Unifying the Design and Implementation of User Interfaces
through the Object Paradigm

Véronique Normand Joélle Coutaz
Bull-IMAG Systémes Laboratoire de Génie Informatique
2, rue de Vignate BP 53X
38610 Gieres, FRANCE 38041 Grenoble Cedex, FRANCE
normand @imag.imag, fr joelle@imag.imag.fr

Abstract. This paper presents SIROCO, a rescarch on user interface design and
development support in an object-oriented programming environment. User interface
(UD) design in SIROCO focuses on conceptual modeling; a fully object-oriented
conceptual representation model and language is proposed, distinguishing the function
dimension from the use dimension in an interactive system. Interaction style and
presentation aspects are dealt with as generic parameters. SIROCO promotes a
continuous object-oriented approach from UI design to UI implementation, Transition
from conceptual design to implementation is achieved through an extended object-
oriented software architecture model. Effective UI development is supported by an
object factory that produces the object code needed to implement the specified user
interface.

1 Introduction

Object-oriented concepts have been used in human-computer interaction for a long
time now, pervading domains from user interface (UI) modeling methods to implementation
tools. Decomposition and encapsulation of a behavior behind an external interface are basic
object-oriented concepts that may be recognized in a number of contributions, for example:
event handlers for dialogue description (e.g., [Hill 86]), or multi-agent Ul system
architectures (e.g., PAC [Coutaz 90]). Class inheritance is an additional concept that appears
in a subset of more explicitly object-oriented proposals: MAD [Pierret-Golbreich 89] in task
modeling, UIDE [Foley 88] in functional design, the GWUIMS [Sibert 86], Smalltalk MVC
[Goldberg 84], programming tools such as graphical toolkits (e.g., Motif [OSF 89]) and
application frameworks (e.g., MacApp [Schmucker 86]), to name a few.

The object paradigm offers a natural and powerful modeling scheme for user
interfaces, which may be further exploited. This paper elaborates on one simple observation:
an object may be anything from an abstract concept to a concrete implementation module.
Thanks to this width in scope, the object paradigm can be viewed as a unifying concept
bridging the gap between the UI design and implementation tasks.

Unifying system analysis and implementation is a concern underlying some recent
works in object-oriented software design. General object-oriented analysis methods are
being devised ([de Champeaux 91], particularly [Jacobson 87], ...), simplifying the
transition from object-oriented analysis to object-oriented implementation; this transition
cannot however be thoroughly explicated and supported in a general context, due to the

154

amount and the domain specificity of the factors influencing the implementation of a
system. Our feeling is that user interface is a specific enough domain to allow an effective
support of this transition in a given development environment.

This paper presents STROCO, a research on Ul design and development support in
the GUIDE (Grenoble Universitics Integrated Distributed Environment) object-oriented
programming environment [Krakowiak 90]. Target GUIDE applications are data-oriented
rather than processing-oriented; typical applications are office applications (e.g., an
electronic agenda system), a document circulation system, etc. Target interfaces are
relatively simple form- or icon-based interfaces, with an interaction style mixing keyboard
entry and mouse direct designation.

User interface design in SIROCO focuses on conceptual modeling; a fully object-
oriented conceptual representation model is proposed, along with a dedicated specification
language. Transition from conceptual design to implementation is achieved through an
extended object-oriented software architecture model. Effective Ul development is
supported by an object factory that produces the object code needed to implement the
specified user interface.

After a rapid introduction of the notion of conceptual modeling, the SIROCO
conceptual representation model and language are presented. Interaction style and user
interface presentation design is then addressed. Finally, the transition from conceptual

objects to implementation objects is explicated. Related work is rapidly discussed before
concluding.

2 Modeling the User Interface: Focusing on the Concepts Behind the
Image

The main assumption of our work is that a user interface design can be decomposed
into conceptual choices, interaction style choices and presentation choices. SIROCO
addresses all three aspects of UI design, focusing on conceptual modeling as the key input
to a UI development tool.

2.1 User Interface Conceptual Modeling

Conceptual modeling aims at defining the designer's abstract model of the interactive
system, that is the semantic model to be transmitted to the user through the interface. Just
what is in this abstract model? Our approach is to distinguish two dimensions in an
interactive system: the function dimension and the use dimension, emphasizing a duality
underlying numerous works such as [Moran 81}, [Green 85] and [Barthet 88].

The function dimension describes the entities and operations that constitute the
functionality of the system.

