An Object-Oriented Language-Database
Integration Model:
The Composition-Filters Approach

Mehmet Aksit, Lodewijk Bergmans & Sinan Vural

University of Twente, Dept. of Computer Science
Enschede, The Netherlands

Abstract. This paper introduces a new model, based on so-called vbject-composition
filters, that uniformly integrates database-like features into an object-oriented
language. The focus is on providing persistent dynamic data structures, data sharing,
transactions, multiple views and associative access, integrated with the
object-oriented paradigm. The main contribution is that the database-like features are
part of this new object-oriented model, and therefore, are uniformly integrated with
object-oriented features such as data abstraction, encapsulation, message passing and
inheritance. This approach eliminates the problems associated with existing systems
such as lack of reusability and extensibility for database operations, the violation of
encapsulation, the need to define specific types such as sets, and the incapability to
support multiple views. The model is illustrated through the object-oriented language
Sina.

1. Introduction

Traditionally, data-intensive applications have been developed as application programs
executing on top of a database management system, and using database services through
embedded data manipulation statements. This approach suffers from the need to manage
two different languages, and to interface them with extra programming effort. There have
been numerous attempts at integrating these two systems within the framework of the
object-oriented paradigm [Kim 90]. It is claimed that the object-oriented model provides
a more suitable basis both for application programming and data management operations,
when it is selected as a common computation model. In addition, since objects can
represent complex data structures, object-oriented databases are presumably more capable
in dealing with emerging applications such as computer-aided engineering.

A considerable number of object-oriented database management systems have been
developed or are currently under development (e.g. [Maier 86], [Kim 89] and [Ontologic
91]). These systems support the basic elements of the object-oriented model, and provide
efficient data management, transaction support, and querying facilities. The full integration
of language and database systems, however, cannot be considered to be solved completely.
The problem is three-fold.

373

Firstly, since these systems extend an object-oriented computation model with conventional
database mechanisms like (non-object-oricnted) query languages, the advantages of the
object-oriented model do not fully extend to databasc featurcs. For example, encapsulation
and inheritance cannot be uscd together conveniently with the database-like features in
unilorm way. Conseguently, it 18 more ditticult o obtain modular, reusable and extensible
softwarc for the data management part of applications. In addition, the programmer still
hak tor deal with rwo differeinl systems,

Sceondly, introducing database-like features inlo the object-oriented languape model
genurally infnduces weakened encapsulation, and these features arc pencrally provided
unly Tur A restricisd number of langnage structures such us sels or clusses.

‘Thirdly, neither languages nor object-oricnled database syslcms address the problem of
providing dilferent interfaces on the same object in a general way [Hailpern Y0]. This is
the so called multiple views problem and manifests itself in many software designs. Views
have traditionally been supported in database systems, and it should be possible to define
them for all language objects within the system.

The model presented in this paper extends the conventional object-oriented model through
object composition filters which are an integral part of our object model. The database-like
features are defined in terms of these filters. As a result, data abstraction, polymorphic
message passing and inheritance are fully integrated with them. On the other hand, no
compromises are made for object-oriented principles such as encapsulation, and all
language objects potentially support database-like behavior. Transactions and multiple
views are supported as well.

This paper is organized as follows: The next section gives an overview of the state-of-the
art systems. Section 3 summarizes the major problems, which will be taken into account
explicitly throughout the paper. The proposed language model is introduced in section 4.
Section 4.1 explains the basic object model. Section 4.2 describes how multiple views can
be constructed in this model. Section 4.3 extends the model to incorporate inheritance,
delegation and associative-access mechanisms. Object management features are explained
in section 4.4. Section 4.5 introduces transaction mechanisms and persistency. Finally,
section 5 evaluates the computation model and gives conclusions.

2. Background and Related Work

In this section we describe several systems that attempt to integrate database features with
an object-oriented language.

374

2.1 Smalitalk & Smalltalk-based Systems

The Smalltalk system [Goldberg 83] offers a limited set of database-like features within
its programming environment. Smalltalk provides persistence for all objects, using the save
image facility which saves a snapshot of the Smallialk environment as a whole. The
Orwell system | Thomas 88], which is based on Smalltalk, introduces individual storage for
vbjeets, but is mainly intended for version and configuration management.

In Swmalltalk, associalive access is provided through the method select: defined on
collections, such as Set, Dictionary and Bag:
acollection select: [:element | ...]

Here, aCollection 18 an instance of a collection class, select; is the name of a method
defined for collection objects, and the brackets "[...]" indicale a constant argument object
of the class Block. The class Block represents Smalltalk programs. Within this block object,
element is called the block argument. A block serving as an argument to a select: message
must have a single block argument and a body returning a boolean value. The block body
is evaluated for each element of aCollection. The result of the method execution is another
instance of the collection class, containing elements from aCollection for which the
argument block has evaluated to true.

GemStone ([Maier 86), [Bretl 89]) is an object-oriented database system based on
Smalltalk. Its language OPAL extends Smalltalk in a number of ways. The "{..}"
constructor is introduced as a substitute for "[...]" in order to signal the use of indices for
selections on nonsequencable collections. A second extension is the usage of path
expressions to represent joins in the relational sense. The path expressions are also used
to define indexes. A path expression is a sequence of instance variable names separated
by periods, e.g. student.dept.location. Sequences of messages, €.g. student dept location,
could be used for the same purpose as well, but path expressions bypass the execution
layer, and allow query optimizations at the database level. User sessions are considered to
be transactions. A shadow paging mechanism is employed to ensure database consistency.

2.2 ORION .
ORION ([Kim 88], [Kim 89]) is an object-oriented database system based on an
object-oriented version of Common Lisp. Persistent storage is provided for all objects, and
a transaction subsystem is in charge of database consistency. ORION’s Common Lisp
defines a method select on classes, instead of on collections:

(select aClass QueryExpression)
Here, aClass denotes the class which is the receiver of the message, and QueryExpression

is a boolean expression expressed in Lisp which is the argument of the message select. The
result is returned as a set object containing the qualified instances of the class. Paths of
instance variables (called complex attributes) may be used in query expressions, €.g. Dept
Location. Transaction control is supported by functions commit and abort.

