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Abstract. Contracts were introduced by Helm et al. as a high level construct
for explicitly specifying interactions among groups of objects. This paper de-
scribes further developments and application of the Contract construct. We
show how Contracts can be used to represent classic algorithms as large grained
reusable object oriented abstractions, how these algorithms can be customized
through Contract refinement and how they are reused through Contract con-
Jormance. The example algorithm used throughout is the classic graph depth
first traversal algorithm. This algorithm is represented as a Contract which is
then refined to specify algorithms which number connected regions of graphs
and which check graphs for cycles. Changes to the Contract language are in-
troduced and we discuss some new problems resulting from the simultaneous
reuse of related contracts.

1 Introduction

Contracts were introduced by Helm et al. [9] as a construct for explicitly specifying
interactions among groups of objects. The objects in such a group, called a behav-
ioral composition, work together to accomplish a particular task or to maintain some
invariant. Each object provides some of the required functionality and participates in
a communication protocol with the other members of the group. Understanding the
different roles individual objects play in behavioral compositions, and understanding
how the objects collaborate, is crucial for object oriented software design and reuse
[2, 27, 26, 23]. The Contract language addresses this crucial need by enabling the
software developer to explicitly specify the different object roles in context.

The development of the Contract construct was motivated by our interest in de-
scribing the complex behavioral compositions found in the InterViews[17] C++ user
interface framework. We have since extended our research to include business/MIS
applications and algorithmic reuse. This paper describes results from the last of
these areas. The two main contributions are:

e to present the further development and application of the Contract construct

e and to present a solution to the problem of representing and reusing algorithmic
programming cliches.

We will show how Contracts can be used to represent variations of the classic
depth first traversal algorithm as large grained reusable object oriented abstractions.
Graph algorithms such as, search, node ordering, cycle checking and path finding
can all be represented as variants of depth first traversal. Each variant requires

Work supported in part by IBM T.J. Watson Research Center and in part by the National Sci-
ence Foundation under grants CCR-9102578 (Software Engineering) and CDA-9015692 (Research
Instrumentation).



288

customization of both the basic graph data structures and functionality. Through
data and function abstraction, the core depthfirst algorithm will be isolated and
represented in contract form. FEach algorithmic variation is then expressed as a

customization of this core using contract refinement and finally used in an application
throngh Contract conformance.

Our combined functional and data abstraction approach is a generalization of
the reuse technique described by Bishop[5]. She uses a data abstraction approach to
isolate classic loop algorithms from data structure implementation details, special
language control structures and deft programming techniques. She claims that these
loop algorithms can then be packaged as reusable software components.

Contracts support the reuse and refinement of larger grained software compo-
nents. They can be used to specify reusable abstractions composed of many in-
terrelated subcomponents, some, or all, of which can be specialized to form new
more detailed abstractions. The basic underlying model remains object oriented,
consisting of objects, message passing, methods and inheritance.

The use of an object oriented model to represent and manipulate program frag-
ments and programming knowledge, such as knowledge of data structures and graph
traversal algorithms, differentiates this work from previous approaches. For ex-
ample, the PARIS[14] specification language, the PROUST[11] intelligent tutoring
system and the Programmers Apprentice project[25] each represent and manipulate
programs at the meta-level. However, their representation languages reflect a pro-
cedural view of software. The Plan Calculus graphical notation of the Programmers
Apprentice project is used to represent program cliches in the form of graphs similar
to data flow diagrams. This is a consequence of the view of Rich and Shrobe[24]: “We
view programs as being constructed of input-output segments connected by control
and data flow.” Clearly, new formalisms are required to describe object oriented rep-
resentations of program cliches. We claim that Contracts fulfill that requirement.

The recent work by Rao[22] introducing implementational reflection provides fur-
ther motivation for the development of a construct to represent, and reason about,
object oriented software. He defines implementational reflection as reflection in-
volving inspection and/or manipulation of the implementational structures of other
systems used by a program. He argues that a software system’s implementation
architecture be made explicit and open, thus allowing customization. Currently, the
architectural information is represented informally in the form of English descrip-
tions of meta-level objects and their interactions, called protocols. The Contract
language can support the formal description of these protocols which can then lead
to the development of tools to manipulate the information.