The use dimension describes the way the functional entities and operations relate to
the user tasks. Itis based on a small set of specific concepts, mainly the notions of user task,
operating image, and operating procedure. A user task defines a goal that the user will
achieve with the system. Closely related to the notion of task, the concept of operating
image denotes the user's deforming view on an entity: an entity used in the accomplishment
of a task undergoes a deformation emphasizing elements relevant to the task while
dismissing non relevant elements. The user accomplishes a task with a system through the
execution of an operating procedure defined as a sequence of system commands.

155

2.2 Capturing Design Data

User interface design is a difficult task characterized by a large set of volatile often
implicit information. Our aim is to provide a formalism helping to collect a maximum of
data from the designer - data that most of the time are lost to User Interface Development
System tools for they remain implicit and non formalized.

Design data can be of three types: structural, semantic and logical. Structural data
describe organizational aspects of a UI, and constitute the core of the conceptual model;
semantic and logical data provide complementary information attached to structure
elements. For each type of data, generic aspects must be isolated from specific aspects.

Objects provide a general method to express the structural aspects of our Ul
conceptual model. As to semantic or logical data representation, objects are of no help; we
introduce the notion of property as an extension to the object-oriented model in order to
capture logical and semantic data. A property is a valued label; the label identifies the type
of information contained as the value of the property - possible types are text, number,
boolean, but also function.

The next section presents the SIROCO conceptual model, highlighting the
structural, semantic, and logical data representation features of the model.

3 The SIROCO Conceptual Model

The distinction between function and use dimensions in the structure of a Ul is
captured in a two-fold model offering on the one hand the notion of Application Concept,
and on the other hand the notions of Perspective and Workspace.

The remaining part of this section presents the different elements of our model. The
model is illustrated by a popular but not trivial example: an electronic mail system.

3.1 Function Dimension: Application Concepts

An Application Concept represents an entity of the application the semantics of
which lie within the task domain or the interface metaphor. For example, Application
Concepts of an electronic mail system may be the concepts of user, mailbox, and message.
They may also include the concepts of trash bin, post-office, etc. depending on the design
choices.

An Application Concept is specified as an object offering a set of data attributes and
a set of operations. Data attributes express the system data model; we distinguish simple
attributes (with simple data types: integer, string, date, etc.) and complex attributes (with
types referencing an Application Concept definition). This simple object model is enriched
with a set of properties allowing the collection of complementary information on semantic,
logical and structural aspects of an Application Concept.

Example. We define four Application Concepts for the mail application: user, mailbox,
message and received message. The latter concept is defined in order to express some
functional constraints on the concept of message.

User. A user has a name and possesses a mailbox. It is modelled as the Application Concept
User_AC in the following SIROCO specification':

156

CONCEPT User_AC IS
/! properties)
_name: “user" // semantic property:
/f natural language identification

{1 attributgs

ATTRIBUTE Name : STRTNG // simple attribute
_name: “name"
_kind: KEY; /f semantic property: key attribute
_size: 12 /1 structural property: size

ATTRIBUTE Mbox : MailBox AC // complex attribute
_name: "mailbox®
END User_AC.

Mailbox. A mailbox is a simple list of received messages. It is modelled as the Application
Concept MailBox_AC:

CONCEPT MailBox_AC IS

/I properties
_name: *mail box* /l semantic property:
// natural language identification
// attributes

// complex attribute
ATTRIBUTE Messages : LIST OF RecMessage_AC
END MailBox_AC.

Message. A message has a sender, a reception time, a subject and a text; sender and
reception time are two data items that cannot be overwritten. Moreover, a message may
either be deleted or posted. It is modelled as Message_AC in the SIROCO description:
CONCEPT Message_AC IS
_name : "message"” // identification
// attributes

// read-only complex attribute
R_ATTRIBUTE Sender : User_AC
_name : "sender"*
_kind : KEY:
// read-only simple attribute
R_ATTRIBUTE Time : Time
_name : “reception date*
/f read-write simple attribute
ATTRIBUTE Subject : STRING
_name : "subject"
_kind : KEY;
_size : 40
ATTRIBUTE Text : STRING

// operations
OPERATION Delete

_name : “destruction*

_kind : DESTROY;

/1 operation with one parameter

OPERATION Post

_name : *“send the message*

IN Whom : STRING // input parameter

_name : “receiver"

1. The SIROCO descriptions appearing in this paper are minimal; in
particular, property lists are limited to a subset of elements.
So as to clarify the language syntax, key words as well as pre-defined

property values appear in capitals. Property labels are set in
lowercase letters, beginning with the ‘_’ character.

