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Abstract, In this paper, a number of cxisling solutions arid suggestions towards
combining the object-oriented (O0) and logic programming paradigms have been
briefly studied and categorized, and a sketch of a new solution has been proposed
which tries to capture the essence of OO in terms of modal logic, and which could
be implemented as a modal logic programming system.

The proposal is based on the belief that two orthogonal dimensions - object
hierarchy and time - are involved in OO that in many respects are similar. For the
one-dimensional (static) case, three logics - MU, MU’, and MU” - have been de-
signed, each allowing a different variety of inheritance modes. The two-dimen-
sional (dynamic) case has been treated in a logic 2MU and its corresponding
variants. Under certain OO-motivated definitions of Horn clause, the resolution
calculi of these logics turn out to be complete.

1 Introduction

Since 1983-4 [ST83, Zan84], more than 20 mergers of the OO and logic paradigms
(see Section 2) have been proposed by different authors. Most of these aim at achieving
some synergic effect, since the advantages that the two paradigms exhibit, are different.
0O offers modularity, encapsulation, and sharing, whereas logic programming offers
reasoning and deductive retrieval via unification and backtracking. A deeper difference
between the two paradigms, however, lies not in their different advantages but rather in
what they are about and for. Roughly, this deeper difference could be put as follows.

0O is a technique meant to create top-level orderliness and manageability. It is not
based on any particular formalism, being rather a heuristic (in the best sense of the
word) that works on many formalisms and makes things convenient. The logic
paradigm, on the contrary, cares more about bottom-level properliness and purity. It
assumes a concrete formalism, elaborated in much detail, and idolizes uniformity. Sadly
enough, the logic paradigm lacks in strong heuristics for applying this formalism, some-
times turning out to be inept when larger applications are to be dealt with.

In this paper, yet another merger of OO and logic is proposed. In so doing, logic is
viewed as a formalism, and OO is regarded as a technique that can be applied to differ-
ent formalisms. An attempt is made to find equivalents to several OO concepts in logic,

1The research reported in this paper was carried out at The Norwegian Institute of Technology
(NTH) in Trondheim while holding a scholarship of the International Department of NTH.



99

and to build up a logic-based formal model of the OO schema. The solution is more of a
theoretic than pragmatic value, and its objective is twofold: to obtain a semantics to OO
in terms of some logic, and to see what organizing effect logical "simulation” of OO
could have on logic programming.

The logical tool used throughout this paper is modal logic (more exactly, logic of be-
lief). The concrete logics that are attained appear to be elegant (they are normal, rely on
simple and quite classical axioms etc.). Moreover, resolution calculi can be constructed
for these logics which for classes of formulae corresponding to the actual OO practice
prove to be complete.

There are similarities in our approach to that of McCabe's [McC88], where the main
tool, however, is classical logic.

The organization of the paper is as follows. Section 2 is a brief summary of the
ongoing work on merging the OO and logic paradigms and on the "OO-independent"
structuring trends within the logic paradigm. Section 3 presents the choices that our
approach is based on, and provides some justification of these. Section 4 describes our
base logic MU ("Modal Units"), and contains a thorough motivation derived from a
simple example. Sections 5-7 are brief descriptions of the advanced variants of MU.
Section 8 discusses practical issues in using the mentioned logics for programming.
Section 9 points out conclusions and possible directions for future work.

Proofs, as well as other technicalities, have been omitted in this paper. They can be
found in {Uus91].

2 Related Work
2.1 Mergers

A good classification and study of mergers that had been suggested until 1987, has
been presented in [LM88]. In the majority of mergers, logic means Homn clause logic,
and we propose to distinguish between three main groups of such mergers:

* OO base language, extended with logical constructs,

¢ two base languages (OO and logic), interfaced,

* logic base language, extended with OO constructs.

The examples of mergers with an OO base language are Orient84/K [IT86],
KSL/Logic [IT90], and CBL [BMS90]. In Orient84/K and KSL/Logic, deductive re-
trieval is facilitated through built-in methods. Besides that, in KSL/Logic, all logical
constructs are viewed as objects. In CBL, an OO base language has been extended with
means for expressing complex conditionals (rules).

The example of a language interface is Prolog/Loops [KE88], where facilities have
been provided for making calls to Loops objects from Prolog, and for setting Prolog
goals from Loops (in the form of messages).