We are developing a tool to support the direct reuse of Contracts for C++
application development. This has also resulted in some additions to the language.
The main differences between the notation of [9] (which I shall henceforth refer to as
Contractg) and that used here are: an explicit distinction between the participating
objects and their corresponding type obligations?, an extension to the language
used to express causal obligations, and the introduction of two keywords public and

default.

2This notational change was suggested by Karl Lieberherr.
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The last issue that will be briefly addressed is the problem of reusing conflicting
components. This accurs at the macro level when attempting to reuse two incom-
patible class libraries[3]. It occurs at the micro level when two related contracts are
used in a single application instantiation. We will address one aspect of this micro
level problem which occurs when two variants of the same basic contract are reused
in a single instantiation.

The layoul of the paper is as follows: The next section describes the aspects
of the contract mechanism that were introduced in [9]. Section 3 describes the
depth first algorithm and its contract representation. Section 4 defines a number of
specializations of this contract. Seclion 5 describes how these variations are used
in an application, Section 6 discusses some implementation concerns and scction 7
concludes.

2 Contracts revisited

Contracts are proposed as a high level notation for describing the different paradigms
encoded in frameworks such as the InterViews[17] C++ user interface class library.
The user interface domain is rife with behavioral compositions which determine how
graphical objects remain consistent with the data they represent, how scrollbars
affect the contents of a window, how radio buttons work, and how the selection of
a menu item causes the execution of an application function, etc. Some of these are
specified in Contracty. Understanding these behavioral compositions and identifying
the classes which implement them is the first step to using the framework.

A Contract specifies behavioral compositions in terms of: the participating ob-
Jects, the contractual obligations for each participant, invariants to be maintained by
the participants and the methods which instantiate the Contract. The contractual
obligations consist of type obligations, where the participant must support certain
variables and external interface, and causal obligations, where the participant must
perform an ordered sequences of actions, including sending messages to the other
participants. Since Contracts are designed to represent message passing protocols
between objects they are necessarily imperative in nature. This contrasts with the
declarative nature of other object oriented formalisms, e.g. Features[13].

The behavior of a participant is specified by its obligations. However, since an
object may participate in many Contracts, its total behavior may be quite complex.
Each Contract factors this behavior into separate contexts, which can be indepen-
dently understood and modified. This is similar to the approach of Hailpern and
Ossher[8] who separate an object’s total interface into subsets called Views. Restrict-
ing clients to using selective predefined views adds an additional layer of information
hiding. Others factor an objects interface into subsets called Roles [20, 1], where a
role represents a discrete stage in an object’s life cycle.

The behavior of one or all participants of a Contract can be specialized and
extended through the Contract refinement and Contract inclusion mechanisms. The
inclusion and refinement mechanisms enable new contracts to be defined in terms
of previously defined contracts. This ability to isolate, independently modify, and
combine cohesive units of behavior is the important feature of Contract use which
will be exploited in the next sections. In this sense, the Contract language can
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be considered a module interconnection language {21] for object oriented software.

contract UndirectedGraph
participants
graph : Graph;
vertices : Set(Vertex);

Graph supports |
vertices : Set(Vertex);
public insert(v : Vertex) : void;
]
Vertex supports |
neighbors : Set(Vertex);
. ] .
invariant
graph.vertices = vertices A
(Vv € vertices : v.neighbors C vertices) A

(Vv € vertices = (Vv2 € v.neighbors : v € v2.neighbors))
end contract

Figure 1:

Many other researchers in the object oriented field have recognized that the class
abstraction is too fine grained for large scale object oriented development and provide
constructs for grouping classes together, e.g. Class dictionaries {16}, Mechanisms [6],
Subsystems [27], Clusters [18], Features [13], and Frameworks (7, 10]. Johnson and
Foote [10] state that such a group of abstract classes, can be used to express an
abstract design. Reusing this abstract design involves not only reuse of individual
classes but also reuse of the relationships and interconnections between these classes.
Large grained reusable components which include aspects of control flow as well
as functionality, are also called reusable software architectures [12] and program
schemas [15, 14]. The reuse of design level information has been identified as critical
to realizing the promise of reuse [4]. However, as Biggerstaff and Richter [4] state,
the designs must be represented in a form that is machine processable. This is one
of the primary motivations for the development of the Contract formalism.

