A Reflective Model of Inheritance

Suresh Jagannathan! and Gul Agha?

! Computer Science Research, NEC Research Institute, 4 Independence Way, Princeton, NJ
08510, suresh@research.nj.nec.com

? Dept. of Computer Science, 1304 W. Springfield Ave., University of Illinois, Urbana, IL 61801,
agha@cs.uiuc.edu***

1 Introduction

Inheritance is widely regarded as a central feature in modern object-oriented program-
ming. Despite its perceived importance, however, there is still no universal consensus
on the definitions or mechanisms which should be used to support it. Current proposals
consider it either as an operational technique for code sharing and reuse, or as a struc-
turing mechanism for reasoning about programs. Depending on the motivation for its
introduction, the techniques to support inheritance that are incorporated in language
designs often appear to have little (if any) semantic traits in common.

Regardless of how inheritance is implemented or used, it is clear that a central issue in any
object-oriented language is namespace management; in this sense, inheritance maybe re-
garded conceptually as a tool for conserving names within a program. Formal definitions
of programming languages typically refer to namespaces as environments, and represent
them in terms of finite sets (or functions) that bind (or map) program variables to values.
Environments are usually built and maintained by an abstract interpreter that imple-
ments the language’s semantics; the structure of this interpreter prohibits programmers
from gaining direct access to environments. Thus, the rules governing the definition and
management of namespaces are invariably “hard-wired” as part of the language defini-
tion. As a result, it is often problematic to manipulate namespaces in ways not originally
prescribed by the language designers. This restriction has significant ramifications for
the design of object-oriented languages: to build a variation of an inheritance structure
or to define a different one altogether in effect requires implementing a new language or
constructing a new interpreter sensitive to the desired requirements.

In this paper, we present an alternative treatment of namespace construction and ma-
nipulation. The reflective model is based on a semantic transformation technique that
provides flexible mechanisms for managing namespaces. We argue that given the ability

*** The second authors’ work has been made possible by support provided by a Young Investigator
Award from the Office of Naval Research (ONR contract number N00014-90-J-1899), by an
Incentives for Excellence Award from the Digital Equipment Corporation Faculty Program,
and by joint support from the Defense Advanced Research Projects Agency and the National
Science Foundation (NSF CCR 90-07195).

351

to manipulate environments directly, a variety of different object-oriented paradigms can
be realized within a unified and simple framework. Starting from a kernel language whose
foundation is the simply typed A-calculus, we develop a small collection of environment
menipulating primitives. These primitives provide an expressive platform to express a
munber of inheritance-related abstractions.

Our model is distinguished from other efforts that provide a formal semantic treatment of
inheritance and delegation[11, 19]. Tn these systems, objects are represented as records,
with fixpoints and record composition used to realize late-binding. Our work general-
1zes this approach in some important respects. Most notably, we define specifie linguistic
mechanisms to express inheribunce und delegalion thal are couchad in tarme of raflactive
operations over environments. In the presence of rellection, pseudo-variables such as “su-
per” or “self” are now interpreted as ordinary data objects. Mesaage passing and method
dispatch are simple [unction applications that cvaluate relative to a user-generated envi-
ronment. Inheritance is not a fundamental component in a reflective language. Its seman-
tics is given in terms of composition and source-to-source transformation on environment
manipulating operations.

While the bulk of the paper is confined to a foundational description of the model and
its expressivity gains, we also address the question of developing ‘syntactic sugar’ for
abstractions which capture common inheritance strategies. We argue that inheritance
and delegation paradigms can be succinctly described in terms of syntactic program
transformations once a framework for managing environments is developed.

2 The Model

We can think of an environment as one piece of context or state information that is
manipulated by the abstract interpreter (or virtual machine) that defines a language’s
semantics. In most languages, state information is hidden from the programmer. Thus,
it is often not possible to write expressions that directly access and manipulate context
information built during the evaluation of a program.

The model described here permits precisely this kind of functionality. The essence of the
model revolves around two transformation operators. The first is a “reflective” operator
that allows data objects to be treated as though they were binding environments. Any
data structure that binds names to values (e.g., records, hash tables, association-lists,
etc.) can be transformed into a scope within which other expressions can evaluate. In
effect, reflection permits the dynamic construction and injection of new scopes into a
program. An object which can be treated as a scope defines a binding environment.

The operational inverse of reflection is “reification”. Just as record-like structures can
be transformed into environments, environments can be captured and transformed into
data objects. Thus, environments within this model have a well-defined concrete repre-
sentation.

Figure 1 depicts the interaction between a language interpreter and the transformation
operators described.

Given a way to explicitly manipulate environments, inheritance based abstractions are
implemented in terms of creation, composition, and reification of environments. In this

352

reflection
Context (data — environments)
Terms . Values
(syntax) Interpreter : {denotation)
Context reification
(environments — data)
Fig. 1. The reflective model permits transformations between environments and ordinary data
objects.

regard, the model differs from traditional class-based inheritance systems (e.g., Simula[12]
or Smalltalk[13]) in several important respects. First, it provides a consistent semantics
of all elements which comprise a given object; there are no specific rules governing the
manipulation of elements that serve as instance variables and those that serve as methods.
Second, and more importantly, the model imposes no specific policy on how an inheritance
hierarchy should be constructed. Decisions regarding the structure of a class hierarchy, the
notion of self or super, early or late binding of free variables occurring in class definitions,
or the semantics of message passing are not built-in characteristics of languages built on
this model. Inheritance is viewed as a programming method, not a fundamental property
of a programming language.

The model is also distinguished from delegation based systems[22, 31] insofar as (a)
objects are implemented in terms of ordinary function abstractions and data structures,
(b) there is no a priori static structure for an object that indicates its parent in the
delegation hierarchy, and (c) objects instantiated from classes can be freely intermixed
with objects instantiated via delegation.