375

2.3 Ontos

Ontos ([Ontologic 90], [Ontologic 91]) extends C++ with a class library that includes a
persistent root class Object. Objects of a class are persistent if the class is a direct or
indirect subclass of Object. Objects must be saved by explicit put messages even though
lhey ure persisient through their class, There are several additional requirements for a
persisient object, which force the programmer Lo write a considerable amount of code only
to make a C++ object persistent,

For associative access, an SQL-like query (acility 18 mitroduced. Queries may be directed
hoth 1o classes (indicating a table of all the instance of the class) and to aggregates like
scly, listy, dictionarics and atrays (the from clause). As with GemStone and ORION,
inslunwe vuriubles may be easeaded to form path éxpressions thul simulate relational joina.
In order 10 eéxecule a yuery, an instance ol the Quervlicrator class has o be creaied,
supplying the text for the query as an argument. The rows that qualily according to the
select clause may be returned by successive yieldRow messages to the Querylterator
instance. Transactions are supported by global functions to start, commit and abort a
transaction.

3. Our View of the Problem

We may sub-divide the language-database integration problem into duality in conception,
restriction in associativity, violation of encapsulation, fixed views, and lack of

object-oriented support in database features. These problems will be explained in turn
below:

3.1 Duality in Conception

There is a clear difference between "integrating" and "interfacing" programming languages
and database systems. From the above accounts of object-oriented language-database
systems, it is evident that language and database models are still kept separate, but the
programmer is offered possibilities within the language to access database facilities that
are in fact not part of the language model. This results in a set of constructs separated
from the language, rather than embedded within it. Moreover, the programmer is frequently
confronted with the fact that he/she is actually dealing with two systems instead of one.
For instance, the usage of a separate block constructor in GemStone’s OPAL for queries
to be optimized by database indexes conflicts even with the essential data independence
claim of database systems. Similarly, the necessity of explicit object lookups and puts,
object-type links, and the SQL interface in Ontos, force the programmer to deal with two
distinct systems.

3.2 Restriction in Associativity

For almost all systems, associative access is restricted to a fixed number of classes, and
thus objects to be accessed associatively have to be inserted into one of such structures
explicitly. For example, the selection capability in Smalltalk and Gemstone is restricted to
instances of collection classes. The problems with Orion’s approach are that associative
access is defined on classes and produces sets, and the resulting sets cannot be further

376

restricted. Tn Ontos, queries can only be dirccted to classes and aggregates, Similar to
Orion, return values are restricied to a few types. A query may return rows that are not
objects.

3.3 Violation of Encapsulation

In Gemstone, Orion and Ontos, attempts to formulate object queries have tesulted in path
cxpressions which make object structures visible and thus are against the encapsulation
principle of the object-oriented model: encapsulated data should be accessed via message
sends only. Since Smalltalk does not introducc path cxpressions and is a pure
object-oriented language, its query mechanism using the select: method docs not violate
cncapsulation.

3.4 Fixed Views

Relational databases invariably support views on base tables, which allow users o work
only on the parts of the database that are relevant to them. It is also possible to create
virtual tables through the view mechanism by joining several tables under a view. The
multiple views problem in object-oriented designs has been addressed by several authors
(e.g. [Pernici 90], [Hailpern 90]). Not all methods of an object are of interest to (all) other
objects that use its services. Therefore, it is desirable to define views on an object,
differentiating between clients, for better information hiding and improved structuring of
object relationships.

In languages such as C++ [Ellis 90], Trellis/Owl [Schaffert 86] and PAL [Bjérnerstedt 88],
multiple views can be defined by the programmer with respect to the different clients of
an object. These mechanisms in general only distinguish between the following categories
of clients; the object itself, the descendants of an object, and other client objects. However,
they do not allow any distinction between different kinds of external client objects. In the
Smalltalk programming environment, the concept of private methods is introduced, but it
is not enforced by the language. Gemstone and ORION do not provide multiple views at
all. Multiple views in Ontos are based only on C++, thus its view mechanism is very
limited.

3.5 Lack of Support of Object-Oriented Features

Since data management features of most systems can be considered as add-on extras,
object-oriented properties can not be used optimally for all system components. For
instance, all discussed systems except for Smalltalk support transactions. However, they
introduce transactions separately from object-oriented features like data abstraction,
message passing and inheritance. Therefore it is in general not possible to construct
extensible software with transaction characteristics. Moreover, this applies for all
database-like features. For example, it should be possible to combine associative access
with any object-oriented feature such as inheritance. This would result in associative
inheritance, which is useful in case of complex inheritance hierarchies. Associative
inheritance will be discussed in more detail in section 4.3.

377

4. The Language Model

We belicve that an object model that provides abstract operations for its users and
encapanlates ifs implementation details is a good starting point for building complex
systems. It is commaonly nceepted that polymorphic message passing between objects, and
sharing mechaniving yuch us inherilance or delepation are important techniques in huilding
reusable and extensible sysiems [Wegner 90 However we leel that committing to a single
abstract class inheritance model is Tar too restricted. Tn particolar, this object model is
found to be too simple to deal with the problems related to language-database integration.

W are sirengly convinead that the starting point for languuge- dutabase integrulion lies in
casting database principles only the data absiraction model of the language, and making,
them inhcrent throughout. Otherwise, we end up with language counterparts of database
structures and facilities, i.e. dedicated classes and methods, requiring extra overhead for
the programmer, and not mingling properly with other elements of the model, such as
inheritance. This was identified in Section 3. If database-like features are to be integrated
into an object-oriented programming language, then they should be available for all objects
without any restrictions or implications. Therefore, we have enhanced the basic object
model to incorporate associativity and multiple views. The vehicle for providing these
mechanisms is provided by the so-called composition filters, which are explained in this
section.

messages

filters

states

®

external
objects

internal methods
objects Interface Part

implementation Part

Fig. 1. Extension of the object-model with composition-filters.

378

As shown in Figure 1, in its input part, object O defines its set of own methods, interface
objects, and states'. Interface objects are sub-divided as internal and external objects. In
addition to that, a set of composition filters are defined and organized in a certain way.
Message invocations for this object are first evaluated by these filters and then dispatched
lo an appropriate method, States are used 1o control filters. The selected method can be
one of the elements of the method set, or a methad of one of the internal or external
objects.