The examples in this paper are based on extensions of the contract partially
described in figure 1. The basic undirected graph data structure, which will be
traversed by the algorithms defined in sections 3 and 4, is described by the Undi-
rectedGraph contract between two kinds of participants: a graph object and a set of
vertices. The contractual obligations on the graph participant specify an instance
variable to store its vertices and a function insert (to insert each vertex). We re-
quire an adjacency list representation for the graph data structure as a basis for the
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traversal algorithms. Therefore, the obligations on each vertex participant include
an instance variable to hold the set of its neighbors.

The public keyword in the declaration of the insert function specifies that the
function may be invoked by functions external to the contract. The default visibility

for functions is private, i.e. they may only be invoked by other functions defined for
the contract.

For the purposes of this paper, the most important part of figure 1 is the contract
invariant. It states: the vertices of the contract are precisely those stored in the
instance variable of graph; the neighbor set of cach vertex is a subset of the vertices
and lastly; each vertex is an element of the neighbor set of each of its own successors
(i.e. the edges are undirected). In other words, the invariant ensures that the
participating objects do indeed represent an undirected graph.

The first benefit of specifying this information in Contract form is that the speci-
fication of the two components of the graph data structure (i.e. the Graph and Vertex)
can be expressed in a single syntactic unit, the UndirectedGraph contract. This unit
can be directly manipulated and used with the contract inclusion and refinement
mechanisms to construct new contracts. In fact, section 3 will include Undirect-
edGraph for the definition of the Depthfirst contract. A second benefit is that the
invariant allows one to express constraints on the combined behavior and structure
of the contract participants. In UndirectedGraph, the invariant involves terms from
both the Graph and Vertex participant specifications.

3 Depth first traversal

A software developer’s programming knowledge includes many programming tricks,
paradigms, algorithms, implementation techniques and problem solving approaches.
Typical components of this mental toolkit is knowledge of data structures and their
associated algorithms. However, each time the developer needs to use this knowledge
they must reimplement, and sometimes reinvent, the details. Representing this type
of information, sometimes called programming cliche$[25], and supporting its direct
reuse has been a much sought after goal.

In this section, we will use Contracts to describe the representation of a generic
depth first traversal algorithm over an undirected graph in adjacency list format.
There are a number of benefits which result from representing generic algorithms
such as this in a directly reusable form. Firstly, correctness and efficiency results
proven for the generic representation will transfer to the specializations. Secondly,
the representation makes the architecture of the algorithm explicit, names each
of the constituent components and shows where customization is expected. This
forms a meta-level programming language for considering and expressing the possible
variations of the generic algorithm.

Figures 2a-2c show pseudo-code descriptions for three graph algorithms based on
depth first traversal.

¢ Dft-Number: Number each vertex of the graph in the order it was visited by
the traversal.
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/* Graph in adjacency list form */

/* Number cach vertex in the order traversed */

for each v € Vertices v.mark :— unvisiled [* initialize each graph vertex as unvisted */
DNumber ;= 0 /¥ initialize the counter */

for each v € Vertices Depthfirst(v) /* traverse each vertex */

proc Depthfirst(v = Vertex)

if v.mark = unvisited then /¥ don’t visit the same vertex twice */
v.mark := wvisited
v.dft-number -= DNumber /¥ assign the counter value to the vertex */
DNumber := DNumber + 1 /* increment the counter */

for each v2 € v.Neighbors Depthfirst(v?)
/* traverse each of the vertex neighbors */

endif
endproc

Figure 2a: Dft-Number

e Dft-Connected: Number all the vertices of connected regions equally.

o Dft-CycleCheck: Check for cycles in the graph.

The informal procedural notation is typical of that used in standard data structures
and algorithm texts. Each algorithm follows the same basic form, but the imple-
mentation of Depthfirst is slightly different. The other main variation is in the use of
the variables required by each algorithm, DNumber, CNumber and Cycle.

We show in figure 3 the results of isolating the commonality of these algorithms
in a generic form which provides the hooks for future customization. The creation
of this generic form went through a number of refinements. We abstracted from a
few of the algorithmic variants, then tested the result on the remainder adjusting
the abstraction when necessary.