The next section describes a reflective kernel language. A series of applications relating
the utility of the model to object-based paradigms is sketched Section 5. Simple syn-
tactic sugar that abstracts the complexity of manipulating environments is presented in
Section 6; different inheritance mechanisms can be specified succinctly given the macro
facility described. Although comparisons to related work are provided throughout the
paper, a summary is given in Section 7.

353

3 A Kernel Language

To make our discussion more concrete, we define a kernel language called £ that we
will use in the examples developed in later sections. The non-reflective vperstors iy
L form a strongly-typed, non-strict (i.e., lazy), higher-order lexically-scoped functional

language. While austere, £ provides all the essential ingredients necessary to building
various inheritance protocols.

L’s kernel term set is defined by the grammar given in figure 2. We use 2 to range over
identificrs, & Lo range over sirings, n to range over the natural numbers and b to range
over Booleans. Wa dercribe the other constructs in the language belowd.

E u= z|n|s|b]
1E |

(A ({z' | 2}*) E)| (E {E}") |
letrec {{z{!} =E}* in E |

E—-EE|E—E]
[{z=E}"]|Ez| (e EE)|
(reflect E in E) | (reify {E})

Fig.2, Grammar for L.

We discuss the significance of the t annotation on letrec- and A-bound variables in
Section 3.3, and the “!” (read “prompt”) prefix in Section 3.3.

Abstractions are introduced using A notation; conditionals are written using —; appli-

cation is expressed by juxtaposition of the function being applied with its arguments.
Recursion is expressed using letrec.

3.1 Records

Records are non-strict finite associations of labels to values. The constituent expressions
in a record are evaluated relative to the record’s evaluation environment.

The value of a record field can be retrieved using the “.” operator: if r is a record, then
evaluating r.z returns the binding value of z as defined in 7.

We provide one other operation over records. Let r; and 72 be two records and let Dom(r)
be the set of names defined within record r. The join or composition of ry and r; (written
(e 71 72)) is now defined as follows:

* Besides these basic syntactic forms, we introduce various syntactic extensions (or abbrevia-
tions) throughout the paper; these extensions are best thought of as macros that expand into
elements of the base term set.

354

re.z if 2 € Dom(r2)
r1.2 otherwise

(o ry ro)x = {

3.2 Refection

Record objects are transformed into environments using the reflect operator. This
operator permits record labels to be treated as program variables, Given an expression
ey that yiclds a record, we evaluate an expression ey in the context of the bindings defined
by e; by writing:

(reflect e; in ¢z)

The record object r yielded by the evaluation of e, is transformed into an environment
that contains a binding for each label found in r. The binding value of a potentially free
identifier found in the body of e3 not defined by this environment is resolved within the
current evaluation environment. We give a precise definition for potential free variables
in Fig. 3.

Since records are non-strict, the environment image of a record captured using reflect
may consist of unevaluated (closed) bindings. Thus, expressions in e3 that access a bind-
ing B in r force the evaluation of the deferred expression associated with B’s binding
value.

The reflect operator is similar to the dot operator discussed by Gordon in [14] and to the
let construct found in Pebble[6], a higher-order language that treats bindings as first-class
values.

3.3 Reification

The transformation of an environment into a data object is accomplished using the
reify operator. In its most simple form, reify takes no arguments, and when evaluated
returns a record containing a binding for each {-suffixed variable found in its evaluation
environment. Annotating a letrec- or A-bound variable with a { marks that variable as
public insofar as its binding can be captured and exported using a reification operation.
Thus, the result of evaluating the expression®:

let alf = 1,
bl = 2,
c =3
in (reify)

® The syntactic form:
let 23 = €1, 22 = €2, ..., Tn = €nin F

is equivalent to:
(Mz1 22 ... zn) E) e1 €2 ... €q)

355

is a record binding a to 1 and b to 2. The binding value of ¢ is not captured by
evaluating reify. Unlike other language definitions that permit the explicit capture of
bindings or environments[l, 6], the semantics of reify permits selective capture of bind-
ings found in its environment, This capability is crucial to maintain object encapsulation
and informalion hiding,

Reify permits uny local binding environment to be transformed into s module; the names
visible al the interface of A reify-generated module are procisely the public bindings
found wilhin ils evaluation environment.

Since the environmenl image of a record used as the argument o reflect never contains
public bindings (record labels cannot be suffixed with '), reify is insensitive to the
bindings injected by reflact. Thus,

(raflect &£ in (reity)) = (reify)

Reification of Closures. In its more general form, reify takes a single argument.
This argument must evaluate to a closure. The value yielded by reify in this case is a
record containing the binding values of all {-suffixed potential free variables that occur
in the body of the abstraction associated with the closure.

Definition 1. Let ¢ and y range over identifiers and let E range over expressions. We define
the notion of a potential free variable inductively as follows: (The abbreviation “z PF E” reads
“z occurs potentially free in E.”)

- z PFat.

¢ PF (E, E;)if ¢ PF F; and ¢ PF E,.

g PF(A(y}) E)ifz # y and ¢ PFE.

z PF letrec y! = E; in E,ifz PFE,; or z# yand z PF F,.
g PF (21 = Ei, 23 = E3, ..., zn = Eg) if it occurs potentially free in any of the E;,
1< i< n.

z PF Evyif z PF Ey.

z PF (e Ey E;)if z PF E, or ¢ PF E,.

z PF (reflect Ey in E,)if ¢ PF Ey or ¢ PF E;.

~ ¢ PF(reify E)if z PFE.

-~z PFE, — E;E3ifz PFE;, 1< i< 3.

I

Fig. 3. Definition of potential free variablesin L. This definition is weaker than the definition
of free variables found in e.g., the A-calculus. If z is free in E, then z is a bound variable in ()
(z) E);on the other hand, this need not be the case if were potentially free in E. Suppose
E is of the form (reflect E; in z).If E; defines a field for z, then z will not be a bound
variable in (A (z) E) since its binding value is determined from the record object denoted
by E].