This mechanism pravides a higher depree of flexibility than the conventional fixed set of
methods at the interface of an object. The crucial property of this model is that il can
support basic objecl-oriented construcis such as mhentance and delegation, as well as
dutabase-like features such ax dynamic data structures, fransactions, multiple views and
associative aceess exclusively via filters. The only additional operabons needed are some
basic object methods, for instance copy, inherited from the root class in the hierarchy,
named Object. In the following sections, we will describe this new model adopted by the
Sina language starting from simple objects to more sophisticated structures®.

4.1. The Basic Object Model

In Sina, every object o is an instance of a class ¢c€C. An object o€0 is modeled as a
quadruple, (I, M, S, F), where

C is the set of all Sina classes.

O is the set of all Sina objects.

I is the set of interface objects of o; these are objects that are within the scope of the
object, although not necessarily encapsulated by the object.

M is the set of methods defined within class c.

S is the set of states defined within class c.

F is the (ordered) set of filters defined within class c. 1)

As shown in Figure 2, a class definition is divided into separate parts: the input part and
the implementation part. The input part contains the declaration of the interface objects I,
divided into two components. The first component consists of encapsulated interface
objects called internals. The second component consists of interface objects that are
outside, but within the scope, of the object. These are called externals. The input part also
declares the class-specific methods M, states S, and the filters F. Method declarations in

1) The term input part implies the existence of both input and output parts. Indeed, an output part can be
defined to control the messages that are sent outside of the object. However, in this paper, we are only
concerned with the input part of an object. Therefore, for simplicity, instead of using the term input methods
and input interface objects, we will refer to them as methods and interface objects. The output part is
concerned with implementing the so-called abstract communication types (ACTs). ACTs can abstract
patterns of communication and large scale synchronization among objects [Aksit 89). We are currently
experimenting with these mechanisms.

2) The early version of the Sina language was published in [Aksit 88] and {Aksit 91}. These publications only
illustrated the basic data abstraction model, and did not cover the database-like features that are presented
here.

379

the input part only give names, argument types and return types of methods that are
available to users of the object.

The implementation part contains the declarations of the implementation objects, or
mstance variables, and the implementation of the class’s methady and staies. Tt also
includes an initintization method which is executed immediately afler the creation of an
instance of a class. If we do not consider filters and object states, this model is somewhat
similar o the C++ object model with public and private methods and objects [Ellis 90].

clazs ¢ input

asxtsrnals
// &xtarnal Qhﬂ&dhﬂ that. are relferrid tn are declared
here.
internals
{/f the internal, encapsulated, cbjects are deslared here
moethods
// locally defined methods are declared here
states
// local states are declared here
filters
// filters are declared here
end;

class c implementation

insvars
// declaration of instance variables
states
// states are implemented here
initial
// initialization method is defined here
methods
// implementation of methods is defined here
end;

Fig. 2. Class template in Sina.

The interface objects are declared as follows:
doc: Document;
Here doc is an interface object, which is declared as an instance of class Document.

A state s is a certain condition that describes the object at a given time.

(s € S) = <proposition, id> ' 2)
A state may be viewed as a side-effect free boolean function, proposition, which can be
referred to in filters via an identifier id, and which maps the state of the object at a certain
moment to frue or false. For example, in the following state implementation, the state
user_view becomes true if the sender of the current message to this object is a subtype of
class User’:

user view return sender.subtypeOf (User);
This condition is expressed as < sender.subtypeOf(User) , user_view >.

3) In Sina, subtype relations are deduced based on the signatures of objects.

380

Stale implementations can be specified in two ways. If the implementation is fixed, it can
be defined in the states clause of the implementation part. In this case, the state description
cannot be changed. If the state function may vary during the lifetime of the object, another

instance of class State can be assigned to it. This can be done during object initialization,
or within a method.

Statcs are declared in the inpul part since we intend to make them available 1o users of the
object, but their implementation is encapsulated in the object’s implementation part. An
important property of the state implementation is that it is side effect-free. The utilization
of states will he iHustratled in connection with filters,

The set ol methuds M, of object 2 contins all the methads thal arc defined for the object.
But an object may provide other methods on its interface, through the tilter mechanism,
‘The largest possible set U, of methods that are available, is the union of all the methods
provided by the interface objects. This rule applies recursively for the interface objects,
resulting in the following rule:
Uo = MD U (t‘liel Ux)

Which methods eventually become available for the clients of the object is determined by
the filters, as will be explained later.

A filter fE€F defines the compositional object behavior and may be defined as a pair:

A= {<s,m>|s&S U (U,E, S)) A mEL) }

A(f) =[<s,m> | <s,m> E A]

f = <handler(f), A(f)> 3)
So a filter f consists of two components: the first, handler(f) is a so-called filter-handler,
which is an instance of a filter-handler class. A filter handler determines what is to be
done with messages after they have passed the a filter (respectively failed to do so). The
second component, A(f), is defined as an ordered subset of A, which is denoted by the
brackets "[" and "}", and is called an accept set function. An accept set function defines
the conditions (expressed by states) which determine the acceptance of messages. A is the
set of all possible state-method combinations <s,m> within the object. The ordering of the
state-method pairs in A(f) corresponds with the definition-order. S, denotes the states that
are defined by interface object i.

Filters define the guidelines for the object’s behavior in terms of methods and states
defined by the object and/or those available through its interface objects. A sample filter
f1 is shown below:

fl1 : Error = { self.user_view=>self.attach, ... }
This filter has a filter handler which is an instance of class Error. The dot notation is used

to bind the state and method names to objects. s=>m is the syntactic counterpart of
<s,m>. It indicates that method m is accepted only when state s is true. In the above filter
description, the state user_view and the method attach that are bound to the object owning
this filter (self) are used. The pseudovariable self might have been omitted here because

381

whenever a qualifying object name is absent, self is substituted*. Examples where states
and methods of objects other than self are be combined in filters will be given in scction
4.3.

A filter controls the interlace of an objeet, by filtering incoming messuges. The character
"," that 15 used above is called a selector and is one of the hilter operators. Elementa of the
nilter that are sepurated by selectors, are processed in left-to-Tight order.