The process begins with the dissection of the algorithms of figure 2 to identify and
name the discrete functional components. The common structure of these algorithms
consists of:

e an initialization part,

e an outside loop over the elements of the vertex set invoking Depthfirst on each
element.

e and then the Depthfirst procedure.

Each of the parts differ slightly in a number of the statements used across the three
algorithms. The differing statements will be removed and replaced by calls to new
functions. The final implementations of these added functions will then be different
for each variation. We use data abstraction when assigning the responsibility for
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/* Assign the same number to vertices in connected regions */
for each v € Vertices v.mark := unuvisited /* initialize each graph vertex as unvisted */

CNumber := 0 /* initialize connected component counter */
for eachi v € Vertices do
it v.mark — unvisited /* has the vertex been traversed already 7 */
CNumber ;= CNumber + 1
Depthfirst(v) /¥ each time this call to Depthfirst returns,*/
enddo /* an entire connected region has been */

/* traversed */

proc Depthfirst(v : Vertex)
if v.mark = unvisited then
v.mark := visited
v.c-number := CNumber
for each v2 € v.Neighbors Depthfirst(v2)
endif
endproc
Figure 2b: Dft-Connected

/* check if there are cycles in the graph */

for each v € Vertices v.mark := unvisited /* initialize each graph vertex as unvisted */
for each v € Vertices v.path := offthepath /* each vertex also has a path variable */
Cycle := false

for each v € Vertices Depthfirst(v)

proc Depthfirst(v : Vertex)
if v.mark = unuvisited and not Cycle then
/* stop the traversal after a cycle has been found */
v.mark := visited
v.path := onthepath
for each v2 € v.Neighbors do
/* before visiting any neighbor, check whether it is on the path */
if v2.path = onthepath Cycle := true
else Depthfirst(v2)
enddo
v.path := offthepath
endif
endproc
Figure 2¢c: Dft-Cyclecheck
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the functional components to the participating objects and function abstraction in
identifying and representing the variation of these components.

Similarly, the basic structure of the Depthfirst procedure consists of some manip-
ulation of each vertex visited, some manipulation of each edge traversed and finally
some cleanup as the traversal exits each vertex.

Figure 3 shows the main part of the generic Depthfirst contract definition. This
contract involves two kinds of objects: the graph object and the vertices of the graph.
The contract includes the UndirectedGraph contract between graph and vertices which
requires that these participants adhere to the obligations specified in that contract
hefore particpating in the Depthfirst contract.

In addition, the new obligations on the graph participant stipulate that it must
support an interface which includes the methods:

o depthfirst: This starts the traversal. The contract also defines causal constraints
for this method, i.e. any implementation of depthfirst must accomplish at least
the actions specified in the contract.

e init: to do any general initialization before the traversal begins.

® newRegionWork: to do any required processing on a vertex before sending it the
message depthfirst. This is the first method invoked after a complete connected
region of the graph has been traversed.

e finish: to return an answer (if one is required).

Customizing the generic algorithm with respect to the graph participant typically
involves supplying more specialized versions of newRegionWork, init, finish, or all three.
The depthfirst method could also be specialized further in the unlikely event that the
definition provided was deficient. The customization may also add new methods and
instance variables.

Similarly, each Vertex participant must support a number of instance variables and
methods. The depthfirst method for Vertex also contains detailed causal constraints.
Customizing the algorithm with respect to Vertex involves specializing some or all

of:

o stop: when true, prevents the vertex from being traversed. Also used to stop
the traversal altogether.

o vertexWork: executed on each vertex traversed.
o edgeWork: executed on each edge traversed.

o postWork: the last thing done on each traversed vertex.