Thus, evaluating the expression:

letrec x! = 1

356

f = (X (y) (reflect y in x))
in (reify £)

yields the record [x = 1].

The only construct in £ that manipulates binding environments implicitly is function ab-
straction: a lexical closure contains an environment that binds each free variable occurring
in the body of the abstraction to its binding value in the function’s lexical environment.
The general form of reify permits certain elements of this environment to be accessed
and manipulated freely.

Prompts. The visible scope within which a reification operation evaluates is delimited
using a prompt facility. Any expression, £, may be prefixed by a prompt (written *17).
All public variables found in the lexical environment outside of the contour specified by
the prompt are hidden from any reification subexpression of E. Thus, assuming primitive
operations (e.g., +,~,%*) are not public, evaluating the expression,

let al =1
in
1let bt = 2,
ct = (+a 10)

in letd= (X (f) (- (* £ (+ bc)) a))
in (reify d)

yields (when fully evaluated):
[b=2,c=111]

The binding value of a is not captured in the record representation of d’s closure because
of the prompt prefixing the inner let.

4 Formal Semantics

The semantics of £ is given in terms of a set of Plotkin-style rewrite rules25]. The seman-
tics of reflection is captured in three rules that manipulate environments. Applications
augment the current evaluation environment with a binding for the A-bound variable
defined by the abstraction; prompts remove bindings from an evaluation environment;
public variables project bindings outside the environment in which they were defined.
The semantics of expression evaluation is given relative to these three categories; each
category is represented as a binding environment:

e p* defines the binding environment used to evaluate non-reflective operations (i.e.,
abstraction, application, letrec, conditionals, records, etc.)

e p' defines the binding environment used to evaluate prompts.

e p! defines the binding environment used to evaluate reify expressions.

The empty binding environment p; maps its input to the special symbol undef. The
domain of a binding environment p, written Dom(p), is a set of identifiers such that

Yz € Dom(p), p(z) # undef.

357

Definition 2.

- The special symbol undefis a value,

- Constants (e.g., integers, Booleans, and strings) are values.

~ A closure i u value. A closure is a pair (< p>,p', ¢! >,e) that associates an cxpression
¢ with the binding environment iriple used to evaluate it. Closurcs are uscd Lo specily the
semantics of non-strictness and abstraction.

- A binding environment is a value.

Fig.4. Definition of valuein L.

In general, we shall use the notation:

ple1 = vi, 22 va,. .,z vg]

to indicate the environment that maps z; to v;,7 = 1,2,..., k and any other identifier y to
p(y). Similarly, we write p[p’] to indicate the binding environment yielded by composing
p with p’; a binding for variable z found in p’ supersedes its binding value in p provided
that 2 € Dom(p').

4.1 Semantic Rules

To express the fact that expression e evaluates (or “reduces”) to expression e’ with respect
to p*,p', and pt, we write:

Aottt Fe= ¢

We omit the rules for conditionals, record selection and composition; their definitions are
standard. The definition of letrec follows from the definition of application and the
assumption of a least fixpoint operator[4]; jts definition is omitted as well.
(Constants)

PA:P!:Pt Fv=v

(Identifiers)
P@) = (< p}opiipl >ye)
pplpl Fe = v
P oot F e = v

Since £ is a non-strict language, the binding values of identifiers are always closures.
Closures are dereferenced only when the value of an identifier is required.

(Record Introduction)

Pttt b (e=el= pila— (< o0t 0t e

358

Records themselves are defined in terms of a binding environment in which its constituent
expressions are closed within the current evaluation environment.

(Abstraction)
phelpl (M@ e) = (<php' et > (A (2) €))

{Application)
At b = (< Pﬁrfl’zi:p:rz >, (A (z) €))
p=pile— (<t 0t > e0)]
valelpalel pl b e = v
pPraptet b o(eren) = v

et Boen == (< pdpl, et > (A (2h))
p=pilz— (<p*p' 0" > e)
palp), palol, pllolF e = v
Pt et Eo(ere2) = v

Abstractions evaluate to closures in which the binding environment component is the
current evaluation environment and the expression component is the A phrase. Applica-
tion of an abstraction involves constructing a closure for the argument (thereby delaying
its evaluation), and evaluating the body of the abstraction in an environment in which
the A-bound variable of the abstraction is bound to the argument closure.

(Prompt)
pPrpLpLE e=> v
pr et le=> v

A prompt expression, !e, causes e to evaluate relative to fresh prompt and public binding
environments. Thus, bindings found “outside” the prompt are invisible to any reflect
and reify sub-expressions of e.

(Reflection)
z1,%3,...,&, potentially free in ey
Pt Eea=p
po(z) = p(z) ifz=12,2q,...,2,

undef otherwise
P’\[Pr],P![Pr]»P”' €3 = v
prptpt F (reflect e; iney) = v

(Reification — Simple) '

ph et et B o (reity) = pf
(Reification ~ General)

pA,p!’pf Fe= (< P?,P},P} >, (A () e))
€y, Z2,...,&, potentially free in (A (z) es)

t : —
_ pj(a:) ifz=a1,22,...,%n
pr(z) {undef otherwise

Priptpt b (reify e) = pp

359
5 Applications

It is widely agreed that central themes in object-based programming are issues of code
reusability and name overloading. Class-based inheritanca[12, 18, 21], delegation[22, 30,
81), and sublyping(8] are among competing proposals that address these issues,

Code reusability and name averloading techniques are expressible given a mechanism that
permits the free capture and projection of environments. An objeet O that is to reuse
names or methods defined by (' needs to access the environment within which (O evalu-
ales. Reification implements this capture vperation; reflection provides the capability to
use caplured environments to evaluate other expressions,

5.1 Building Prototype Objects

Object Generators. As a first example, we discuss the utility of environment-based
reflection in building modified versions of existing generators or modules. In the context
of a reflective programming model, records are properly viewed as objects, and record-
yielding abstractions are regarded as object generators.