Mergers with a logic base language are the most numerous. The historically earliest
proposals by Shapiro and Takeuchi [ST83] and Zaniolo [Zan84] have had strong influ-
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ence on the development of this group, and may thus be also viewed as belonging here,
even though they add no new syntax to their logic base languages, and only show how
to program in the OO spirit, using the existing means.

In nearly all mergers of this group, methods are represented by predicates, defined in
one or more clauses. Differences appear in solving the following questions:

¢ what are objects and classes (and attributes, consequently)?,

® how can attribute values be changed?,

¢ what does inheritance mean?

Objects, classes, attributes. In the majority of mergers, objects and classes
essentially are sets of clauses (theories), referred to by some atomic name. Attributes,
thereby, are either non-logical (imperative) variables, or predicates that are given values
in the clause sets of objects. In Zaniolo's proposal, classes are predicates, with argument
places corresponding to attributes. Objects, therefore, are literals, with arguments
instantiated with concrete attribute values. In Mandala [FTK..84], objects are
predicates, with one argument meant for indicating the revision (in the form of a
stream), and others for attribute values.

In Conery's merger [Con88), where predicate interpretation changes during the pro-
gram execution, classes are predicates, with one argument meant for an atomic object
name, and others corresponding to attributes. In "Objects as Intensions” [CW88], an
object is an individual variable, standing for the infinite list of its states during history.

The concept of attribute is often understood more generally in mergers than in con-
ventional OO (see Section 3 for details).

Attribute value changes. Zaniolo's approach enables no dynamics. ESP [Chi84],
SPOOL [FH86], and Prolog++ [Mo0s90] make use of imperative assignments. Predom-
inantly, states are revised exploiting the assert and retract built-in predicates. In
ObjVProlog [MLV89], semantically cleaner predicates -- assume and forget -- are made
use of. Shapiro and Takeuchi, Mandala, and Vulcan [KTMB87] (on its hidden underly-
ing level) exploit streams. These lists of as yet unprocessed messages serve there as
object revision identifiers.

Conery's proposal and "Objects as Intensions” change states at resolution and
through stepwise instantiation of the history lists, respectively.

Inheritance. Conventional OO presumes overriding inheritance which in the logic
context means that if a given class owns a definition for a called method, and the
invocation fails, then no definitions from superclasses will be searched for or tried. In
mergers with logic, it seems equally reasonable to allow further pursuing until either
success will be achieved, or the space of appropriate definitions will be used up. Such
inheritance is called cumulative. [Gal86] terms these modes of inheritance as call/return
and success/failure, respectively.

Most mergers use overriding inheritance. In Prolog/KR [Nak84], ESP, and POL
[Gal86], cumulation is the default. Overriding is facilitated through special language
constructs (the simplest of them -- cut -- is readily available in Prolog). In CPU
[MNS87], the user has to metaprogram the inheritance semantics.

Our proposal, MU, falls under the third group of the above classification.

There are solutions that do not restrict logic to mean just Horn clause logic, like
FOOPlog {GM87] and Maude [Mes90], which put much emphasis on algebra (algebraic
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specifications, rewriting), or PRIZ [MT90], where deduction is used for synthesizing
algorithms from specifications and not in execution.

The list of mergers, mentioned in this section, does not pretend to be complete, but
rather to illustrate the variety of approaches taken.

2.2  Trends of Structuring Within the Logic Paradigm

Within the logic paradigm, tendencies towards thinking along the lines of software
engineering are a relatively recent development. Two orthogonal directions of structur-
ing can be observed in logic programming: modularization (structuring of programs)
and sorting (structuring of data, i.e. grouping of individuals; sort = type).

As examples of research in the direction of modularization, we mention [Mil86] and
[Che87]. In a number of studies, modules are viewed as worlds, with more or less ex-
plicit parallels drawn to the possible-worlds' semantics of modal logics. From among
the merger systems, mentioned in Section 2.1, Prolog/KR, Mandala and CPU take this
approach. From proper modal extensions of Prolog, we mention MULTILOG [KG86]
and MOLOG [Far86]. In OO applications of the modal logic paradigm, the accessibility
relation between worlds correlates with the isa relation.