The Graph and Vertex components implement the common functionality of the
algorithms of figure 2 and provide the hooks needed to specialize this functional-

ity. These components can now be independently specialized in refinements of this
contract.
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contract DepthFirst
participants

graph : Graph;

vertices @ Set(Vertex);

includes UndirectedGraph{graph, vertices);

(iraph supports |

public depthfirst(}: Answer |
forall v in vertices{ v— set-not-marked() };
init();
forall v in vertices{
newRegionWork(v);
v— depthfirst(); }
return finish();

]

newRegionWork(v : vertex) : void;
init() : void;
finish() : Answer;

]

Vertex supports |

data : Data;
mark : Boolean;
set-not-marked() :void [mark = false;]

depthfirst() [
if (not (mark or stop())){
mark = true;
vertexWork();
forall v in neighbors{
edgeWork(v);
v— depthfirst(); }
postWork();
}
]

default stop() : Boolean [return false;]
vertexWork() : void;

edgeWork(v : vertex) : void;
postWork() : void;

]

end contract

Figure 3:
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instantiation
graph— depthfirst()

invariant
graph— depthfirst() — (V v : v € Vertices : v.mark or v— stop() )

Figure 4:

To complete the definition of the contract, an instantiation (fig. 4) and an
tnvariant clause can be added. The instantiation clause specifies which messages to
send to initiate the contract. In this example, the contract starts when the graph
participant receives the depthfirst message. Of course, an UndirectedGraph contract
must already exist between the graph and its vertices. The invariant specifies that

sending depthfirst will lead to the traversal of every vertex for which stop evaluates
to false.

4 Customizing depth first traversal

Section 3 defined the basic depth first traversal algorithm in contract form. In this
section we will reuse this contract to define some of the many graph algorithms

based on depth first traversal. Contract refinement is the basic mechanism used to
achieve the reuse.

Refinement allows the definitions of one, or all, of the participant types to be
changed in the following ways:

o New instance variables or methods added.

o Causal obligations can be provided for currently empty methods, e.g. newRe-
gionwork, init or vertexWork.

¢ Existing causal obligations can be specialized, e.g. the definition of Graph::depthfirst
could be specialized if required.

o Default method definitions can be overridden, e.g. Vertex::stop.

¢ Unconstrained or general types (e.g. Answer) can be replaced with more specific
types[19].

e New participants can be introduced.

Contract refinement conveniently allows the simultaneous customization of partici-
pant obligations to be represented in a single software unit.

Three refinements of Depthfirst are defined here, Dft-Connected (fig.5), Dft-Number
(fig. 6) and Dft-CycleCheck (fig. 7). Each of these specializes a number of the methods
of Graph and Vertex and provides a definition for a new participant, the Workspace
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object. Only new or specialized information needs to be specified in a contract
refinement. All other obligations are inherited from the base contract. Any method
declared in the generic contract but not defined in the specialization results in a
default empty implementation,

contract Dft-Connected refines Depthfirst
pariticipants
workspace : Workspace

Graph supports [
finish() . Graph [return this; ]
newRegionWork(v : Vertex) : void |
if (not v— marked()) workspace— inc-value(); ]

Vertex supports [
componentNum : Number:
vertexWork() : void [
componentNum = workspace— get-value(); ]
marked() : Boolean [return mark; ]

]

Workspace supports [
value : Number;
inc-value() : void [value = value + 1;]
get-value() : Number [return value; ]

]

end contract

Figure 5:

The variables used by the different variations of the depth first algorithm defined
in figure 2, i.e. DNumber, CNumber and Cycle, will be provided by the workspace
participant. Since every contract participant has global scope within the contract,
the workspace participant is visible throughout the traversal and will provide the
required storage and interface to change and retrieve the values of these variables.
The three different contract specializations will define slightly different workspace
participants according to their different requirements.

Figure 5 shows new definitions of finish and newRegionWork for Graph. The new
definition of finish specifies that calling depthfirst to run the connected component
algorithm will return the graph object. Note that Answer is replaced with Graph.
The newRegionWork method simply increments the value of an integer stored in the
workspace. This value is later retrieved by vertexWork.