Consider the simple problem of implementing a stack object; we might choose to structure
such an implementation thus:

StackGen = let make rep = (lambda (args) return a representation),
overflow = (lambda (rep elt) handle stack overflow)
in (A (size)
let Rep = (makerep args),
top = lop of stack counter
in [Push = (A (elt) ...),
Pop =\ 0..0)]

StackGen is an object generator; when applied, it returns a new stack instance:

MyStack = (StackGen MySize)

A stack instance is a record containing operations allowable on stacks; these operations
are closed over the overflow exception handler and make_rep. By making various let-
bound identifiers public, Stack can be transformed into a prototype object generator:

let makerep! = (lambda (args) return a representation),
overflow' = (lambda (rep) handle stack overflow)
in (X (size)

)

To define a new kind of stack that uses the same representation as StackGen objects
but which implements different Push and Pop operations, we write:

let NewStack = (A (ProtoTypeStack)
(reflect (reify ProtoTypeStack) in
(A (size)
let my_rep = (makerep args),
top = top of stack counter

360

in [Push = (A O ...),

Pop = (X QO ...0) 1N
in (NewStack StackGen)

Free references to makerep and overflow that occur within the body of the reflect
expression refer to their binding values in StackGen'’s closure; if NewStack is not closed
over a particular binding which happens to be referenced within the body, the binding
value is determined from the current evaluation environment.

Thus, suppose the Push operation defined by NewStack refers to overflow. The value of
overflow is the closure defined in StackGen. In other words, instances of StackGen and
NewStack share the same stack overflow handler; overflow is a default handler for any
stack. To define a specialized handler local to NewStack, the generator is restructured:

lot NewStack = (A (ProtoTypeStack)
(reflect (reity ProtoTypeStack) in
(A (size)
let my_rep = (makerep args),
top = top of stack,
overflow! = () (rep) new stack overflow handler)
in [Push = (A () ...),

Pop = (A O ...0) 1N
in (NewStack StackGen)

The specialized version of overflow defined by NewStack may refer to the prototype
definition. Moreover, if it is declared as public, and occurs free in the definition of Push,
it becomes available to any object which is instantiated using the environment captured
by Push’s closure. For example, if the abstraction returned by the above expression is
called NewStackGen, evaluating:

let MyNewStack = (NewStackGen size)
in (reify MyNewStack.Push)

returns a record containing the bindings of all public variables that occur free in Push’s
closure.

Reification permits the expression of dynamic inheritance[9]. A system that supports
dynamic inheritance allows new methods to be incorporated into the object hierarchy
dynamically. If the definition of the overflow exception handler defined in StackGen
was changed®, modified stack implementations that use this procedure as the default
exception handler would see the change.

One limitation in this formulation is its inability to permit general delegation of opera-
tions to different objects. Modifications of a stack generator have access only to the public
free variables referenced by the generator. Thus, if StackGen defined a Print operation,
in addition to Push and Pop, NewStackGen would have access to Print’s free variables,
but not to the procedure itself. In order for a print operation to work over instances of
NewStackGen, it must be defined explicitly within the record returned. We consider the
issue of delegation of operations across objects (rather than object generators) in the
following section.

6 We haven’t provided mutation operators in the kernel language, but a semantics that supports
references and stores is straightforward to incorporate[17].

361

Critics might arguc that building modified versions of object generators is possible even
in the absence of reification and environment-based reflection. Consider two possible
alternatives, First, rather than using Teify to capture the public bindings defined by a
prototype object generator, we could structure our program such that all related versions
of an abstraction (e.g., StackGen and NewStack) reside in the same lexical context, This
obviales the need to explicitly package and unpackage bindings via reflect and reify.
The approach has the significant limitation, however, of requiring the original prototype
environment be altered whenever a new modification needs to be recvaluated. Modularity
is significantly reduced as a result.

Another non-reflective solution is possible in a language with record objects and a Pascal-
style “with” operation. All public bindings found in a generator’s closure are packaged
&3 part of the record object returned. The reflect operation is subsumed by a “with”
axprosaion, Thie formulation alse has some significant drawbacks however, If there exist
several prototype objects defined in the same lexical context that share common oper-
ations, they must all duplicate these operations as part of their record representation.
For example, a stack and a tree object defined in the same context may both share
common print and exception handlers. To ensure that modified versions of these objects
have access to these operations, instances of stacks and trees must both explicitly define
bindings for these operations. If new exception routines are added to StackGen, for ex-
ample, all object generators derived from StackGen must in turn be altered to reflect
the availability of this new procedure.

Delegating Operations to Objects. In the previous section, we defined modified ver-
sions of object generators. This was possible because closure-based reification permits
abstractions to share free variable bindings even if they do not exist in the same scope.
The natural extension of this approach would be to permit an instance of one object to
delegate operations to instances of other objects. Given this functionality, instances of
an object may have different behaviors based on how they choose to delegate operations.

To illustrate, consider the familiar problem of specifying geometric objects. A box object
consists of x and y coordinates, a length, a width, and depth, a procedure to move
boxes from one coordinate to another, and a print routine to print box objects on a grid
of some dimension. The outline of a simple box generator is as follows:

letrec MakeBox = (A (x' y! length! width' depth!)
[move = (A (dx dy)
(MakeBox (+ x dx) (+ y dy)
length width depth)
print = (A () print boz using grid coordinates)]
grid' = shape of grid on which bozes are printed
in MakeBox

By making the initial shape of a box public, instantiations of other kinds of boxes (with
possibly different behaviors) can be generated from any instance of a simple box. A new
instance of a box is created by evaluating: MyBox = (MakeBox arguments) .

