40-44, March, 1990.

[Hblzle et al. 91a] Urs Holzle, Bay-Wei Chang, Craig Chambers, Ole Agesen, and David Ungar. The
SELF Manual, Version 1.1. Unpublished manual, February, 1991.

[(Holzle er al. 91b] Urs Holzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed
Object-Oriented Programming Languages with Polymorphic Inline Caches. In ECOOP '91
Conference Proceedings, pp. 21-38, Geneva, Switzerland, July, 1991.

[Holzle ef al. 92] Urs Hélzle, Craig Chambers, and David Ungar. Debugging Optimized Code with
Dynamic Deoptimization. To appear in Proceedings of the SIGPLAN ‘92 Conference on
Programming Language Design and Implementation, San Francisco, CA, June, 1992,

[Hudak et al. 90] Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn, Joseph Fasel, Kevin
Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Simon Peyton
Jones, Mike Reeve, David Wise, Jonathan Young. Report on the Programming Language
Haskell, Version 1.0. Unpublished manual, April, 1990.

[Ingalls 86] Daniel H. H. Ingalls. A Simple Technique for Handling Multiple Polymorphism. In
OOPSLA 86 Conference Proceedings, pp. 347-349, Portland, OR, September, 1986. Published
as SIGPLAN Notices 21(11), November, 1986.

[Kiczales et al. 91] Gregor Kiczales, James des Rividres, and Daniel G. Bobrow. The Art of the Meta-
Object Protocol. MIT Press, Cambridge, MA, 1991.

[Lalonde et al. 86] Wilf R. LaLonde, Dave A. Thomas, and John R. Pugh. An Exemplar Based
Smalltalk. In OOPSLA '86 Conference Proceedings, pp. 322-330, Portland, OR, September,
1986. Published as SIGPLAN Notices 21(11), November, 1986.

[Leavens 89] Gary Todd Leavens. Verifying Object-Oriented Programs that use Subtypes. Ph.D.
thesis, MIT, 1989.

[Leavens & Weihl 90] Gary T. Leavens and William E. Weihl. Reasoning about Object-Oriented
Programs that use Subtypes. In OOPSLA/ECOOP '90 Conference Proceedings, pp. 212-223,
Outawa, Canada, October, 1990. Published as SIGPLAN Notices 25(10), October, 1990.

[Lieberman 86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems. In OOPSLA '86 Conference Proceedings, pp. 214-223, Portland, OR,
September, 1986. Published as SIGPLAN Notices 21(11), November, 1986,

[Lieberman et al. 87] Henry Lieberman, Lynn Andrea Stein, and David Ungar. The Treaty of Orlando.
In Addendum to the OOPSLA '87 Conference Proceedings, pp. 43-44, Orlando, FL, October,
1987. Published as SIGPLAN Notices 23(5), May, 1988.

[Meyer 88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, New York, 1988.
[Meyer 92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, New York, 1992.

[Moon 86] David A. Moon. Object-Oriented Programming with Flavors. In OOPSLA '86 Conference

Proceedings, pp. 1-8, Portland, OR, September, 1986. Published as SIGPLAN Notices 21(11),
November, 1986.

[Mugridge ef al. 91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-
Typed Programming Language. Technical report #50, Department of Computer Science,
University of Auckland, 1991.

[Rees & Clinger 86] Jonathan Rees and William Clinger, editors. Revised® Report on the Algorithmic
Language Scheme. In SIGPLAN Notices 21(12), December, 1986.

56

[Rouaix 90] Francois Rouaix. Safe Run-Time Overloading. In Conference Record of the 17th Annual

ACM Symposium on Principles of Programming Languages, pp. 355-366, San Francisco, CA,
January, 1990.

[Schaffert et al. 85] Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis Object-Based
Environment, Language Reference Manual. Technical report DEC-TR-372, November, 1985.

[Schaffert et al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt.
An Introduction to Trellis/Owl. In OOPSLA '86 Conference Proceedings, pp. 9-16, Portland, OR,
September, 1986. Published as SIGPLAN Notices 21(11), November, 1986.

[Snyder 86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages.

In OOPSLA '86 Conference Proceedings, pp. 38-45, Portland, OR, September, 1986. Published
as SIGPLAN Notices 21(11), November, 1986.

[Ungar & Smith 87] David Ungar and Randall B. Smith. SELF: The Power of Simplicity. In OOPSLA
'87 Conference Proceedings, pp. 227-241, Orlando, FL, October, 1987. Published as SIGPLAN

Notices 22(12), December, 1987. Also published in Lisp and Symbolic Computation4(3), Kluwer
Academic Publishers, June, 1991,

[Ungar ez al. 91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hélzle. Organizing

Programs without Classes. In Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