The definition of Vertex is extended with a new instance variable componentNum,
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contract Dft-Number refines Depthfirst
pariticipants
workspace ;. Workspace

Graph supports [
finish() : Graph [return this;]

Vertex supports [
drsnum z "umbel’;
vertexWork() : void [
dfsnum = workspace— get-value();
workspace— inc-value(); ]

]

Workspace supports [
value : Number;
inc-value() : void [value = value + 1;]
get-value() : Number [return value; ]

]

end contract

Figure 6:
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contract Dft-CycleCheck refines Depthfirst
pariticipants
workspace : Workspace

Graph supports [
init() - void [workspace— reset(); ]
finish() : Boolean [return workspace— get-cycles(); ]

Vertex supports [
on-the-path : Boolean;
vertexWork() : void [on-the-path = true; ]

edgeWork(w : vertex) : void [
if (W — on-the-path()) workspace — set-cycles(); ]

postWork() : void [on-the-path = false; ]
stop() : Boolean [return workspace— get-cycles();]

Workspace supports |
cycles : Boolean;
set-cycles() : void [cycles = true; ]
get-cycles() : Boolean [return cycles; ]
reset() : void [cycles = false;]

end contract

Figure 7:

a new method marked and a specialization of vertexWork. After the algorithm is
executed, all the vertices of a connected region will have the same value in their
componentNum instance variable. This provides a cheap way to test if two vertices of
the graph are part of the same region and, in the case of undirected graphs, whether
one vertex is reachable from another. The workspace keeps track of the numbering
and provides the means to increment and retrieve the value.

Figure 6 shows the Dft-Number refinement. This numbers the vertices of the graph
in the order they are traversed. It requires fewer new details than Dft-Connected. In
this case, the change to the number takes place in vertexWork. The definition of
Workspace is identical, as is the specialization of finish.

The Dft-CycleCheck refinement is more complex, requiring the specialization of
vertexWork, edgeWork, postWork and stop. However, all these definitions are compact.
The complex logic of the algorithm is coded in the depthfirst methods of the base
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contract which are reused. Note that this variant requires a Boolean return value to
indicate whether or not the graph has a cycle. The specialization of finish is defined
with a Boolean return type and the answer is retrieved from workspace.

class Network has parts
type : String;

end class Network

class Connection has parts
data : Computerinfo;

end class Connection

class MyWorkspace
end class MyWorkspace

class Computerinfo has parts
end class Computerinfo

conformance

Dft-CycleCheck(Network, Connection, MyWorkspace);

conformance
Dft-Connected(Network, Connection, MyWorkspace);

Figure 8:

5 Using Contracts

The above sections illustrate how algorithmic components can be specified and re-
fined in contract form. This section discusses how these can be reused in the de-
velopment of an object oriented program. The goal is to generate appropriate class
and method definitions from the contract specifications. This generative approach

to contract implementation requires more detailed contract specifications than those
described in Contractg.

The main focus of Contracty is the use of the contract formalism for high level
specification of object behavior and intercommunication. In this context, detailed
control logic is usually omitted. The burden of detail belongs to the implementor
rather than the designer. Implementation is then mapped to the contract speci-
fication with conformance declarations. A conformance declaration states how a
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class implemcentation conforms to a contract participant specification. Verifying the
correctness of conformance declarations is an important but difficult problem.

In the current context of automatically generating contract implementations, the
verification problem is removed but it shifts the burden of detail to the specification.
Tu the context of algorithm reuse this is very appropriate. The important aspects
of an algorithm that we want to encode in a rensable component are precisely the
detailed control logics, e.g. the depthfirst method definitions in the Depthfirst contract.

To reuse the structures and code specified in a contract, we select the application
classes whose instances will participate in that contract. For example, an applica-
tion to control a local area network, may have a class Network and a class Connection.
Suppose the network is to be implemented as an undirected graph with the network
connections as the vertices and the implementation requires cycle checking and com-
ponent numbering, the Network object can participate as the Graph participant and
the Connection objects can participate as the Vertex participants in the Dft-CycleCheck
and Dft-Connected contracts. This can be specified using a new form of conformance
declaration (fig. 8). In these conformance statements the application classes are
listed in same order as the corresponding participant definitions in the contract.

Declaring that Connection conforms to Vertex in the Dft-Connected contract implies
that Connection objects must have instance variables data, mark and componentNum,
and must have methods stop, vertexWork, edgeWork, postWork, and marked. If these
are not provided by the local definition of Connection, they can be derived from the
contract definition and added. In order to do this automatically, the conformance in-
formation for the other contract participants is needed. This additional information
is not required when conformance is used only for verification.