Sorting relies on many-sorted logics. Plain many-sorted logics offer no relation
between sorts. To provide a counterpart for subtype/supertype (i.e. isa) relation, order-
sorted logics have been developed (for overview, see [Obe89]). In those, a partial
ordering on sorts is assumed which basically is a subsort/supersort relation. A good
example of an order-sorted logic programming language is EPOS [HV87]. The LOGIN
[AN86] language (which served as a starting point for the ALF [Mel88] merger of OO
and logic) can also be regarded as relying on a variant of order-sorted logic (feature
types), its peculiarity being that there are no sorts there, and individuals are ordered
instead. The ordering itself, thereby, is not programmer-declared, but induced by the
structure of terms that denote individuals. What "normally” would be sorts, are
simulated by means of individuals in LOGIN. In a sense, the ordering in LOGIN is a
hybrid of individual/sort and subsort/supersort relations. In OO terms, this pretty ex-
actly corresponds to a classless (delegation) system with objects ordered by an ob-
ject/prototype relation.

Objects in OO are hybrids of programs and data (data-drivenness), and this implies
that neither modularization nor sorting is ideally satisfactory for modelling OO in logic.
There is a reason, however, to prefer modularization. Objects as modules have identity
in the form of module (world) names. In the case of choosing the sorting approach,
objects would have to be represented by terms encoding their current states, and possess
no identity. There would be no means for deciding whether some objects just
occasionally have equal states or are identical indeed. A change in an object's state
would mean that the object was exchanged for a new object.

In FOOPlog, objects are facilitated by means of sorting, but this has been achieved
by powerfully generalizing the notion of sort (thus forcing sorting to subsume
modularization). There, attribute values (the material manifestations of objects) are
grouped into (visible) sorts, whereas objects themselves are grouped into so-called
hidden sorts. Hidden sorts are defined as sets of algebrae, which are nothing less than
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semantic counterparts of theories or modules. A thorough justification of this approach
can be found in [GW91].

3 Principles and Terminology

The principles of OO have two aspects, facilitating and restrictive. An OO language
must possess constructs for working with objects (modularity). There must be constructs
for expressing explicit calls to objects (e.g., message passing), but certain calls may be
forbidden (e.g., "remote calls to attributes" -- encapsulation). Similarly, there must also
be constructs for expressing implicit calls, sharing (e.g., inheritance or delegation), but
there may be limitations on what should be sharable and how.

We feel that logical models (i.e. semantics in the form of logics) of OO should con-
centrate on the facilitating role, and thus we allow a broad interpretation of the OO
concepts. Restrictions can be introduced syntactically (by narrowing the set of well-
formed formulae, logically speaking). Therefore, both objects and classes will be termed
objects below; object/class, subclass/superclass, and object/prototype relations will be
termed isa; and inheritance, delegation, and even the relation of an object's method
being stored in that object’s class will be termed inheritance.

Next we will argue that there is no deep reason to distinguish between attributes and
methods either. In our opinion, the evolution of answers to the question what attributes
and methods are, in conventional OO and in mergers thereafter, has been the following:

¢ Attributes are hidden, methods are public. Assuming that we neglect the
restrictive aspect of the OO principles, this yields no distinction at all.

¢ Attributes values are individuals, methods are operations on them. Though
true about conventional OO languages, this view has been abandoned in most mergers
with logic. As it implies that attributes are dynamic, and as the most dynamic thing in
generally static Prolog is predicates, there is ground for further generalizations.

» Attributes are dynamic, methods are static (and both are predicates). This is so
in many mergers, and it is specifically emphasized in SCOOP [VLMS88] and
ObjVProlog [MLV89]. Now not only may an attribute be "multivalued” (the predicate
be non-functional -- only LOCO [LVV89] has a construct for requiring univaluedness),
but it can also be "parametric® (the predicate has input argument places) and
"conditional” (the definition clauses do have bodies -- in SCOOP and ObjVProlog,
however, dynamic predicate definition clauses are restricted to facts only).

From this position we can make one reformulation.

¢ Attribute values are inherited over time, methods are inherited over the object
hierarchy. Just as objects own method definitions, we can say that time instants
(revisions) own value assignments. Then the search for a definition of an object’s
method from superobjects becomes analogous to looking up an attribute's value
backwards in the history of assignments (usually the latest assignment is interesting, i.e.
overriding is applied).