157

END Message_AC.

Received message. A received message is a message the subject and text of which cannot be
modified; the Post operation cannot be called on a received message. Hence the SIROCO
description:

CONCEPT RecMessage_AC RESTRICTS Message_AC IS
_name : “received message"
// attributes
R_ATTRIBUTE Sender
R_ATTRIBUTE Time
R_ATTRIBUTE Subject
R_ATTRIBUTE Text
/! operations
OPERATION Delete
END RecMessage_AC.

Property sets. A property set is attached to each Application Concept as well as to each
element composing the Application Concept (operation, parameter, data attribute). We
distinguish intrinsic properties from contextual properties. Intrinsic properties have values
bound to the Application Concept while values of contextual properties may change
depending on the context within which the Application Concept is being used, as will be
seen later on in section 3.2.

Collecting Semantic Data. Semantic information is collected through a list of properties
present in any property set. Generic semantic information is specified in king, a multi-
valued intrinsic property. Examples of generic semantic information are "key" for a data
attribute (with the data base meaning), or "destroy" for an operation (meaning that the
operation execution modifies the system state in a definitive way).

Application specific semantic information is gathered through the double
mechanism of contextual and intrinsic properties. On the one hand, natural language
explanations are collected in a set of contextual identification properties (textual name and
description of the Application Concept). On the other hand, the intrinsic multi-valued
semantic-traits property allows the formalization and collection of application semantics
in the form of designer-defined identifiers.

Collecting Logical and Structural Data. Logical information is collected through a set of
properties depending on the type of conceptual element considered.

+ Data attributes have properties to specify constraints on their values: an
intrinsic size property (for strings or sets), an initial-value and a
value-range property.

+ Operations have properties allowing the description of constraints on
their activation: intrinsic pre-condition, post-action, parameter-
validation condition properties.

+ Properties of an operation parameter are identical to those of a data
attribute, with the addition of a contextual 1ink property for result
parameters, so as to specify how returned values are to be used.

Relations Between Application Concepts. Relations between two Application Concepts
ACI and AC2 may thus be structural, semantic and logical.

158

+ ACI has a data atribute defined as an AC2; AC1 and AC2 have
structural relations. In addition to this referencing relation, real
composition structuring relations are under study.

» Several possibilities may coexist for semantic relationships : AC1 and
AC2 may have common semantic-traits of common kind values. An
IS-A relation may also be expressed between AC1 and AC2: AC1 IS-A
AC2 means that ACI is defined as a specialization of AC2 through
inheritance mechanisms (only single inheritance is considered for the
moment).

- Logical relations between AC1 and AC2 instances are expressed
through properties such as the initial-value attribute property and
constraint operation properties.

3.2 Use Dimension : Workspaces and Perspectives

Workspaces and Perspectives are elements of the model dedicated to the
organization of the data and operation space defined by Application Concepts according to
the system use dimension. Figure 1 uses a spatial metaphor to illustrate the notions of a
Workspace and a Perspective relatively to an Application Concept.

Application
Concept
Workspace Perspective

ST

Figure 1: Organizing the Application Concept space through Workspaces and Perspectives.

A Workspace is a partitioning unit of the user interface; a Workspace represents a
conceptual "place” (in the sense of the "room" concept in [Henderson 86]) where a precise
set of tasks may be accomplished by the user. A Workspace gives access to a set of
Application Concepts - the Application Concepts required to perform the given user tasks.
This access is refined and constrained by a set of Perspectives defined on the Application
Concepts. Depending on his/her goals, the user’s activity may span several Workspaces;
possible paths for navigating among Workspaces are defined as Workspace Operations.

A Perspective defines a point of view on an Application Concept through a filter on
the attributes and operations of the concept. A Perspective defines what may be seen as an
operating image on the Application Concept, highlighting the attributes and operations
potentially useful in the procedures solving the tasks in a Workspace, and hiding the
elements irrelevant to these tasks. Several Perspectives may be defined on a given

159

Application Concept; a particular one is the full Perspective (i.e., no filtering).

In terms of the object paradigm, a Workspace is defined as an object the data part of
which is a set of Application Concepts, and the operation part of which is a set of navigation
operations. A Perspective is defined as a restriction on the type of an Application Concept

object; Perspectives are elements embodying the polymorphism of Application Concept
objects.