The conformance statements in figure 8 will also result in MyWorkspace objects

supporting value, cycles, inc-value, get-value, set-cycles, get- cycles and reset. These are
the combined Workspace requirements of both contracts.

6 Implementation issues

The development of the C++ prototype has turned up some interesting problems
revolving around the simultaneous reuse of closely related contracts. The problem
1s analogous to the multiple inheritance problem of inheriting multiple definitions
of the same method. In the example of figure 8, both of the contracts used, Dft-
CycleCheck and Dft-Connected, inherit the implementation of Graph::depthfirst from the
base Depthfirst contract. Even though neither of the contracts specialize depthfirst,
subsequent functions called by depthfirst are specialized, e.g. vertexWork. At run
time, the depthfirst method must dynamically chose the appropriate implementation
of vertexWork from Dft-CycleCheck or Dft-Connected.

To distinguish which contract instantiation is required, we supply a contract
lens® object(fig. 9) which supplies the information used by depthfirst to make the
choice. The generated implementation for depthfirst is coded to use the contract
lens, ensuring that the appropriate specialized functions are invoked. A sketch of

3These are very similar to the meta-level contract objects used by Rao[22] in his implementation
of the Silica system. Dan Walkowski suggested the lens metaphor.
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the generated implementation is shown below, the complete technical details of the

contract lens implementation and the conflict resolution mechanism will be described
in a future paper.

To facilitate maximum flexibility the implementation mechanism supports* the
following features:

L. Type substitution[19]: e.g. Data of Vertex 1s replaced by Computerinfo of Con-
nection.

2. Method overriding: local definitions of methods in the application class will
override similarly named methods defined for the contract participants. This

allows the implementor to non- intrusively customize the component should
the defaults be deficient in some way.

3. Combination: A class can conform to participants of many contracts, even
if there are conflicting methods with the same name defined in the different
contracts. The Connection class conforms to Vertex in Dft-CycleCheck and Vertex

in Dft-Connected and these have two different definitions for the vertexWork
method.

main(){

Network * net:
MyWorkspace * workspace;

DfsNum_Contract * dfsnumC =
DfsNum_Contract::Instantiate(net, net— get_adj(), workspace);

net— depthfirst(dfsnumC);

CycleCheck_Contract * cycleC =
CycleCheck_Contract::Instantiate(net, net— get_adj(), workspace);

net— depthfirst(cycleC);
}

Figure 9:

4The initial prototype does not fully support the first two features.
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Combination allows each contract to be designed independently of other con-
tracts and of their eventual use. The basic rule governing conflicts resulting from
combluation is: instance variables (or methods) with the same name are merged if
their definition is identical, otherwise they are named apart using the contract name,
Code using Lhe instance variables (or methods) is modified accordingly. This is the
default (nechanism. Mechanisms to rename apart, or conversely, Lo rename equal,
derived instance variables and methods are beiug investigated.

Ta illustrate the problem being addressed here, it is useful to consider how this
soltware might be implemented using standard approaches. The usual approach to
implermenting a framework such as this would probably produce the class hierar-
chy shown in figure 10. The abstract clags Vertex implements the depthfirst method
and defines the protocol for vertexWork, edgeWork ele. 'I'wo subclasses, CycleVertex
and ConnectedVertex provide the implementations for these functions and add the
required instance variables. However, this supports the reuse of one of the vari-
ants, cycle checking or connected component numbering, but not both. With this
hierarchy, a graph could have instances of CycleVertex for vertices or instances of
ConnectedVertex, but not both. To further specialize the vertices for an applica-
tion, the implementor must choose either CycleVertex or ConnectedVertex to specialize.

virtual vertexWork()

— depthfirst()
{

this->vertexWork();

ConnectedVertex) ~ vertexWork()

vertexWork()

y }

postWork()
{
}
Figure 10:

Two problems arise if multiple inheritance is used to subclass from both CycleVer-
tex and ConnectedVertex. First, there is a name conflict between CycleVertex::vertexWork
and ConnectedVertex::vertexWork. Second, there is the related problem of invoking the
appropriate implementation of vertexWork from Vertex::depthfirst. There are similar
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problems with implementations based on parameterized classes. Neither type pa-
rameterization nor inheritance fully support the features listed above.