The succession relation of time instants is analogous to the isa relation in the object
hierarchy. Treating the time dimension in full analogy with the object universe dimen-
sion, we obtain a facility of simple versioning. It becomes possible to make calls ("send
messages") to the past, so to retrieve old values, if necessary. Note that this approach
also solves the frame (or persistence) problem: at a transition to a new revision, the
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values that are not being changed require no updating. The analogy between objects and
revisions was pointed out in [KG86].

In our approach, we will not distinguish between objects and classes (classless
system). Both attributes and methods will be called properties, and both objects and
time instants will be called units (with the latter we follow the tradition of [MN87],
[MP90]). A unit hierarchy is formally a pair (U, isa), where U is a non-empty finite set,
and isa is a partial ordering on U. isa® will further denote the reflexive-transitive closure
of isa.

4 MU -- "Modal Units"
4.1 Motivation

L. Monteiro and A. Porto [MP90] point out that in addition to the overnd-
ing/cumulation dimension, one more dimension in modes of inheritance can be dis-
cerned -- that of syntactic/semantic. These two dimenstons yield four different modes.
In this section, we will study cumulative modes, postponing the discussion of overriding
until Section 8.

Suppose u, vE U, u isa v, and that everything that v owns is subject to inheritance.
Semantic (or relational or predicate) inheritance means that the literals that hold in v,
are available as facts to u, i.e. that « is allowed to use the model (semantics) of v for
resolutions. Syntactic (or definitional or clause) inheritance means that the clauses that v
owns, are available to u, i.e. that u is allowed to use the syntax of v for resolutions.

In other words, if inheritance is semantic, then in order to find the predicate inter-
pretations in u, first the predicate interpretations must be computed separately for the
clause sets of # and v, and then the results (models) must be composed. In case of syn-
tactic inheritance, on the contrary, the clause sets of # and v (syntaxes) have first to be
composed, and then only the predicate interpretations for the composed clause set can be
computed. As can be noticed, the key question is whether u cannot or can use its own
clauses when demonstrating the goals of clauses inherited from v.

Modal logic (logic of belief) enables us to mark the two different usages of inherited
clauses more explicitly. We now move to motivating our first logic MU ("Modal
Units"). Assume that for every unit u€ U, we have a modal operator [u], where [u]A is
read as "A inheritably in u".

The two steps in interpreting under inheritance suggest two axioms:

KY,. [V4—[ulA, if uisav,
and

K, [ul(4>B) - ([u1]A~>{u]B).
The first axiom corresponds to composition (it "copies” clauses), the second to model
computation.

Assume that v owns a clause p<q. We show that it is natural to write this as
[vlp<{vlq in case we want it to be inheritable semantically, and as [v](p<q) in case we
aim at syntactic inheritance. Indeed, both [v]p«[v]q and [v](p«q) yield [u]p<{vlq, while
only [v](p<q) enables to derive [u]p<{ulq, just as it ought to be.
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The clause [v]p«[v]q can be given an alternative equivalent form [v](p<[vlg), if we
admit an axiom
4, . [lA->{u]z]A.
This does no harm, as it claims all units to have access to see what holds in other units
(positive introspection), which is in concert with the OO world-view. In fact, we will let
units also to see what does not hold in other units (negative introspection, see axiom 5, ,

in Section 4.2).

The purpose of the new writing for semantically inheritable clauses s that we wanted
attain a uniform form for all acceptable clauses (we call them Horn clauses of MU): in
each clause there will be one modal operator over the whole clause (clause modality),
and optional modal operators over goals in the body (goal modalities). Clause
modalities indicate the owner of the clause, goal modalities determine who has to
demonstrate the goals (a missing modality means that the demonstration task is passed
back to the caller -- syntactic inheritance).

As an example, consider a clause [vl(p«{vlq,r,[z]s), where u isa v, and z is a unit,
incomparable with u and v in the sense of isa®. The following is a proof that together
with «[u]p it yields «[v]q,[u]r,[z]s:

Mp<Ivig.r[2)s)
KV

u

K,

4

u,v? 4z,v

[ul(p<{vlg,r.[z]s)

(ulpLul(v]g, [ulr,[ullz)s

«lulp (ulp=-[vig, [u]r.[z}s

«[vlg,[ulr,[z]s

This clause involves a mixture of syntactic and semantic inheritance, but also
message passing, showing MU to be even more powerful than the formalism of
[MP90]. In the conventional OO notation, this clause could be written as:

object v is
method p is q; self:r, z:s

4.2 Formal

In the formal presentation, we adhere to the terminology and denotations from
[Che80] and [Cat88]. Proofs and technicalities can be found in [Uus91]. To simplify the
presentation, we shall consider propositional fragments everywhere. Section 4.3 gives
hints for generalizations into the full predicate logic.