Example, Several combinations of Workspaces may be defined for the mail application.
Starting from the mail task tree (not represented here), we propose to organize the use
dimension of the system into five Workspaces:
- the Connection Workspace, where the user connects to the system,
giving his/her name.
- the Handling Workspace, main Workspace of the application, where the
user has a global view on his/her mailbox, and may delete messages.
+ the Read and Reply Workspaces, where the user reads and replies to a
received message.
- the Write Workspace, where the user composes a message from scratch,
and posts it.
Logical sequencing relations between these five Workspaces are illustrated in figure
2, expliciting the possible navigation paths from one Workspace to another.

—» sequence
—_— mulu’zlple &)arallel
. activations
Connection WS s unique.parallel
l activation
Handling WS
Read WS Reply WS Write WS
i %

Figure 2: Workspaces of the mail system: sequencing relations.
We will only explicit the Handling and Read Workspaces.

Handling Workspace. This Workspace is defined as the main Workspace of the mail
application, articulation point between the different user activities. It offers a global
Perspective on the mailbox of the user; the only effective task that may be accomplished in
this Workspace is the deletion of a message. The Handling Workspace offers a set of
operations allowing the "access” to three other Workspaces: Read, Reply and Write
Workspaces.

WORKSPACE Handling_WS IS

-nhame : "handling the mailbox* . .
_kind : MAIN; /I semantic property: main workspace

// data presented in the Workspace .)
// Application Concept and its associated Perspective

160

user : User_AC WITH PERSPECTIVE Global_P

// navigation operations
/f access to the Read Workspace
WS_ACCESS Read TO Read_WS
-name : “read a message* . X
I/ logical scquencing property: Read WS will run
// inparallel with the current Workspace
_relal.ion ; PARALLEL;
// logical property: transmission of data
// from current to Read_WS
_data_transmission :r_mess:= mess;
IN mess : RecMessage AC // input parameter
_name : "message to read*

/f access to the Reply Workspace
WS_ACCESS Reply TO Reply_ WS
name : “reply to a message*
_relation : BARALLEL;
_data_transmission :r_mess:= mess;
IN mess : RecMessage_AC
_name : "message to reply to"

// access to the Write Workspace
WS_ACCESS Write TO Write_WS
_name : *write and send a message"”
_relation : PARALLEL;
END Handling_WS.

Dynamics of the Handling Workspace, as expressed by the description above, imply
that the user may:

- exit this Workspace, which terminates the application (as implied by the
"main" value of the xind property).

- delete a message (operation Delete defined in perspective Global_P, as
represented below).

+ run a new Workspace: Read_WS, Reply_WS or Write_WS (as implied
by ws_access operations). New Workspaces are then instanciated and
run as new parallel activities of the user (as the value of the relation
property implies).

Perspective Global_P. The definition of a Perspective recursively associates a Perspective
to each of its complex data attributes (i.e., data attributes referencing an Application
Concept). Perspective Global_P allows a global visualization of the list of the messages
received in the mailbox of the user; an identifying header is presented for each message; the
deletion operation is moreover allowed.

PERSPECTIVE Global_P ON User_AC IS
R_ATTRIBUTE Name
/! recursive specification of a perspective for complex attribute Mbox
ATTRIBUTE Mbox
WITH PERSPECTIVE Mbox_P IS
// specification of a perspective for complex attribute Messages
.. .PERSPECTIVE Header_P...
END Mbox_P
END Global_P.

// perspective on a received message
PERSPECTIVE Header_P ON RecMessage_AC IS
R_ATTRIBUTE Sender WITH PERSPECTIVE Sender_P
R_ATTRIBUTE Subject
R_ATTRIBUTE Time
OPERATION Delete
END Header_P.

161

// perspective on the sender of a received message
PERSPECTIVE Sender_P ON User_AC IS

R_ATTRIBUTE Name / filtering out everything but the Name attribute
END Sender P,

Read Workspace. This is the virtual "place" where the user can read a message. This
Workspace offers a reading Perspective on a received message Application Concept; a
navigation operation is defined as a short-cut to the Reply Workspace.

WORKSPACE Read_WS IS
-name : "reading a message*

_instances : MULTIPLE; /I logical property: this workspace may be
// multiply instanciated
~unique_idem? : TRUE; /[logical property: instances of this

/I workspace may not present the same data.

// data presented in the Workspace
IN r_mess : RecMessage_AC WITH PERSPECTIVE Read_p

// navigation operations
// access to the Reply Workspace
WS_ACCESS Reply TO Reply_WS
_name : "reply to a message"
_relation : PARALLEL;

_data_transmission :r_mess:= r_mess;
END Read_wSs.