Suppose we also now define a specialized kind of box called a colored box. A colored box,
in addition to containing box shape information, also contains a color method that
maps coordinates to distinct colors, and a redefined print method sensitive to colored

362

boxes. Given the existence of a box object P, we wish to avoid respecifying the initial
coordinates and the move method when creating a new instance of a colored box; instead,
we would like to treal P as a prototype object upon which colored boxes can be defined.
Color box instances delegate requests for moving colored boxes and determining current
coordinates to P; in other words, the operation of moving colored boxes is delegated to
ordinary box objects, We define one implementation of a color box helow:

letrec MakeColorBox =
{\ (box color!)
(e box
[print = (reflect (reify box.print)

in (A O new print rouline that references grid)) 1)
in MakeColorBox

To ereate an inatance of a color hox parameterized from MyBex, we write:

MyColorBox = (MakeColorBox MyBox initial_color)

Free references to shape information (e.g., x-y coordinates, length, etc.) in the print
method found in MyColorBox are resolved relative to their definition in MyBox. The
new print method also has access to the public variables (e.g., grid) that occur free
in MyBox'’s print method. Thus, the color print method is a modified implementation
of the print method defined for a simple box. The record returned by MakeColorBox
also contains a binding for move; both boxes and color boxes share this method. MyBox’s
print method is shadowed by MakeColorBox’s definition.

Reification contributes to a programming methodology that is the operational inverse
of ordinary function abstraction: abstraction parameterizes an expression over a set of
presumably different inputs; reification parameterizes a set of inputs over presumably
different expressions. In the above example, the input coordinates for MyBox are used in
the definition of MyColorBox — the same arguments are used to construct two different
abstractions.

Unlike the implementation of stacks in which all modified implementations define their
own methods, boxes and color boxes share individual methods. MakeBox could also be
treated as an object generator:

(reflect (reify MakeBox) in
letrec NewBoxGen = (A (x' y' length! width' depth!)

[move = (A (newx newy) ...),
print = (A O ...) D)
in NewBoxGen)

NewBoxGen is bound to an abstraction that acts as another box generator. The record
returned by applying NewBoxGen contains procedures that are closed over the public free
variables defined by MakeBox . Free references to grid that occur in print, for example,
get resolved based on grid’s definition in MakeBox.

The advantages of using reification and reflection in this example are similar to those in
our earlier definition of a stack. We could have chosen to avoid reifying over closures by
explicitly packaging all shape information into the object returned by applying MakeBox .
If the methods defined by MakeBox refer to other public free variables in their body (e.g.,
coordinate boundaries, exception handlers, transcendental operators, etc.), however, their

363

bindings would have to be exported as well. Such a solution comprises modularity since
it forces an object relevant only to the implementation of boxes to become visible in the
interface specification of the abstraction. Given that a box can be manipulated only via
the print and move methods it provides, packaging coordinate bindings, grid tables,
exception routines, etc. along with the other bindings needed to build specialized ver-
sions of a box into its record representation would be an unfaithful characterization of
its specification. Using reification to examine internal representations does not require
modification of this specification. Only objects that view box as a prototype need access
to operations associated with its implementation.

5.2 Imheritance

Code reusability is a form of incremental programming: new programs can be generated
by specifying how they differ from existing ones. Incremental programming techniques
are complicated by the fact that a modified structure may contain mutually recursive
components. (Neither the stack nor the colored box example highlighted this issue.) Free
references occurring within the recursive components of such structures must be resolved
relative to the state of the modified object and not the original.

Cook and Palsberg[11], Reddy[26], and Kamin[19] discuss how to build class-based in-
heritance systems that permit construction of modified versions of recursive structures
using explicit fixpoint notation. In essence, a fixpoint semantics is used to give a non-
operational definition of the “self” pseudo-variable found in Smalltalk-style languages.

Building modified versions of recursive structures is also possible using environment-
based reflection. Reflection and reification permit modified versions of objects to be
created while still allowing access to the component elements found in the original.. The
modified version might define new definitions for bindings found in the original; the old
definitions are still accessible, however, since environments can be projected and cap-
tured. £ is distinguished from these other proposals insofar as it provides a concrete
self-contained linguistic framework within which class-based inheritance strategies im-
plemented in terms of recursive record structures and late-binding can be expressed.

The notion of “self’ is implemented using record composition, reflection and reification.
Classes are record generators and a class hierarchy is built by composing new instances
of records generated from a set of super-classes; these records are composed with the
bindings found in the current evaluation environment. Reification gives access to this
environment.

To illustrate how to use reflection to build inheritance systems that have recursive com-
ponents, consider an example discussed in [11, 19]. A circle is a sub-class of a point.
The point definition contains instance variables x and y to specify its location, and
defines two methods: DistfromOrig computes the distance of a point from its origin and
ClosertoOrig takes another point object as its argument and returns true if the point
is closer to the origin than its argument, and false otherwise. The code for points is
given in figure 5.

The reflected image of the self record argument is used to define the evaluation environ-
ment of point’s methods; it is the definition of self that gives the late-binding semantics

364

point = () (obj al bh)
letrec self = (o (o methods (reify)) obj)
methods = (reflect self in
[DistfromOrig = (sqrt (+ (sqr a) (sqr b)))
Closertolrig =
A (P
(< DistfromOrig

(reflact p in DistfromOrig)))])
in (» methods (reify)))

Fig.5. A point generator.

of object-based languages such as Smalltalk[13]. Self is defined to be a record contain-
ing the bindings found in the caller (obj), point ’s methods, and bindings for a and b.
The mutual recursion that exists between self and methods is handled naturally by
the non-strict semantics of the language; resolving the recursion is tantamount to find-
ing a fixpoint for these two definitions. Late-binding (i.e., the definition of self), and
method sharing are realized by closure-based reification. For example, the first reference
to DistfromOrig in ClosertoOrig refers to DistfromOrig’s binding-value in self;
if obj does not define such a binding, the value of DistfromOrig in methods is used
instead. The object returned by the point generator contains bindings for a and b as
well as the methods defined by methods.