For any modal operator [a], {a) will stand for —[a] -.
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Language
For any u€ U, the language of MU has a modal operator [u].

Axiomatics
The Hilbert-style calculus of MU consists of the following rules and axioms:
o The Hilbert-style rules and axioms of the classical propositional logic.
® Modal rules and axioms. For any u, v, zE U, we have:

N,. All[ulA,
K,  [ul(4=B)~([ulA~{)B),
D, [ulA>u)A,

K" . [vlA->[u]A if uisav,
4u’z - [Z],A"’[u] [Z]A ’
5, (@A-{ul(2A.

MU is normal in the sense of [Cat88].

Semantics

A complete Kripke semantics of MU is defined by the following restrictions on the
accessibility relations:

d,. seriality: for any wE€ W there exist w’€ W such that wR w’,

k¥,. inclusion: if u isa v then for any w,w’ € W if wR, w' then wR w’,

iv, ;. quasi-transitivity: for any w, w', w” EWif wR w’ and w'R w” then wR w",

v, .- quasi-euclidity: for any w, w', w” EWif wR w’ and wR,w” then w'R w".

The completeness of this semantics follows from the Catach completeness theorem
for normal multimodal logics [Cat88].

The standard Kripke frames for MU are determined by the following conditions:

e W= {0} U U,y W, where W, /'s are pairwise non-intersecting non-empty
finite sets;

¢ for any w, w'€ Wand any uE€ U,

wR w’ iff there exists u’€U such that w' €W, and u’ isa” u.

Resolution calculus

There are two kinds of Horn clauses. Input clauses are formulae [v](p<I,nA),
where p is an atomic formula, v is a unit, I" and A are vectors of atomic formulae, and n
is a vector of modal operators. Goal statements are formulae <mll, where II is a vector
of atomic formulae, and m is a vector of modal operators.

The resolution calculus of MU consists of one rule:

<[ulp, mII [vVI@<T,nh)

. . *
ifuisa” v

<[u]l',nA,mII

For Horn clauses, the given resolution calculus is complete.
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4.3 Predicate Case

The most important modifications at the transition from the propositional fragment
of MU to full predicate MU are the following:

¢ To the axiomatics, the Barcan formula vx[u]A-{u]¥xA must be added for all
ueU.

¢ In the Kripke semantics, it has to be required that individual and function symbols
be rigid, and the domain be constant.

¢ The resolution rule has to be supplemented with the unification step.

5 MU’ -- Inheritability Not Inevitable
5.1 Motivation

The assumption of everything being inheritable is nearly always too strong. It is of-
ten necessary to permit a unit to own non-inheritable beliefs. To facilitate this, a logic
MU'’ will be described below, where for each unit we will have two modal operators [u]
and [ut]. []A will read as "A in 4", whereas [u4]A will read as "A inheritably in #".
Note that [u] of MU has been renamed into {u+] in MU',

Like in MU, Horn clauses in MU’ will have clause and goal modalities. Since in
MU’, we will allow clauses either to be inheritable or to hold for sure only just in their
owner units, arbitrary modal operators will be acceptable as clause modalities. Goal
modalities, on the contrary, will be limited to non-arrow modal operators, since it seems
unnatural to require some unit to demonstrate a goal, if such a task was only passed to
this unit's ancestor.

All theorems that we mentioned when presenting MU, are valid about MU" (as well
as about MU” and two-dimensional logics, see Sections 6-7), too.

5.2 Formal

Language
For any u € U, the language of MU’ has two modal operators: [u] and [« ].

Axiomatics
The Hilbert-style calculus of MU’ consists of the following rules and axioms:
e The Hilbert-style rules and axioms of the classical propositional logic.
® Modal rules and axioms. For any u, v, zE U, we have: (o and ® can be either { or
the empty word)
N .. A/ [uc]A,
Ko [uc](A>B)>([uc}A~>{uc]B),
D,. [u]A—>(u)A,
U, (u)A->[u)A,

K*,.  [udA-[u)4,
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K',,. [vilA-[udld if uisav,
dpe o [20]A~[us]lz0)4,
Suszo-  (z0)A>[ue)z0)A.