The clavs Error defines handiers thal reject a message whenever it fails to pass tluough
the filter. Simularly, a handler class Buffer blucks the messape uniil the ohject’s state
allows 11t proceed” New handler clusses may be defined lor any pencral pumose.
handling procedure. The udmillance of an incoming message 18 determined according 10
the statec-message pairs. In the above example, an grach message is admitted by the filer
only If the user_view slale evaluales (v irue.

Message invocation is a triple {0, m, P(m)), where o is the object to which the message
is sent, m is the name of the method that is invoked and P(m) is a possibly empty set of
arguments (parameters) required by m. Invoking the interface methods of an object is the
only means by which another object can communicate with, and change/access the internal
state of that object. Invocations are based on messages using the request-reply model of
communication. An invoked method can return the result (any object) to the sender using
the return statement. The nil object is returned when a method does not explicitly return
an object.

An object can communicate with another object by using that object’s name which is
subject to scope rules. An object can access itself by using the pseudo-variable self. An
example for a message invocation is the expression

mailer.attach(aLetter);
This results in sending a request message to the object mailer, which is the receiver object,
attach is the method to be invoked, and aLerter is the message argument.

The Sina compiler incorporates a preprocessor to allow programmers to use a more
familiar short-hand notation such as the assignment, arithmetic and logical operations. For
example, assigning object a to b may be denoted by b.assign(a), but also by b:=a. In the
latter case, the preprocessor converts the expression to the standard form b.assign(a).

4) Other pseudo variables are inner, sender and server. inner is used to designate the locally defined part of
an object, which only supports the methods that are implemented by the object itself, whereas self refers
to the entire object, thereby also supporting the inherited and delegated methods. sender is defined in the
next section under the topic multiple views. server is defined in section 4.3 for constructing
delegation-based hierarchies.

5) We use the handler class Buffer to implement (extensible) concurrent structures; this topic is presented in
another paper [Bergmans 92].

382

The algorithm in figure 3 shows that each received message must be checked by all filters
in filter set F (line 2), and for every filter again by all filter elements. A filter element is
shown as the pair <s;,m> in line 4. A filter f only accepts a message m, when the message
selector matches, i.e. m=my, and the corresponding state s, evaluates to true (line 5). When
this is the case, no further filter clements of the current filter need to be checked, which
is realized by the break in line 9. The destination, or target of the message is deduced in
line 8 from the filter element. In line 12-14, the filter-handler determines what to do with
an accepied or rejected message. After the last filter has heen passed, the message is
dispaiched 1o the desired method, matching the message m and destination dest (note that
self or inner are also possible destination objects). When a message is rejected, the filter
handler may icrminate the algorithm, in which case the message is not dispatched (tor
instance filter handlers which are instances of class Error).

Notice that the message is accepted by a filter when it matches any filter element. Thus
the selector operator "," can be seen as a logical OR between different filter elements. Only
when a message is accepted by all filters it will be dispatched. Hence the subsequent

passing through the filters is similar to a logical AND.

1) algorithm pass_filters(m, F)

2) forall f in F = [£f,, ..., f,] do
3) accept := false;

4) forall <s,,m;> in A(f) = [<s,,m>, ..., <s,,m>] do
5) if (m = m;) A s; then

6) begin

7) accept := true;

8) dest := target(m,);

9) break;

10) end;

11) endfor;

12) if accept

13) then handler(f).acceptMessage(m)
14) else handler(f).rejectMessage(m);
15) endfor;

16) dispatch(m, dest);

17) end pass_filters;

Fig. 3. The algorithm that evaluates received messages with respect to filters.

Because instance variables are not allowed to be targets in the filters, their methods never
become available on the interface of the object. In fact, this could also be realized by
programmer’s discipline only, without the need to declare implementation objects and
methods separately. The rationale for this is improved readability of class definitions and
separation of the input and the implementation parts of an object.

An important property of the model is that the states and the filters can be treated as first-
class objects and are within the set of interface objects 1. For clarity, we have distinguished
them from other interface objects. The basic set operations are defined on the set of
interface objects for all objects. The first-class properties are useful for defining object
management operations as is shown in section 4.4.

383

In the sections that follow, a number of applications of the data abstraction model are
shown,

4.2, Multiple Views

In this section, we will illustrate how filters can be used Lo implement muitiple views upon
ohjacts,

A view is A triple o, o, V), where a, ix a client object that invukes a message mEV on
a server object o,. Vis the set of messages thal provided by o, tor o.. Having a multiple
view mechanism means that the server object suppons mulliple views depending on |t
stale or on characteristics of ity client such as class or identity. For example, it may make
some methods visible W instances of one class, und others (o instances of another class,
or it may define methods that may be executed only by clienis that are instances of
subclasses of its class. The following filter f implements the view .o, 0, V) where V is
a subset of all available methods on o,. As in (3), U denotes all the methods defined for
the current object as well as all the methods available from all interface objects:

o=ILMS P

VCUu

(f € F) = <handler(f), A(f)>

A(f) = [<s,m>| mEV a s=<view_prop, view_id> } €]

As before, handler(f) denotes the filter handler object. Now suppose that the proposition
view_prop is defined as "sender=o,". Then A(f) is the set of state-method pairs that allow
only sender o, to execute methods in V on o,. The pseudo variable sender indicates the
object that sent the current message. Apart from the identity of the sender object, the
implementation of a view may use any general proposition related to the sender object, or
the state of the receiver object. In the latter case, an object may provide changing views
to its clients.

A sample class definition implementing multiple views is provided in Figure 4.

The class Text_mail defines four methods; attach, send, deliver and route. The method
attach takes one parameter of class Letter which includes the contents of the mail. The
method send requires the address of the receiver object as a parameter, and transfers the
text to the mail system for delivery. The method deliver is used by the mail system to
physically deliver the mail. It returns a boolean indicating whether the mail was delivered
successfully. The method route is used by the mail system to transfer the mail to another
mail system, when the destination is not directly accessible to it.