We point out that lazy evaluation of records fields is not fundamental to the correctness
of this solution. self and methods could be introduced as abstractions closed over
a proper recursive environment or alternatively, the semantics of letrec could be based
on a “lenient” evaluation strategy that would cause the concurrent evaluation of all its
bindings; dataflow synchronization ensures that expressions have access to proper binding
values. The implications of this approach in the context of reflection is given in [18].

A circle is defined in terms of points. Because circles have a radius, they have a different
meaning of distance from the origin. The notion of distance from origin for circles is given
in terms of the definition of DistfromOrig found in point objects: if [is the distance
from the origin to the circle’s center and r is the circle’s radius, then [— r gives the
distance from the origin of the circle object. If this difference is negative, the distance is
assumed to be 0.

The object yielded by creating a new circle is a record containing the method definitions
and variables of both points and circles. The meaning of DistfromOrig in a circle
instance should refer to its meaning as specified by the circle (not the point) genera-
tor. This means that in resolving the binding value of DistfromOrig, the ClosertoOrig
method found in the point generator defined when a new circle is created should use the
definition of DistfromOrig relevant to circles. The code for the circle generator is
given in figure 6.

Circles inherit properties of points. To create a circle, we first define a new point instance.
The bindings used to create a new point contain a definition for DistfromOrig as defined
by the circle instance; moreover, the definition of DistfromOrig in circles refers to the
binding value of DistfromOrig as defined by point.

365

circle = 1() (obj al bt)

letrec self = (e (e methods (reify)) obj)

super = (point self a b)

mothods = (reflect self in

(Distiromorig =
(max {- (reflect super in
Distfreomorig) r) 0))]

in (e super (¢ mathods (raify))))

Fig.0. A circle generator.

T'he object returned by this definition contains the binding for DistfromOrig, the in-
stance variables a, b and r and the binding for ClosertoOrig found in the point
instance associated with this new circle.

If circle has no sub-classes, we can create a new instance by evaluating:
(circle [1 value-of-a value-of-b value-of-r)

A slight generalization of the technique outlined above can be used to support a simple
form of multiple inheritance.. Suppose that C; and Cj are disjoint generators that are
intended to be used as superclasses of C3. We can specify the superclass methods available
to C3 by composing the record representation of C; and Cj; this image would contain
the method definitions for objects instantiated from C; and Cs.

Lexically-scoped languages that do not support reflective environments would be hard-
pressed to support this functionality given the clumsiness of achieving late-binding using
lexical scoping. Of course, it is possible to express object-based programming in languages
like T[2] or Common Lisp[5, 29] that are statically scoped. Support for objects in these
systems however often involves extensions to the language kernel (e.g., dynamically-
scoped instance variables in Common Lisp) or significant alterations to the language
kernel (e.g., as in T). More significantly, it is non-trivial to understand the semantics of
objects in these languages based only on an understanding of the primitive operations
that define the language kernel. Reflection permits distinct binding disciplines to be
supported within a unified framework; thus, late-binding protocols essential in building
object-based systems can be expressed in a lexical binding kernel without the need to
define new binding primitives or alter existing ones.

6 Inheritance as Syntax

As a matter of practical convenience, reflect and reify expressions are clusmy vehicles
in which to express inheritance paradigms. Based on the examples given in the previous
sections, however, it is clear that there are patterns of usage of these operators that
capture common inheritance and delegation-style functionality.

For example, the semantics of the Smalltalk “self” pseudo-variable is defined via record
composition and reification thus:

366

self = (o (o methods (reify)) obj)

where (reify) captures the local environnment (e.g., instance variables) of the object
being defined, methods is a record containing the method definitions of this object, and
obj is the record represenlation of the caller’s environmnent.

Similarly, to creale an instance of a class A thal 18 & superclass of B, we write:

super = (A =self args)
where self is the sclf object denoting B.

We can build syntactic sugar that obviates the need for programmera to refer to the un-
derlying environment structure used to express inheritance or delegation strategies. We
envision a library of such macros; £ programmers need only have the knowledge of the
macro interface in order to write programs that have object-based semantics. Thus, while
reflection can be used effectively to specify different types of inheritance protocols, they
can be effectively subsumed by straightforward syntactic abstractions. Understanding
object-based programming techniques in terms of syntactic transformations over envi-
ronment manipulating expressions is an important property of this model.

To specify an object generator that defines public bindings, we use a make_object macro
that takes the form:

(make.object O
(arguments a; a2 ... @;)
(methods my; m2 ... mg)
(local_definitions d; d2 ... di))

Each of the arguments is a variable name that may be suffixed with a “} to indicate that
it is a public variable; each of the local definitions and methods are pairs of the form,
(name = ezpression). This macro expands to the following £ expression:

letrec O = (A (a1 a2 ... aj)
let di, d2, ..., di
in [mi, ma, ..., mgl)
in O
We can also define a “delegate” macro such that:
(delegate prototype modification) = (reflect (reify prototype) in modification)

Given a prototype operation P, a modification M can be specified by evaluating
(delegate P M); M’s definition is based on the free public bindings used to define
P. The expression:

(delegate MakeBox
(make-object NewBoxGen
(arguments x' y!)
(methods (move = (A (new.x new.y) ...)),

(print = (A OO ...00))
expands to the modified NewPointGen object generator shown earlier.
Class based inheritance strategies expressed using reflection operations are also easily

transformed into a more abstract, succinct form. For example, a make_class macro is
applied thus:

367

(make.class
class.name
(instance.vars i1 f2 ... im)
(super.class super_class_name)
(supar clase args super_cluvs_aryurents)
(local definitions oy dy ... du)
(methodr 11 My ... ing)

‘The terw lollowing instance.vars range over vurinblos, whersas the terms folluwing
lecal definitions and metheds are pairs of the form (name = expression). We assume
a sufflciently expressive macro language that would permit us to avoid specifying fields
if they are irrelevant to the gpecification of the ahject. [20] describes one auch system.