The properties specified for the Read Workspace allow the activation of multiple
different co-existing instances of this Workspace, as implied by the values defined for the
instances and unique_idem? properties.

Perspective Read_P. This perspective allows a detailed view on the contents of a received
message.

PERSPECTIVE Read_P ON RecMessage_AC IS

R_ATTRIBUTE Sender WITH PERSPECTIVE Sender_P
R_ATTRIBUTE Subject
R_ATTRIBUTE Time
R_ATTRIBUTE Text
END Read_P.

Property sets. In order to collect semantic and logical information, property sets are
associated to each of the use dimension elements. The property sets associated to a
Perspective and its sub-elements (data attributes, operations and operation parameters) have
the peculiarity to allow the overloading of the contextual properties defined for the
corresponding elements of the underlying Application Concept. These property sets also
contain properties that are local to the Perspective.

Collecting Semantic Data. Semantic properties presented in 3.2 are also defined in the
property sets of the use dimension elements. Examples of generic semantic information
include:

» "main” or "exit gate" for the Workspace kind property value to specify
the role or potential role of the Workspace within the application
interface.

+ "prototype” for a Perspective kind property value, meaning that the
presented object is not an existing instance but a prototypic template.

162

Collecting Logical Data. Logical information is collected through a set of properties
depending on the type of element considered.

Workspaces have propertics to specify constraints on their instanciation: an
instance property tells whether instanciation is to be unique or multiple at execution time
(i.c., whether several instances may be activaled by the user); a unique_iden property
expresses whether identical instances (i.e., presenting the same data) are proscribed or not.

Workspace operations have properties identical to those presented for Application
Concepts Operations, with the addition of properties describing the relations between the
Workspaces that are the source and the destination of the navigation: a relation property
to specify sequence, parallelism, suspension, etc.. a data_transmission property to
describe optional transmissions of data from the source Workspace to the destination
Workspace.

Perspectives have logical properties identical to those defined for Application
Concepts in 3.1, In particular, pre-condition and post-action properties on operations
allow for the definition of part of the Ul dialogue dynamics, in the context of the Workspace
where the Perspective is being used.

4 Interaction Style and Presentation Design Choices

As previously explained, SIROCO considers interaction style aspects as well as
presentation design independently from conceptual modeling. The SIROCO conceptual
modeling formalism allows for the description of structural, semantic and logical aspects of
the UI contents; so as to complete the design of the UI, interaction details must be
considered, and presentation choices must be specified.

SIROCO addresses both tasks in a simplifying generic manner.

4.1 Interaction Style Design

Interaction style design is mainly concerned with the design of command activation
syntax. Commands of the interactive system are the Application Concepts Operations and
Workspace navigation operations that appear in the description of the Workspaces and
Perspectives of the conceptual model, as seen in section 3.2,

Command activation involves the following actions: choice of the command, choice
of the object on which the command is to be applied, input of values for the parameters of
the command, if any.

SIROCO defines general interaction style features as common features for systems
developed in the GUIDE environment; in addition to these fixed features, SIROCO defines
several possible command activation styles, limiting design choices to positioning
interaction style parameters.

Common Features.

« The choice of the object of a command is only required if this command
is ambiguous (i.e., the command may be called on several different
objects presented in the interface).

» The choice of a command, of an object to this command, or the input of
a complex parameter (i.e., a reference to an Application Concept) are

actions realized through direct designation of displayed interface
elements.

163

« Input of simple parameters is realized through forms.

Interaction Style Parameters.
- Sequencing constraints on command activation actions: activation style

may be pre-fixed (object choice before command choice), post-fixed, or
unconstrained.

4.2 Presentation Design

Presentation design is concemed with the choice and layout of graphical
representations for the contents of a Ul Presentation may be decomposed into the
presentation of commands and the presentation of data.

As with interaction style choices, SIROCO defines general rules for GUIDE
applications interfaces, as well as presentation style parameters.

General Rules.

» The Motif style recommendations are applied. Commands are presented
in menu bars while data are presented in work areas of windows.

« A set of precise rules was defined so as to map conceptual model
elements onto graphical representations. The presentation of these rules
is out of the scope of this paper (cf [Normand 92]). To give the reader a
flavor of the interfaces produced with these rules, figure 3 shows the
SIROCO presentation of the Handling and Read ‘Workspaces specified
as examples in section 3.