Contracts allow individual classes to independently conform to many participant
definitions, cven if two, or more, of these definitions are refinements of a single
definition. The combination mechanism resolves the naming problem and ensures
the correct dispatching of messages.

The generated implementation supporting the combination mechanism has four
tnaln components:

1. 'The abstract contract class definition.
An abstract base class Dfs_Contract is defined with virtual functions for each
participant method which s specialized in more than one of the contract re-
finements e.g.

init(Graph *, Dfs_Contract *)
vertexWork(Vertex *, Dfs_Contract *)
edgeWork(Vertex *, Dfs_Contract *, Vertex *)

Each function is passed the participant responsible for providing the required
implementation as well as the current contract lens instance.

2. The contract lens class definitions.
A concrete class is defined for each contract refinement used. These classes
specialize the corresponding abstract contract class. In the example, classes
DfsNum_Contract and CycleCheck_Contract are defined. Each provides a one line
implementation for the methods they specialize, e.g.

DfsNum_Contract::vertexWork(Vertex * v, Dfs_Contract * contract){
v—DfsNum_vertexWork(contract); }

CycleCheck_Contract::vertexWork(Vertex * v, Dfs_Contract * contract){
v— CycleCheck_vertexWork(contract); }

3. Extending the definitions of the conforming classes.
Each application class is extended by the attributes and methods defined for
the participants. This is accomplished by creating a new super class for each
of the application classes. For example, a super class Vertex is defined for the
application class Connection. The attributes and methods for each participant
the application class conforms to are defined in the new super class. Method

name conflicts are resolved by prefixing the method name with the contract
name, e.g.

Vertex:::DfsNum_vertexWork{Dfs_Contract * contract) and
Vertex:::CycleCheck_vertexWork(Dfs_Contract * contract).
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4. Generated method implementations.

The generated implementations are different from the contract implementa-
tions in two ways. First, contract language elements such as the forall construct
are replaced by conventional C++ code. Sccond, any method invocation in-
volving a method with conflicting tmplementations is sent, to the contract lens
instead. The contract lens then dispatches the appropriate implementation
variant. For example, the following fragment from the Vertex:::depthfirst method
from the contract in figure 3:

if (not (mark or stop())){
mark = true;
vertexWork();

is replaced by

if (! ((mark==1)
contract—stop( this, contract ) == 1)){
mark=1;
contract—vertexWork( this, contract );

7 Conclusion

This paper described the results of applying the Contract language in the domain
of algorithmic reuse. We have shown how classic algorithms, specifically depth first
traversal of undirected graphs, can be formulated, specialized and reused. We have
shown how specialized algorithms can be defined in terms of more general ones
and how users can customize these algorithms for their particular application. Per-
forming data and functional abstraction on previous instantiations of the algorithm
produces a decomposition of the algorithm into discrete, named structural and func-
tional components. We have formulated the algorithms in terms of objects, which
package the algorithmic components into cohesive units, and organized these objects
as participants of a contract.

The contract construct builds on the object oriented features of inheritance and
class parameterization to provide the required flexibility. When refining an algo-
rithm in contract form, any of the structural or functional components can be ex-
tended or overridden with new definitions. Following the object oriented paradigm
of ‘programming by difference’, only that which changes needs to be specified. All
the other components are inherited from the base contract. This avoids having an
explicit variable part declared for the reusable abstraction and simplifies reuse by
providing appropriate defaults. Type substitution allows any unconstrained type
used in the base contract to be replaced in a refinement of the contract or by an
application implementation. This allows the user to use newly defined application
specific types when reusing a contract.

As with multiple inheritance, reuse of multiple contracts can cause name con-
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flicts. However, since all of the conflicting methods are required at one time or
another, we can neither choose one over the rest, nor rename them. To resolve the
conflict, and to ensure the correct versions are executed, we augment the message
with contextual information, i.e. an appropriate contract lens object. The code gen-
erated [rom the contract definitions uses the contract lens to execute the required
version. We have built a first prototype which takes contract definitions as input ta-
gother with conformance statements and application class definitions and generates
the appropriate C++ code, utilizing contract lens objects. Future work will yield
other tools which support the use of contracts for application development.
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