Semantics
A complete Kripke semantics of MU’ is defined by the following restrictions on the
accessibility relations:

d,,. senality: for any w& W there exist w’ € W such that wR,w’,

u,,. uniqueness: for any w, w’, w” € Wif wR w’ and wR w” then w'=w",

k“* . inclusion: for any w, w' €W if wR, ,w’ then wR W',

k”!,,. inclusion: if u isa v then for any w,w’E Wif wR,,w’ then wR, W',

ivu,’zo. quasi-transitivity: for any w, w’, w” €W if wR ,w’ and w'R,,w” then
wR w",

Vye o- quasi-euclidity: for any w, w', w” € Wif wR, ,w’ and wR ,w” then w'R,,w”"

The standard Kripke frames for MU'’ are determined by the following conditions:
e W= {0} U U,c, W,, where W, 's are pairwise non-intersecting non-empty
finite sets, each having one distinguished element w,;
¢ for any w, w'€ Wand any u € U,
wRw' iff w'=w,

wR, ,w’ iff there exists u’€ U such that w'EW,, and u’ isa” u.

Resolution calculus

Input clauses are formulae [ve](p«T,nA), where p is an atomic formula, v is a unit,
¢ is either empty word or ¢, I and A are vectors of atomic formulae, and n is a vector
of non-arrow modal operators. Goal statements are formulae <mllI, where II is a vector
of atomic formulae, and m is a vector of non-arrow modal operators.

The resolution calculus of MU’ consists of two rules:

«~{ulp, mll [4](<T',nA)
«[u]T',nA,mII
«{ulp, mIl [vi}p<T,nA)

if wisa® v
«[u]',nA,mII
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6 MU” -- Inheriting Not Inevitable
6.1 Motivation

The logic MU' made it possible to block inhernitance, i.e. to say of a formula which
holds in a unit, whether it holds inheritably or just in this particular unit. The logic
MU” that we describe in this section, enables less practical but still conceivable block-
ing of inheriting, allowing us to say of a formula whether its holding in a particular unit
can be derived without referring upwards, or whether it just holds in this unit.

For each unit u€ U, MU" provides four modal operators. Modal formulae are read
as follows:

[u]A reads as "A, without using inheritance, in 4",

[udlA reads as "A, without using inheritance, inheritably in «",
[t]A readsas "Ainu",

[u ¥ 1]A readsas "A inheritably in u".

Note that [u1] of MU” corresponds to [u} of MU’, and that [& 4 1] of MU” corres-
ponds to [u] of MU".

In Horn clauses of MU’, we allowed clause modalities either to claim inheritability
or not, whereas goal modalities could not require inheritability. In MU"”, we act in a
dual manner. Clause modalities have always to claim holding without using inheritance
(since input clauses are a kind of "initial knowledge"), while goal modalities may
require demonstration either without using inheritance or "just somehow". The roles of
modalities are therefore as follows:

[u] clause and goal modality,

[ut] clause modality,

fut] goal modality,

[ud?] internal "carrier" of inheritance ("hidden" in the resolution calculus).

6.2 Formal

Language
For any u€ U, the language of MU” has four modal operators: [u], [ud], [u?t],
[ué t].

Axiomatics

The Hilbert-style calculus of MU” consists of the following rules and axioms:

o The Hilbert-style rules and axioms of the classical propositional logic.

® Modal rules and axioms. For any u, v, zE€E U, we have: (¢ and ® can be either { 1,
v, t, or the empty word)

N,o- Al [uolA,
K,.. [uc)(A—>B)>([u°]A~>[u°]B),
D,,. [ 1A~>(ut)A,

U,,. (ut)A—>[ut]A,
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K*t . [ 4 JA—[u]A,
K«tt L. [ud t1A-{uid 1A,
K¥,4. [ulA—>[ut A4,

K“* oy [ud14->[ut t A4,
Ko vt id-[utd]d if uisav,
40 vo- [zo]A~(u®][z014,
Sye zo- (z0)A—>[u®](z0)A.

Resolution calculus

Input clauses are formulae [ve](p«<T',nA), where p is an atomic formula, v is a unit,
® is either empty word or ¢, I' and A are vectors of atomic formulae, and n is a vector
of non-arrow and t modal operators. Goal statements are formulae <mll, where IT is a
vector of atomic formulae, and m is a vector of non-arrow and * modal operators.