AL T
H fils =i meror savices halp
aume qulr]

madbox |Porand sdowt sur eppointment.. taesday June 4
Matn halle ‘wasdey Juns 4 | B

soder | Durend

mbject [thu our sppoincment.

| e

taxt | blabla..

’ Opusian “resd amessage”:
Designetion of mesenge to read

Figure 3: Presentation image for the Handling and Read Workspaces of the e-mail system.

Each Workspace fits in one independent window. The identification strings are
those specified in the name properties. Command menu “services” contains the
navigation operations defined on a given Workspace. Command menus “edition”
and “help” are not part of the specification: these are facilities implicitely added
and managed by SIROCO (resp. cut-and-paste editing facilities, and a static help
system based on the natural language identification properties).

Presentation Style Parameters. These parameters only deal with the presentation of
commands in the menu bars of the interface windows. The main question regarding menu

164

bars organization is whether or not the object structure defined in the conceptual model must
be perceptible in the interface, Three presentation styles are defined:
+ per-concept: the object structure is preserved, and menus are organized
according to the data specified in Workspaces, Each Application
Concept presented in a Workspace with a Perspective containing
operations implies the creation of a menu the items of which present the
operations as commands of the interface; complex Application Concept
attributes may lead to the creation of sub-menus.
+ per-perspective: the object structure is preserved, and menu
organization focuses on Perspectives appearing in a Workspace.
* per-trait: menu bars organization does not respect the object structure,
but focuses on the values defined for the semantic_traits property of
the operations.

The interface presented in figure 3 corresponds to a per-concept organization of
commands.

5 From Conceptual Objects to Implementation Objects

Translating conceptual objects into implementation objects is the actual task of the
developer. This translation process is influenced by several general factors, mainly:
« the quality of developed code: the search for maintainability.
+ the limitations of the programming and executing environment: the
search for good performances.
- the implementation tools at hand.

SIROCO provides a double answer to UI development support: firstly, the SIROCO
specification model has extensions into the architecture design domain; secondly, the
SIROCO language can be used as input to an object factory providing full prototyping and
developing support.

5.1 Using a SIROCO Specification as the Rationale for Architectural Design

The use of an architecture model in the development of an interactive system is now
established; an architecture model serves as a guide simplifying the developer's task and
ensuring a robust code structure allowing the management of change during the life cycle
of the system.

Regarding the nature of the architecture to be used, a consensus seems to be reached
in the user interface development community, as some recent workshops demonstrate in
[Lisbon 90] and [Arch 91). The basic prevailing principles stem from the Seeheim model
[Pfaff 85] (see figure 4): the separation of the interactive system into a Functional Core and
a user interface component; the separation of the user interface component into a
Presentation Component, a Control Component, and a Functional Core Adaptor component
(referred to as domain adaptor in [Arch 91]). These principles constitute a general frame of
reference for user interface developers. More detailed architecture models were proposed
([Lisbon 90], PAC [Coutaz 90], ...), shedding some light on the contents of each general
application component; only general theoretical large-grain elements are proposed
however. Because of their generality these architecture models are often difficult to apply:
for example, experience with the use of the multi-agent PAC model shows that developers
often have problems identifying the agents for their system.

165

Dialogue
Component ‘y\

I Presentation
Component

Functional
Core
Adaptor

Functional \ ¢—»
Core

v

User Interface

Interactive System

Figure 4: General principles for an interactive system architecture.

Our approach is to use SIROCO as a system description reference for a detailed fine-
grain architecture model. This model is elaborated as an extension to a general model
derived from PAC; using the SIROCO conceptual model as a reference, a set of objects was
identified as the components of a system design. This extended architecture model is
illustrated in figure 5; its main features can be thus summarized:

- The Functional Core Adaptor reflects the conceptual model of the UI; it is made of
a set of objects representing the Application Concepts defined for the Ul

- The Control Component is decomposed into a set of control objects organized into
a hierarchical structure. The session control object manages the whole user session,
controlling the navigation among workspaces, their instanciation and deletion. The
workspace control object is in charge with the management of a workspace; particularly, it
coordinates data and operation control objects. A data control object manages an
Application Concept presented in a Workspace: it initializes its presentation, gathers
optional user input, and maintains the consistency between the internal Application Concept
object and its presentation. The operation control object manages the operations available
in a Workspace: it manages their presentation according to their current status (active or
not), and controls the activation of "simple” operations, that is commands that do not require
user input after the effective choice of the command; the operation control object delegates
dialogue-thread objects to control the activation of "complex" operations. A dialogue-thread
control object is in charge with the management of a direct dialogue between the system and
the user in order to get the user input required to activate a command (i.e., parameter values
or designation, object designation, confirmation for "dangerous" commands, etc.).