The filter handler class is Error. In the filter definition, the curly brackets indicate a
shorthand notation for expressing "s=>m,, s=>m,, ..., s=>m," as "s=>{m,, m,, ..., m,}".
The wildcard character "*" can be used in filters to indicate any matching method. Note
that the name self might have been omitted from the filter definition since it is the default,
or inner might have been used instead

384

In this example, two views on the class Text_mail are defined. Objects of class User are
only allowed to invoke messages attach and send while objects of class Mail system or
its subclasses are only allowed to send messages deliver and route. The pseudo variable
sender is used to check the class of the client object in the implementation of the states
user view and system_view. Note that only an object that is a subtype of class ser or
class Mail_system is allowed 1o invoke a message!

class Text_mail input
methods
attach(Letter) returns Nil;
send{Address) rsturns Nil;
dalivar(NodaTd) returne Doolean;
route {NodeTId) returns Nil;

states
user_view;
system view;

filters
fl : Error = { user_view=>{self.attach, self.send},
system_view=>{self.deliver, self.route} };
end;

class Text_mail implementation

states
user_view
return sender.subtypeOf(User);
system view
return sender.subtypeOf(Mail_ system);

end;

Fig. 4. Interface and part of implementation of class Text_mail.

4.3. Inheritance, Delegation and Associativity

As already identified in the problem statement, we find it too restrictive to adopt a single
class inheritance mechanism; rather we want to provide mechanisms like multiple
inheritance and delegation as well. In addition, we want associativity to be orthogonal to
object-oriented features such as inheritance, so that they can be combined. We will first
describe how filters can be used to implement different forms of code sharing mechanisms
such as inheritance and delegation. Then we will introduce associative behavior, and
explain how it can be defined.

The computation model as introduced by formulas (1-3) and algorithm pass_filters of
Figure 3 allows interface objects to be made available to the users of the encapsulating
object by naming them in filters. We will now show how the methods of an encapsulated
object can be made available on the interface of the object:

385

class O input
internal
q : ClassQ;
filters
fl : Error = { True=>qg.* };
ond ;

The definition according to the formml object model is as follows. Object o is definud,
which has a single inlerface object gq:

o= M85 T

T={q}

= {1

VaMUyV, =0 V-1l VH == V:V‘I
Inter fuce vbject g provides the methods m, 1 m, und is defined as:

q = “\llp Mq! qu Fll’.)
M, = {m,, m,, ..., m,}
Vy=M,

The filterset F of o contains only filter f7, with accept set function A(fI):
f1 = handler(f1), A(f1)
A(f1) = [<s,;m> | (s=True) A (m € V,)])

Here True is a state that is always valid; this is provided as the default when no state is
indicated. Now, suppose some client sends the message "o.m," where mEM,. This
message will be accepted according to the accept set function A(fI), since the message is
in the set V=M, and the corresponding state is also valid. Then the message will be
delegated to, and executed by the interface object g. Note that the client object is not
aware of the fact that it is actually executing the method of an interface object. Also note
that when rm; is dispatched to g, it has to pass through the filters defined by g before it can
be executed.

This mechanism is actually a simulation of inheritance, since the object o now provides
all messages of ClassQ on its interface, using the implementation of ¢, which is an
instance of ClassQ. This mechanism is also called delegation-based inheritance. If we
replace the interface object g with an external object g then the filters implement a form
of -pure- delegation. In this example, object o includes only one interface object and does
not introduce its own methods, thus providing methods of g only. If o had defined its own
methods or other interface objects, then the first state-method pair matching the incoming
message would have been dispatched. Multiple inheritance can be implemented by using
several interface objects. The left-to-right evaluation order of filter elements together with
the values of states would resolve name conflicts, if any.

In order to access their own methods or methods of their interface objects, within an object
messages can be sent to pseudo variables inner, self and server. The pseudo variables inner
and self in a message expression always refer to the implementation respectively interface
of the instance of the class where they are used. Because this is defined statically, the
semantics of a method implementation can be guaranteed not to be changed due to
overriding. Performing an invocation on server, however, causes the search for the invoked
method to start with the original recipient of the message. Since the objects in Sina can

386

be nested or the messages can be delegated to the external objects, the recipient of the
message and the object in which the invocation appears can be different. We call the
receiver of the message server, because this object can be thought of as performing a
service for the object that originally sent the message (the sender). server is similar 1o
Smalltalk self, in the sense that it supports dynamic binding. Bul server in Sina can handle
delepated messages, whereas Smalltalk self cannot do this [Licberman 86].

Typically in most object-oriented languages evety class inherits -either directly or
indirectly- some default behavior from a root class called Object”. Sina does not introduce
inheritance as a languape feature, but using a filter construct, inheritance can be
implemented, The Sing syslem contains a primitive class called Object which abstracts the
default operations ot all the classes. Typical example operalions used in this paper are
assign, equal, and copy. The Sina compiler provides an option to insert an instance of class
Object called default automatically as the first filter element of every filter in a class. This
option makes it unnecessary for programmers to define the default operations explicitly for
every new class. Since default is the first element of a filter, it prevales over other
interface objects. Of course, programmers can explicitly turn off this option and create an
instance of class Object at the interface of a new class. Then, for example, they can
eliminate the assign operation of Object so that a constant behavior of the class can be
assured.

In Figure 5, we give a sample class definition which uses filters to implement inheritance:

class Text_mail input
internals
doc : Document;
methods
attach(Letter) returns Nil;
send(Address) returns Nil;
deliver(NodeId) returns Boolean;
route(NodeId) returns Nil;
states
user_view;
system_view;
filters
fl : Error = { user_view=>{attach, send, doc.*},
system_view=>{deliver, route} };
end;

Fig. 5. Interface definition of Text_mail, which inherits from Document.

Class Text_mail in Figure 5 is similar to class Text_mail in Figure 4. An interface object
named doc of class Document is now introduced. The class Document includes methods
such as update and print, and by including "doc.*" in the filter, instances of the Text_mail
class in Figure 5 will also support these methods. The rationale for this is that the class
Text_mail can now be used to edit the mail text directly, instead of using a separate copy
of the mail text.

6) Some languages such as C++ do not enforce programmers to inherit from a single class. However, even for
C++ programmers it is common practice to introduce a base class such as Object.

387

The [ilter associates all methods of class Document with the statc user_view defined in
class Text_mail, which mcans that only objccts that are subtypcs of class User may send
these message to objects of class Text_mail. Note that the pseudo-variable self is herc
eliminated from the filter specification, since it is provided as the default.

Having introduced inheriance and delegation through composition fillers, we now proceed
to define the ussociative aceess mechanism and its relation with inheritance.