The make_class macro expands to:

cluss_name = (A (ob3 4l i) ... b))
let dy,
dZv
dn

in letrec self = (o (o methods (reify)) obj)
super = (super_class.name self

super_class_arguments)
methods = (reflect self in

[mly ma2, ..., mo])
in (e super (e methods (reify))))

Message sending is simply expression evaluation relative to a specified record; thus:

(send object message) = (reflect object in message)

Figure 7 gives a definition of a circle and point class using these syntactic abbreviations.

(make-class point
(instance.vars a b)
(methods ((DistfromOrig = (aqrt (+ (sqr a) (sqr b))))
(ClosertoOrig = (lambda (p) (< Distfrom0rig

(send p DistfromOrig)))))))

(make-class circle
(instancevars a b r)
(super_class point)
(super.class_args a b)

(methods (DistfromOrig = (max (- (send super DistfromOrig) r) 0))))

Fig. 7. Specification of a circle and point class using macros. The “self” pseudo-variable is
implicitly subsumed in the definitions. All free names are resolved relative to the environment

in effect at the time a class instance is created, not the environment extant at the time the
class definition is evaluated.

368
7 Conclusions and Comparison to Related Work

The operational view of inheritance in Simula[12] and Smalltalk [13, 16] led to its em-
phasis as a programming method to support sharing and reusability of code and data. In
Smalltalk, for example, the concept is manifested in the name-lookup rule — the meaning
of free names occurring in a message is determined by the object (and all its superclasses)
to which the message is sent. In class-based languages, name overloading becomes the
key operational feature of inheritance and explicit linguistic mechanisms are provided to
build class hierarchies, I'roviding operations to reflect and reify over environment struc-
bures obviates the nead for lillguiﬂl.iu inechanisms (HIH‘.II ny class or method (|¢‘.ﬁnil.imm)
Latlored explicitly for inheritance.

Lieberman [22], Ungar [31, 9], and Stein [30] have advocated a variant of class-based in-
heritance in which objects subsume the functionality of classes. Objects receive messages
which can be forwarded at their discretion to other objects. An object is a prototype for
a class and delegation replaces message-passing as the main protocol for realizing inher-
itance. Reifying over closures closely captures the behavior of delegation since a closure
defines a local namespace which, in the presence of reflection, constitutes a prototype
object.

There has been much interest in a type-theoretic description of inheritance[15, 24, 32].
Under this view, inheritance can be implemented given a suitable subtype relation (or
similar constraint system) over objects or records. To paraphrase [7], a record type 7 is
considered to be a subtype of 7/ if it has at least all the fields of 7 such that the common
fields of 7 and 7’ are related under the subtype rule. A suitably constructed subtype
relation permits strongly-typed, statically-scoped languages to support name-overloading
albeit in a manner quite different from its manifestation in dynamically-scoped, weakly-
typed languages like Smalltalk. Inheritance is realized by constructing a type system that
supports inclusion polymorphism on records. The pragmatic utility of such an approach
stills appears to be an issue of debate given the subtlety and complexity of the type
rules [10].

Our approach is orthogonal to these efforts; we don’t rely on a strong type-system to
build inheritance systems, although a type system for a reflective language similar to £
does exist{17]. In our context, type information is used to determine the presence (or
absence) of bindings in environment-yielding (reflective) operations. For example, in the
code fragment:

(X (x) (reflect x in y))

the binding-value of y is predicated on the meaning of x. L’s type system, in effect,
performs static analysis of the call points to this function and makes inferences of the
form, “All instances of x define a binding for y”, or “No instance of x defines a binding
for y”, or “Only certain instances of x define a binding for y.” Based on the information
gleaned from such an analysis, we expect to transform expressions using late-binding
operations into equivalent lexical-binding ones that can be efficiently compiled.

Rather than using type inference and subtyping, America[3] and Snyder({28] have argued
that subtyping should be separated from inheritance which, in their view, serves primarily
as a vehicle for code-sharing. For example, in implementing a stack, we may wish to

369

inherit code from an array but we would not want to consider a stack to be a subtype

of an array [3]. Reflection permits us to support this kind of formulation as described
earlier.

There has also been much work in generalizing reflection to work in the presence of fine-
grained concurrency(23, 34]; the use of reflection in this context permits program control
over implementation concerns such as monitoring, scheduling, migration, etc. Insofar as
one goal of these projects is to permit flexible high-level mechanisms for managing se-
mantic objects (such as environments), it shares much in common with the stated aims of
this work. The introduction of concurrency, and the desire to support programming envi-
ronment functionality within the base language, however, distinguishes the presentation
and focus of these efforts from ours in obvious and important ways.

The reflective systems of Brown([33] and 3-Lisp[27] differ from our work in two signifi-
cant respects. First, our reflective model does not consider reification of expressions or
continuations. Reification over expressions requires, in effect, keeping a compiler resident
at runtime. While useful for extending the functionality of interpreters and for providing
an expressive platform for manipulating macros, expression-based reification is orthog-
onal to more general modularity concerns. Secondly, our treatment of environments in
this paper often takes advantage of the non-strict semantics we give them. The process
of constructing an environment is decomposed from its reification. This separation of
concerns leads to expressivity gains not addressed in these other reflective models.

In summary, our contribution is best regarded as a unification of different kinds of in-
heritance and delegation schemes within a simple linguistic framework. It defines an
operational characterization of object-based systems in which objects are viewed not as
fundamental elements in the language’s semantics, but as composite structures built from
more primitive reflective operations. As a result, we argue that this approach offers the
promise to be a practical and simple vehicle in which complex object-based systems can
be constructed. Moreover, it is the first attempt to our knowledge that uses reflection as
a language basis for modeling inheritance; we feel the implications of such a unification
deserves further investigation. '

References

1. Harold Abelson and Gerald Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, Mass., 1985.

2. Norman Adams and Jonathan Rees. Object-Oriented Programming in Scheme. In Proceed-
ings of the 1988 Conference on Lisp and Functional Programming, pages 277-288, 1988.