- The Presentation Component is decomposed into a set of objects dedicated to the
management of a specific part of the interface image; these objects provide a toolkit-
independent layer for use by the Control Component. Perspective objects are in charge with
the display of a Perspective on an Application Concept as well as with the user input related
to this Perspective. Workspace objects deal with the general presentation of a Workspace.
Menu-bar objects are concerned with the presentation of the menu-bar of a Workspace, and
the reception of user input related to this menu-bar. Param-form objects manage forms to
get parameter input values. Dialogue-thread objects are dedicated to the management of
dialogue windows such as confirmation windows, on which direct synchronous dialogue
with the user is based.

The precise description of each of the model implementation objects ([Normand 92])

166

is out of the scope of this paper.

: Control
Component
A@; Presentation
P Component

T Functional
Applicam% » Core
! “(‘,nnce/ Adaptor

session

1 to 1 relationship ——— 1 to N relationship

Figure 5: The SIROCO extended architecture model.

5.2 An Object Factory

A prototype of an object factory was implemented as part of SIROCO, with the
GUIDE language as a target language. This code generator offers an automation of the
translation process from conceptual objects to implementation objects with the following

features:

respect of the architecture model introduced above, so as to ensure
modularity and maintainability of the generated code: the generated
objects are "accessible" to programmers for optional tailoring and
change.

use and extension of an existing UIMS in the GUIDE environment
[Normand 90] as a platform for the generated code.

use of X Window and the Motif toolkit to implement the Presentation
objects.

maximization of object instances reuse at execution time (a simple
technique to help ensure correct performances at execution time).

167

This object factory provides powerful prototyping facilities since the generated
objects fully implement the functionalities specified with SIROCO; in particular, the
generated Control Component objects manage the dialogue and UI dynamics according to
the constraint properties defined on operations, the sequencing properties of Workspaces,
and the interaction style parameters. These objects are not limited to prototyping however:
they can be used as part of the final system code as well.

The main shortcomings of the generated code lie with the presentation objects: the
automatic interface image they implement needs reviewing and improvement in order to fit
in the final interface. The X resources mechanism provides a way to refine or change image
details; in the case where a profound change is necessary, a whole presentation object may
be replaced by another developer-defined object.

6 Related Work

Modeling the functional aspects of a Ul and automatically generating code
supporting this Ul is nothing new, even though this approach has rarely been adopted.
MIKE [Olsen 86] uses command and parameter descriptions to automatically generate a
user interface. UIDE [Foley 88] has an approach closer to ours: UI specification is based
on an object-oriented model; functional aspects of an interface are described in terms of
object classes, a UIDE object corresponding to a SIROCO Application Concept. A UIDE
object definition however features interaction style elements, e.g. the notion of current
selection. Related tools have been developed in the data base application domain; for
example, MacIDA UIMS [Petoud 90] generates a Ul from functional specifications based
on the description of entity-relationship schemes as well as atomic functions and
synchronization messages (to express dynamic constraints on user actions).

Our research extends functional modeling as featured in UIDE along two directions:
first, on the semantic/logical information front, allowing the collection of meta data on Ul
concepts; second, SIROCO addresses the use dimension of a Ul, allowing the
representation of Workspaces, and offering with the notion of Perspective an additional
freedom degree in the expression of the conceptual elements presented in a Workspace.

Another innovative aspect of SIROCO is its incursion from Ul design into UI system
architecture modeling, supporting a continuous object-oriented approach to both tasks.

7 Conclusion

We have described basic aspects of SIROCO, a user interface specification model,
language and code generator. SIROCO focuses on conceptual modeling, and proposes a
representation model distinguishing the function dimension and the use dimension in an
interactive system; interaction style and presentation aspects are dealt with as generic
parameters. SIROCO fits in an object-oriented programming environment, and promotes a
continuous object-oriented approach from UI design to Ul implementation.

Current status. A first prototype of the object factory has been developed; although some
features of the SIROCO language are not yet fully supported, the prototype allows the
generation of the interfaces of systems such as the e-mail system.