The resolution calculus of MU” consists of four rules:

«|ulp, mll [4](p<T,nA) «[ulp, mil [u4](p<T,nA)
<{u]T,nA,mIl <[u]T,nA,mIl
<{utp, mll [ul(p-T,nA) “[ut]p, mI [v41(p<T,nA)
if uisa® v
<[t ]T,nA,mIl <[ ]T,nA,mII

7 Logics for Two Dimensions
7.1  Motivation

Each of the logics MU, MU’, and MU” can be easily generalized for two dimen-
sions. We will demonstrate how this can be done in case of MU. Assume we are given
an object hierachy (O, isay) and a time instant hierarchy (T, isap). Let their correspond-
ing logics be denoted MU, and MU, The two-dimensional logic 2MU has then modal-
ities for the elements of both O and 7. It is natural to assume the formulations "4 in
object ¢ at time ¢" and "A at time ¢ in object 0" to be equivalent, and this suggests that
modalities from different one-dimensional logics should commute.

7.2  Formal

Language
For any u€ OUT, the language of 2MU has a modal operator [u].

Axiomatics
The Hilbert-style calculus of 2MU consists of the following rules and axioms:
® The Hilbert-style rules and axioms of the classical propositional logic.
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® Modal rules and axioms of MU,
® Modal rules and axioms of MU .
o Commutation axioms. For any o€ O and t€ 7, we have:

[o][1]A = [f][0]4,
[0)(NA = (nlolA.

Resolution calculus
Input clauses are formulae [w][7] (p«T, nA, 9L, n'9’'A), where p is an atomic for-
mula, w is an object, 7 is a time instant, T', A, L, and A are vectors of atomic formulae,
n and n’ are vectors of object modal operators, and ¢ and ¢’ are vectors of time modal
operators. Goal statements are formulae <mgII, where II is a vector of atomic formu-
lae, m is a vector of object modal operators, and 6 is a vector of time modal operators.
The resolution calculus of 2MU consists of one rule:

«[o][t]lp, mOI1 [w]{7] (p<T, nA, 9L, n'd'A)

. . * . -
ifoisa, w andrisa; 7

«[o)[fIT, n[7]A, [0]VL, n'A, mfII

8 Pragmatics

In order to use the above-presented resolution calculi for programming, we must as-
sume predicate definitions in units, and goals in clauses, to be ordered. We must also
provide some facility for declaring object and time instant hierarchies. With objects, the
situation is easy -- we can supplement the language with some non-clausal constructs
that allow us to encode the hierarchy graph. Time is more problematic, since the ana-
logy between the object universe and time dimensions is not universal:

* Among the time instants, one is always distinguished -- the current instant, or
"now". "Now" never has descendants, though new instants can be created only from
"now".

® When specifying in a program some action that would cause a new revision, we
normally don't know at which instant this action will be performed at run-time. There-
fore, there must be a possibility to express not fully instantiated time instant names.

To cope with this, we can let instant names themselves induce the time instant
hierarchy. Instant names can be lists (of some atomic labels), for example, and isa can
then be defined as the list/tail relation. This is essentially the same idea as that of stream
programming. The only difference is that the frame problem has been solved: due to
inheritance, there is no need any more to write clauses stating merely that some literal
preserved its validity at some transition.

Overriding inheritance can be facilitated by means of cuts. In MU’, if searches for
successful clauses for a goal p(ClI,...,Cn) must end at a unit v, then the clause

[vé] (P(Xl,...,Xn) <« !, fail)
has to be added to the end of the definition of p in v.



9 Conclusions and Future Work

This paper used modal logic to give logical semantics to some aspects of QOO. Units
and different inheritance modes proved to allow clear and simple formalization in terms
of logic of belief. It also appeared to be reasonable to regard the essential difference be-
tween attributes and methods to lie in which hierarchy they are inherited over, since this
provides some solution to the frame problem, and strengthens uniformity.

The following problems should deserve future study:

* Possible connection of overriding inheritance with linear and non-monotonic log-
ics.

¢ Elaboration of the pragmatics of working with the time dimension.

¢ Dynamic object hierarchies. At the present stage, the designed logics enable only
objects be dynamic, whereas the isa links between them have to be static.

Only when the research was in the stage of completion, the author got to know about
the work by M. Kifer et al. [KLW90]. The connection between their formalism and ours
needs to be studied yet.
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