3. Pierre America. Issues in the design of a parallel object-oriented language. In Pierre Amer-
ica and Jan Rutten, editors, 4 Parallel Object-Oriented Language: Design and Semantic
Foundations, chapter 2. Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands,
1989. in PhD thesis.

" 4. H. Barendregt. The Lambda Calculus. North-Holland, 1981.

5. Daniel Bobrow, Linda DiMichiel, Richard Gabriel, Sonya Keene, Gregor Kicczales, and
David Moon. Common Lisp Object System Specification 1. Programmer Interface Con-
cepts. Lisp and Symbolic Computation, pages 245-298, January 1989,

6. Robert Burstall and Butler Lampson. A Kernel Language for Modules and Abstract Data
Types. In International Symposium on Semantics of Data Types. Springer-Verlag, 1984.
Lecture Notes in Computer Science, Number 173.

10,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

370

. Luca Cardelli. A Semantics of Multiple Inheritance. In International Symposium on Se-

rmantics of Data Types. Springer-Verlag, 1984. Lecture Notes in Computer Science, Number
173.

Luca Catdelli and Peter Wegner. On Understanding Types, Data Abstraction, and Poly-
morphism, ACM Computing Surveys, 17(4):471-522, 1985.

. Craig Chambers and David Ungar. Customization: Optimizing Compiler Technology for

SELT, A Dynamically-Typed Object-Oriented Programming Language. ln ACM §1G-
PLAN 89 Conference on Programming Language Design and Implementation, pages 146-
160, Junc 1989,

William Cook, Walter Hill, and Pater Canning. Inheritance is Not Subtyping. In 17**
ACM Symposium on Principles of Programming Languages, puges 126 135, 1990,

Willlam Cool and Jens Palsberg. A Denotational Semantics of Inheritance and its Correct-
ness. In OOPSLA 89 Conference Proceedings, pages 433-444, 1989, Published as SIGPLAN
Notices 24(10), October, 1989,

0.]. Dahl], B. Myhruhaug, and K. Nygaard. The Simula67 Base Common Base Language.
Technical report, Norwegien Computing Center, 1970.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation,
Addison-Wesley Press, 1983.

Michael Gordon. The Denotational Description of Programming Languages. Springer-
Verlag, 1979.

Justin Graver and Ralph Johnson. A Type System for Smalltalk. In 17" ACM Symposium
on Principles of Programming Languages, pages 136-150, 1990.

Daniel Ingalls. The Smalltalk-76 Programming System: Design and Implementation. In
Fifth ACM Symposium on Principles of Programming Languages Conf., pages 9-16, Jan-
uary 1978.

Suresh Jagannathan. A Programming Language Supporting First-Class, Parallel Environ-
ments. Technical Report LCS-TR 434, Massachusetts Institute of Technology, December
1988.

Suresh Jagannathan. Environment-based reflection. Technical Report 91-001-3-0050-1,
NEC Research Institute, January 1991.

Samuel Kamin. Inheritance in Smalltalk-80: A Denotational Definition. In 15°* ACM
Symposium on Principles of Programming Languages, pages 80-87, 1988,

Eugene Kohlbecker and Mitch Wand. Macro-by-Example: Deriving Syntactic Transforma-
tions from their Specifications. In 14** ACM Symposium on Principles of Programming
Languages, pages 77-85, 1987.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, and K. Nygaard. The BEA Program-
ming Language. In Bruce Shiver and Peter Wegner, editors, Research Directions in Object-
Oriented Programming. MIT Press, 1987.

Henry Liebermann. Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems. In OOPSLA’86 Conference Proceedings, pages 214-223, 1986. Published
as SIGPLAN Notice 21(11), November 1986.

Satoshi Matsuoka, Takuo Watanabe, and Akinori Yonezawa. Hybrid Group Reflective
Architecture for Object-Oriented Concurrent Reflective Programming. In Proceedings of
European Conference on Object-Oriented Programming, pages 231-250, 1991. Published as
Springer-Verlag LNCS 512.

Jens Palsberg and Michal Schwartzbach. Object-Oriented Type Inference. In OOPSLA’91
Conference Proceedings, pages 146-161, 1991.

Gordon Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Computer Science Dept., Aarhus University, 1981.

26,

27.
28.
29.
30.

31.

32.

33.

34.

371

Uday Reddy. Objects as Closures: Abstract Semantics of Object-Oriented Languages. In
Proceedings of the Conference 1988 on Lisp and Functional Programming, pages 289-297,
1988,

Brian Smith. Reflection and Semantics in a Procedural Language. PhD thesis, Mas-
sachusetts Institute of Technology, 1982.

Alan Snyder. Encapsulation and inheritance in object-oriented languages. In Object-
Oriented Programming Systems, Languages and Applications Conference Proceedings, pages
38-45. ACM Press, 1986.

Guy Steele Jr. Common Lisp: The Language, Second Edition. Digital Press, 1990,

Lynn Stein. Delegation is Inheritance. In OOPSLA ‘87 Conference Proceedings, pages 138-
146, 1987. Published as SIGPLAN Notices 22(12), December, 1987.

David Ungar and Randall Smith. SELF: The Power of Simplicity. In OOPSLA’87 Confer-
ence Proceedings, pages 227-241, 1987. Published as SIGPLAN Notices 22(12), December,
1987,

Mitchell Wand. Complete Type Inference for Simple Objects. In Second IEEE Symposium
on Logic in Computer Science, pages 37-44, 1987.

Mitchell Wand and Daniel Friedman. The Mystery of the Tower Revealed: A Non-Reflective
Description of the Reflective Tower. In Proceedings of the 1986 Conference on Lisp and
Functional Programming, pages 298-307, 1986.

Akinori Yonezawa and Takuo Watanabe. An Introduction to Object-Based Reflective Con-
current Computations. In Proceedings of the 1988 ACM SIGPLAN Workshop on Object-
Based Concurrent Programming, pages 50-54, 1989.