We have scen thal in mosi kystems, a collection of objects ix accessed by a condition that
apphes o all contamed objects through u predelined sefection operation. Since we do not
want this mechanism o be available only to a restricted set of objects, i naturally follows
thal associativity s atuibuted o every single object. For our model, it means that the
collcelion to be accessed is the sl of inleriace ohjects. Since the object can use or inherit
the methods of its interface objects as shown in (5), the ability to restrict the set interface
object set leads to the notion of associative inheritance or associative delegation. The
client may affect the inheritance (or delegation) web to some extent, and specify
associatively the objects from which it would like the server object to inherit. In short, a
dedicated container class which supports associative access through a special method is
replaced by the set of interface objects which every object may possess.

Associativity for interface objects is realized as follows: a received message will be
dispatched only to interface objects i for which the associated state evaluates to true. This
state is defined by < p(i), id, >, where the proposition is expressed by a message
expression in which i is a receiver (since p(i) tests the properties of i). p(i) is evaluated
only for proper interface objects i that support all the messages that are required for
evaluating p(i). These messages are defined by M;:

M, = im | p(a) involves *a.m’ i)
Only those interface objects i are selected for which the proposition applies (i.e. which
implement M,), for which p(i) evaluates to true, and which implement the received
message m. This is defined in the accept set function A(f) as follows:

A(D) = [<s, i.m> | i€l A s=(p(i), id } A mEU; A M,CU;])

The filter f will then include all interface objects which implement the methods that are
required by the proposition p, and which satisfy p. Since availability of interface objects
is determined by their responses to certain conditions but not by their names, such a filter
implements associative inheritance. The syntactic equivalent of filter f of (7) in Sina is as
follows, where p is the state which implements the proposition, and which is parameterized
subsequently by all suitable interface objects. When p evaluates to true for object i and i
supports the received message m, the message will be accepted, and eventually dispatched
to i. Proposition p can be defined by the object itself, but the object may also allow the
client to provide this proposition.
{ p(#)=>{#.*} }

We illustrate this in figure 6. with an example class, Multimedia_mail, which provides a
different behavior, depending on the type of media that is desired. The latter can be
determined by the client by sending the message select_mail, providing the proposition

388

(query condition) as a ’block’ argument. Notc that in class Text_mail in figure 5, the
criterion for associative inheritance is solely determined by the server object.

class Multimedia mail input
internals
text: Text_mail;
binary: Binary_mail;
voice: Voice mailj;
mathods

select_mail(Block) returns Nil;
states

mail state;
filtars

f1 : Error = { inner.=, mail state(#)==#.* };
and;

class Multimedia mail implementatiom
methods
select_mail(new_prop:Block)
begin
mail state.proposition(new_prop);
end;
end;

Fig. 6. Definition of class Multimedia_mail which associatively inherits from various types of mail
objects.

The input filter of class Multimedia_mail specifies associative inheritance controlled by
state mail_state. Since this state can be redefined using the method select_mail, the class
Multimedia_mail can associatively inherit from various mail types as required by the user.

The class Multimedia_mail declares three interface objects; text, binary and voice of
classes Text_mail, Binary_mail, and Voice_mail, respectively. The definition of class
Text_mail was given in figures 4 and 5. All these classes implement a specific electronic

mail object for the type of mail-data they contain. They also provide dedicated methods
for their respective data types.

The method select_mail is defined on class Multimedia_mail to let the user specify the
required mail type. A client of the object may provide a new proposition for the state
mail_state, as the argument of the select_mail method. The method proposition takes the
argument, which must be of class Block, and stores it as the (new) proposition of
mail_state. An example of invoking select_mail, using an instance of Multimedia_mail
called aMultimedia_mail, is:

aMultimedia mail.select_mail([#. subtypeOf (Voice_| mall) 1)i
The proposition is specified as a constant object of class Block, which is denoted with the

brackets "[...]". The number symbol "#" stands for the argument of the proposition
(interface objects will be substituted here). This proposition will evaluate to true only when
the argument is a subtype of class Voice_Mail.

369

4.4. Associative Object Management

Associative inheritance provides [lexibility in configuring the behavior of an abject in a
well-delined way. However, if client objects nced to define and preserve their own views,
but still share data, the associative inheritance mechanism will not be adequate since all
client objects observe the same server, with the same view. We therefore need to give
different object identities to different views of the same object. Besides, in addition to
selection, the object model should also support data management operations such as union,
intersection and exclusion. In this section we will show how this can be realized within
the object model.

Our aim is to provide a different view of an object o, and retain this view over a number
of method invocations. This cannot be realized by a filter construct only, since filters
dynamically reconfigure for every received message. So some changes to the interface of
an object need to be preserved over a number of message invocations. Since such changes
may not be relevant to all client objects, a copy of o must be made, say o’, of which the
interface will be changed to reflect a different view of o.

Since the state of the object o must be shared between all clients, o’ must share its state
with o. This is realized by making a shallow-copy instead of a complete copy. Shallow-
copy means that a new object o’ is created, with a different object identity, but which
shares all objects nested within o’ with the corresponding nested objects in o.

We first show the result, o, of a selection of object o with condition p. This creates a
view of the object with only those interface objects available that are selected according
to condition p (making use of (6)):

o=, M, S F
o=, M,S,F)
I' = {i€l | p(i) A M,CU} &

Because now only a subset I’ of the interface objects is available, the filters must be
adapted to take only the accessible interface objects into account, which can be expressed
as follows:

(PEF’) = < handler(f’), A’(f’) >

Ae) =[ism € AP s U Ug 8)) amemu Uy 1)) 1 ©
These lines state that the filters of the new filter set F’ are reduced so they only contain
filter elements that refer to the states and methods of the selected interface objects.

Since the set operations intersection and exclusion are a specific kind of selection, they can
be expressed in the same way. In that case only an appropriate selection proposition pis
to be provided. To define intersection between the interface objects of o and the interface
objects o™

o"={" M, S, F"

p(x) = (x€I")
Excluding all interface objects I" of o” from o requires the following proposition:

p(x) = (x&I")

390

In order to define a union of the interface objects from o with those from 0", we use the
same approach (resulting in a new object 0’):

o =I,MS,F

o' =I"'MS§ F

a" = 0", MY, 8" "

=1u1" (10
Notice that o’ offers an alternative view of object o, and therefore only the methods and
states that are defined for o are available for o’, but not those the stales and methods from
", This is also the case for the filters: the constraints that are imposed by the filter of o,
must still be valid for o’. To enforce this, objcct o” has the same filier sei that ¢ has.