Prospects. Prospects are threefold: extensions to the model, specification tools, and

168

evaluation support. In its present shape, the SIROCO model suits relatively simple form- or
icon-based interfaces; the augmentation of the model in order to widen the target interfaces
scope is one prospect - in particular, direct manipulation concepts are under study.
Specification tools include editors allowing interactive specification of SIROCO
descriptions, interactive adaption of the automatically gencrated image, etc. Ul design
evaluation is a topic that SIROCO does not address further than completion and
connectivity checking; linking conceptual modeling to a user task description tool (e.g.,
MAD [Picrret-Golbreich 89] [Scapin 90]) is a particularly interesting prospect that would
allow the evaluation of a conceptual design regarding the accomplishment of the user tasks.

References

[Arch 91]

[Barthet 88]
{de Champeaux 91]

[Coutaz 90]

[Foley 88]

[Goldberg 80]

[Green 85]

[Henderson 86]

[Hill 86]

[Jacobson 87}

[Krakowiak 90]

{Lisbon 90]

The Arch Model: Seeheim Revisited, User Interface Developers'
Workshop, April 26, 1991.

Barthet M. F., Logiciels Interactifs et Ergonomie, Dunod, 1988.

de Champeaux D., Object-Oriented Analysis and Top-Down
Software Development, ECOOP'91, July 1991, p. 360-376.

Coutaz J., Interface homme-ordinateur : conception et réalisation,
Dunod Publ., 1990.

Foley J., Kim W. C., Kovacevic §., Murray K., The User Interface
Design Environment, Report GWU-IIST-88-4, George Washington
University, January 88.

Goldberg A., Smalltalk-80: The Interactive Programming
Environment, Addison-Wesley Publ., 1984.

Green M., The Design of Graphical User Interfaces, Ph. D. Thesis,
CSRI-170-85, Computer Systems research Institute, University of
Toronto, 1985.

Henderson D. A. Jr,, Card S. K., Rooms : The Use of Multiple
Virtual Workspaces to Reduce Space Contention in a Window Based
Graphical User Interface, ACM Transactions on Graphics, (5)3, July
1986, p. 211-243.

Hill R. D., Supporting Concurrency, Communication, and
Synchronization in Human-Computer Interaction: the Sassafras
UIMS, ACM Transactions on Graphics, (5)3, July 1986.

Jacobson I., Object Oriented Development in an Industrial
Environment, OOPSLA'87, October 87, p. 183-191.

Krakowiak S., Meysembourg M., Nguyen Van H., Riveill M., Roisin
C., Design and implementation of an object-oriented, strongly typed
language for distributed applications, Journal of Object-Oriented
Programming, September 1990.

User Interface Management and Design, Proceedings of the
Workshop on User Interface Management Systems and
Environments, Lisbon, Portugal, 4-6 June 1990.

[Moran 81}

[Normand 90}

[Normand 92]

[OSF 89]

[Olsen 86]

[Petoud 90]

[Pfaff 85]

169

Moran T. P., The Command Language Grammar : a representation
for the user interface of interactive computer systems, International
Journal of Man-Machine Studies, (15),1981, p. 3-50.

Normand V., A Practical Framework for Interactive Applications in

GUIDE, an Object-Oriented Distributed System, Proceedings of
TOOLS'90, July 1990, p. 657-768.

Normand V., Le modele SIROCO : de la spécification conceptuelle
des interfaces utilisateur 2 leur réalisation, Thase de doctorat de
I’université Joseph Fourier - Grenoble I, 1992.

OSF/Motif Programmer's Reference Manual, Open Software
Foundation, Cambridge, MA, 1989.

Olsen D., MIKE: The Menu Interaction Kontrol Environment, ACM
Transactions on Graphics, 5(4), October 1986.

Petoud 1., Génération automatique de l'interface homme-machine
d'une application de gestion hautement interactive, Ph.D. Thesis,
Université de Lausanne, Switzerland, 1990.

User Interface Management Systems, G. E. Pfaff ed., Eurographics
Seminars, Springer-Verlag, 1985.

[Pierret-Golbreich 89] Pierret-Golbreich C., Delouis I, Scapin D., Un outil d'acquisition et

[Scapin 90]

[Schmucker 86]

[Sibert 86]

de représentation des tiches orienté objet, Rapport 1063, INRIA,
Rocquencourt, France, August 1989.

Scapin D., Aiding mechanisms for the design of user interfaces,
Proceedings of the First International Conference on Automation
Technology, July 1990..

Schmucker K., MacApp: An Application Framework, Byte, 11(8),
1986, p. 189-193.

Sibert J. L., Hurley W. D., Bleser T. W., An Object-Oriented User
Interface Management System, SIGGRAPH'86, Dallas, 1986.