As we mentivned before, the set of interface objects [is a [irst-class set object. Basic set
operations like union, intersect, exclude and select arc provided by set objects. By
manipulating the set of interface objects using these operations, views that are
combinations or restrictions of interface objects can be programmed. We show this in the
following example: ’

In the example class Multimedia_mail of Figure 6 a method select_mail is provided that
changes the type of mail-data handled by the mail system. One invocation of this method
will cause the change to affect all client objects of the mail system. In order to provide a
different view of the mail system, which does not affect all the clients, the method
select_mail can be defined as follows:

select_mail (new_prop:Block)
begin
return (self.get_input_objects).select(new_prop);
// get & select the set of (input-) interface objects
end;

Fig. 7. Implementation of method select_mail which returns a new view of the receiver object.

For the implementation of method select_mail the method get_input_objects is used, which
returns the set of interface objects. The method get_input_objects is inherited from class
Object. Then a select is performed upon this set. The method select returns a shallow-copy
which contains references to a selection of interface objects. This selection includes only
those interface objects that satisfy the condition new_prop, which is provided by the client
object as an argument of the method select_mail.

A possible effect of the method select is depicted by Figure 8. Here, the method select is
invoked with the condition subtypeOf(Voice_mail) which results in a shallow-copy of the
multi-media mail object o. The view object has a different object identity and shares the
contents of the voice mail, possibly with other views. Note that this sharing mechanism
is encapsulated and thus not visible to the users of view objects.

Apart from the method select, also the methods union, intersect and exclude can be
invoked on the set of interface objects, as returned by get_input_objects. In formulas 9-10
it was shown how set operations on interface objects affect the behavior of objects. Thus

391

the programmer has the possibility to implement data management operations upon
interface objects.

mossages mnessagey

mail siatn mail_Hité

D saizet_mail

| \{El voice D select_mail

view

Fig. 8. A possible result of the method select.

4.5. Atomic Transactions & Persistence

Most databases support transactions. According to [Haerder 83], a transaction mechanism
must provide these four properties: atomicity, consistency, isolation and durability. These
properties ensure that a transaction always yields a consistent and stable state, even in the
presence of system and program failure and concurrent access to shared data. Atomicity,
consistency and isolation are provided by the mechanism of atomic delegation [Aksit 91].
Durability is separated from transactions, and provided as object persistence.

Transactions provided by databases are typically defined in some query language, for a
sequence of database operations. Only a few languages, such as Argus [Liskov 87] and
Avance [Bjornerstedt 88] support transactions, which are called atomic actions, as a general
mechanism in the language for preserving consistency of concurrently accessed resources.

Most object-oriented systems provide transactions for a program block by delimiting it
with ’begin-transaction’ and ’end-transaction’ like constructs, or by making the complete
method body atomic. This mechanism does not provide integration with object-oriented
constructs such as inheritance. This is because combining inherited methods within an
atomic construct requires -in the extreme case- the separate declaration of all atomic
method combinations, which is not feasible.

392

Atomic delegation combincs the concepts of delegation and atomic action in a uniform
model which supports open-endedness of atomic actions. Atomic delegation allows an
object to delegate a sequence of messages to one or more designated objects as a single
atomic action; such atomic actions are indivisible and recoverable. This mechanism allows
the programmer to define classes of atomic actions rather than defining each atomic action
scparately. Construction of open-ended systems is supported because new atomic actions
may be added or cxisting ones may be modified by changing the delegation relationships
betweon objects without requiring any redefinition of atomic actions, or recompilation of
the objects performing the atomic actions.

We will now show an example of atomic delegation, In this example we add accounling
lacilities to the exceution of every method of our Multimedia_mail class. Since, for
instance, we do not want to charge when a call fails, and a caller with an exceeded budget
limit is not allowed to use the mail facilities, we want to make this an atomic transaction.

class Multimedia mail input
externals
acc : Accounting

LIPS

filters
transact : Error = { True => <acc.*, inner.*> }

The filter transact defines an atomic action "<acc.*, inner.*>", which is indivisible and
recoverable; either both messages are executed successfully and commit, or an abort and
subsequent roll-back take place. The brackets "<" and ">" enclose a sequence of messages
that form one transaction. The asterisk indicates that all methods that are provided by the
target are supported. Note that extensions to object acc will automatically be available for
clients of the Multimedia_mail objects, due to the use of the asterisk. The state True
indicates that no additional constraints are imposed by this filter in order to execute the
atomic action. It may be clear that the number of possible method combinations can be
quite large, and it would be infeasible to declare all possible transactions separately, as
conventional mechanisms would require.

Persistence of an object is the responsibility of the object itself, and must be transparent
to its clients. We feel that conceptually, persistence is simply a property of an object,
which has the effect that the object will survive user sessions. We consider the efficient
implementation of a large amount of persistent objects as a complex, but separate research
topic. For our object model, we are not concerned with these implementation issues’.

The property of persistence of an object can be easily modeled with an attribute
“persistent’, which can be affected by message invocations. However, a declarative way
of stating the persistence property of an object is preferable, since it is more explicit, and
allows for compile-time optimizations. This is realized in Sina by declaring an object as

7) Inour current prototype, we use the object-oriented database system Ontos [Ontologic 91] for implementing
persistent objects.

393

an instance ol class Persistent, paramelerized with the desired class ol the object, as
follows:
objects doc : Persistent(Document);

Here doc is an interface object and is declared as an instance of class Persistent,
parameterized with class Document. This declaration resulls in doc being an object with
an interface just like all other instances of the Pocument class®, but the objeet will also
he saved on slable storage. The class Temporary is delined analogously, and keeps the
inlernal siaie only during cxcenlion time; Temporary is the defauli for plainly declared
ubjects. Nole (hat this can only he done for internal objects, since these are defined locally,
but externul objects are defined clsewhere, and are only referred w by this objecl.

5. Evaluation and Conclusions

Our starting point is an object model that provides abstract operations for its users and

encapsulates its implementation details. This model is extended with the composition

filters. This paper illustrates the following useful features of this model:

®m Multiple views on objects, in section 4.2.

® Basic object-oriented mechanisms such as single and multiple inheritance/delegation,
in section 4.3.

® Associative inheritance/delegation, in section 4.3.

® Database features such as sharing, and selection, union, intersection and exclusion, in
section 4.4.

® Persistent objects and transactions, in section 4.5.

We will now evaluate our object-oriented model with respect to the problems that were
identified in section 3:

® Duality in conception: In our model, all the database-like features are provided
exclusively via composition filters and no separate query language is introduced. The
basic object-oriented mechanisms such as inheritance and delegation are also provided
via filters. As a consequence, there is no conceptual difference between the language
and database-like features.

B Restriction in associativity: In our approach, associative access is available for all
objects. Filters can be configured using an expression of the form { s(#)=>{#.*} }. In
addition, interface objects are stored in a first-class set object, supporting basic set
operations like union, intersect, exclude, and select. By manipulating the interface
objects with these operations, views that are combinations or restrictions of interface
objects can be programmed. Thus our data management functionality is not restricted
to dedicated types. However, this does not imply that there should never be dedicated
container classes in a system. When an application explicitly deals with objects
containing collections of objects, a container class may be created. Such a container

8) Class Persistent is implemented as a class that inherits from the class that is supplied as an argument to
class Persistent; it is possible to express this with the Sina data abstraction model.

394

class may be similar lo container classes in other sysiems. Our point is that we do not
restrict data management operations to this kind of dedicated classes.

Violation of encapsulation: The database-like features as presented in this paper do not
violate encapsulation. Nested objects cannot be directly addressed from outside the
vbject. ‘They can solely be accessed by message invocation, but only when this is
explicitly allowed by the filters.

Views: Vicws arc provided by the fillers, and the view conditions are not restricted.
Support of ebject-oriented features: We have integrated the database-like properties
within our object-oriented model, but they arc orthogonal, and can be freely mixed
with the dala abstraction features, resulting in, for example, associative inheritance or

associative atomic delegations,

Various versions of the Sina language have been implementcd. The early version of the
Sina language was implemented using the Smalltalk language [Goldberg 83] on a Sun
workstation. This implementation included only single filters without states. We are
currently implementing the new version of the language, translating to C++ [Ellis 90].

References

[Aksit 88]

[Aksit 89]

[Aksit 91]

[Bergmans 92)

[Bjornerstedt 88}

[Bretl 89]

[Ellis 90]

[Goldberg 83}

[Haerder 83]

M. Aksit & A. Tripathi, Data Abstraction Mechanisms in Sina/ST, OOPSLA
'88, pp. 265-275

M. Aksit, Abstract Communication Types, On the Design of the
Object-Oriented Language Sina, Ph.D. Dissertation, Chapter 4, Department of
Computer Science, University of Twente, The Netherlands, 1989

M. Aksit, J.W. Dijkstra & A. Tripathi, Atomic delegation: Object-Oriented
Transactions, IEEE Software, Vol. 8, No. 2, March 1991

L. Bergmans & M. Aksit, An Object-Oriented Model for Extensible
Concurrency, Working paper.

A. Bjornerstedt & S. Britts, AVANCE: An Object Management System,
OOPSLA ’88, pp. 206-221 .

R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.-H. Williams
& M. Williams, The GemStone Data Management System, Object-Oriented
Concepts, Databases, and Applications, Ch. 11, eds. W. Kim and F. H.
Lochovsky, pp. 283-309, Addison-Wesley, 1989

M.A. Ellis & B. Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, 1990

A. Goldberg & D. Robson, Smalltalk-80: The Language and its
Implemenation, Addison-Wesley, 1983

T. Haerder & A. Reuter, Principles of Transaction-Oriented Database
Recovery, ACM Computing Surveys, Vol. 15, No. 4, December 1983, pp.
287-317

[Hailpern 90]

(Kim RE]

[Kim 89

[Kim 90

[Lieberman 86]
[Liskov 87)
[Maier 86]
[Ontologic 90}
[Ontologic 91}
[Pernici 90]
[Schaffert 86]
[Thomas 88}

[Wegner 90]

395

B. Hailpemn & 1. Ossher, Extending Objects to Support Multiple Interfaces
and Access Control, IEEE Transactions on Software Engineering, Vol. 16, No.
11, pp. 1247-1257, November 1990.

W. Kim. N. Ballou, HT. Chou, I.F. Garza,). Woclk & J.Banerjec,
Integrating an (bject-Oriented Programming System with a Dutubase System,

QUPSLA '88, pp. 142-152

W. kim, N. Ballou, IL'T. Chou, LFE. Garza & 17 Weelk, Features uf the
ORION Object-Oriented Database System, Object-Oriented Concepls,
Databases, and Applications, Ch. 11, eds. W. Kim and F. H. Lochovsky, pp.
251-282, Addison-Wesley, 198Y

W. Kim, Object-Oricnted Databuses: Definition and Research Direetions,

327-341, Septemher 1990

H. Lieberman, Using Prototypical Objects to Implement Shared Behavior,
OOPSLA 86, pp. 214-223

B. Liskov et. al., Argus Reference Manual, MIT Lab. for Computer Science,
No. MIT-TR-400, November 1987

D. Maier, J. Stein, A. Otis & A. Purdy, Development of an Object-Oriented
DBMS, OOPSLA ’86, pp. 472-482.

Ontos Object Database version 2.0 SQL User’s Guide, Ontologic Inc.,
Burlington (Mass.), December 1990.

Ontos Object Database version 2.0 Developer’s Guide, Ontologic Inc.,
Burlington (Mass.), February 1991.

B. Pernici, Objects with Roles, Proc. of the Conference on Office Information
Systems, pp. 205-215, Cambridge (Mass.), April 1990.

C. Schaffert, T. Cooper, B. Bullis, M. Kilian & C. Wilpolt, An Introduction
to Trellis/Owl, OOPSLA ’86, pp. 9-16

D. Thomas & K. Johnson, Orwell-A Configuration Management System for
Team Programming, OOPSLA 88, pp. 135-141

P. Wegner, Concepts and Paradigms of Object-Oriented Programming, OOPS
Messenger, No. 1, Vol. 1, August 1990, pp. 7-87

