Active Programming Strategies in Reuse

Mary Beth Rosson and John M. Carroll

IBM T. J. Watson Research Center
Yorktown Heights, New York 10598, USA

Abstract. In order to capitalize on the potential for software reuse in
object-oriented programming, we must better understand the processes in-
volved in software reuse. Our work addresses this need, analyzing four
experienced Smalltalk programmers as they enhanced applications by re-
using new classes. These were active programmers: rather than suspending
programming activity to reflect on how to use the new components, they
began work immediately, recruiting code from example usage contexts and
relying heavily on the system debugger to guide them in applying the bor-
rowed context. We discuss the implications of these findings for reuse
documentation, programming instruction and tools to support reuse.

1 Introduction

A key attraction of object-oriented programming languages is the potential they offer
for the reuse of software components. A well-designed object class defines a tightly
encapsulated bundle of state and behavior that can be “plugged into” a target appli-
cation to fill some functional need — hence the popular metaphor of a “software
IC” [4,5]. And while most of this potential has been asserted rather than demon-
strated, empirical evidence documenting the advantages of an object-oriented lan-
guage for code reuse is beginning to emerge [17]. At this point, however, we know
very little about the process of component reuse and thus how we might best support
reuse activities.

A programmer attempting to recruit existing software components for his or her
current project must carry out two basic tasks. First, the candidate component(s)
must be identified. This may be trivial in cases where the component was self-
generated or is already familiar to the programmer (see, e.g., [6,16]). However,
much of the missed potential in software reuse arises in situations where the pro-
grammer knows little or nothing about the component in advance. As component
libraries increase in size, the difficulty of locating novel functionality increases
commensurately. Not surprisingly, researchers have begun to apply a variety of
classification and information-retrieval techniques to address the difficuit problem
of locating unknown functionality within large class libraries [12,21].

Once a candidate component has been identified, the programmer must incor-
porate the component into the ongoing project. Again, if the component is self-
generated or already familiar, this process is simplified: the programmer already
knows what it does and how it is used, and merely must apply this knowledge to the
new situation. But for unfamiliar components, the programmer must engage in at

least some form of analysis, determining what the component does and how it can
contribute to current needs, and then designing and implementing the code needed
to extract the desired functionality [2, 10]. Researchers are only beginning to explore
how one might document code intended for reuse (see, e.g., [14]). But from the
perspective of a programmer considering reuse, one requirement is clear: under-
standing how to use a component must take less time and effort than (re)building the
component itself. Indeed, given programmers' general preference for self-generated
code, the cost of reusing a component should be considerably less than that of cre-
ating it.

This paper seeks to elaborate the requirements for reuse documentation and tool
support through analysis of experts carrying out a reuse task. We observed Smalltalk
programmers enhancing an application through the reuse of classes we provided.
Most generally, our goal was to characterize the strategies and concerns of the pro-
grammers as they attempted to reuse the novel classes — by understanding what
does and does not work well in the current reuse situation, we can begin to reason
about possible modifications or enhancements. More specifically, however, we were
interested in the role that examples might play in documenting reusable components.
We have been researching example-based programming environments for learning
and for reuse [3,13,20,22], and this empirical setting provides an opportunity to ex-
amine experts' natural strategies for finding and applying example information.

2 The Reuse Situation

Four experienced Smalltalk programmers participated in the study. All had been
programming in Smalltalk/V® PM [8] for over two years, and had over 10 years of
general programming experience. All had worked on user interface development in
Smalltalk, largely on building components for advanced user interfaces (e.g., multi-
media objects, direct manipulation techniques, visual programming).

Each programmer completed two reuse projects, in two separate sessions. The
reuse situation approximated the application prototyping activities these programmers
carry out in their normal work environment, in that both projects involved an en-
hancement to the user interface of an already-written interactive application. The
applications were simple but non-trivial examples of Smalltalk projects; in debriefing
sessions after the experiment, all of the programmers judged that these were repre-
sentative reuse programming tasks. The order of the projects was counterbalanced
— one project served as the first project for two of the programmers, the other as
the first for the other two. During their second sessions, programmers were intro-
duced to the Reuse View Matcher [22] and were allowed to use this tool while
completing the project. Due to space limitations, this paper will not discuss the
second set of sessions involving the Reuse View Matcher.

The programmers were read brief instructions at the beginning of each session,
describing the application they were to enhance, and identifying the class they were
to reuse in making this enhancement. They were told that they were not expected
to spend “more than a couple of hours” on the project and that they should not worry

if they did not complete it in this amount of time. Finally, the programmers were
asked to “think aloud” while they worked, to vocalize their plans and concerns as
they worked as much as possible without interfering with their activities [9].

After hearing these instructions, the programmers were given an extended in-
troduction (approximately 20 minutes) to the application to be enhanced; this in-
volved going over a hierarchical view of the major application classes, a design
diagram of application objects and their connections, descriptions of typical inter-
action scenarios, as well as a comprehensive walk-through of the code. The intent
was to familiarize them with the application enough so that their problem-solving
efforts would focus on the reuse of the new class rather than on understanding how
the existing application worked. No information other than the name was provided
about the class to be reused.

During the reuse task, programmers worked at their own pace in a standard
Smalltalk/V PM environment. The experimenters took notes and made videotapes
of the programming activity on the display, occasionally prompting the programmer
to comment on a plan or concern. All projects were completed within one and a half
to two hours.

2.1 The Color-Mixer Project

One of the projects consisted of an enhancement to a color-mixer. The color-mixer
converts rgb values input by the user to create custom colors; these colors are stored
in and retrieved from a database of named colors. The original application has three
buttons for red, green and blue (see Figure 1); clicking one of these buttons brings
up a dialog box in which the user types an integer to manipulate a color component.
The color being edited is displayed as a “swatch”, and is flanked by the list of saved
colors. Users can select colors from the list, as well as adding and deleting colors.

Because everything in Smalltalk is an object, and because objects typically in-
herit a good deal of their functionality, it is difficult to characterize the “size” of
applications. However, the most important objects in the color-mixer are instances
of six classes (see Figure 1): ColorMixer, ColorMixWindow, ButtonPane, ListPane,
GraphPane and Dictionary. The last four classes in the list are components of the
standard library. The number of methods in these six classes ranges from six to 54,
with an additional 118 to 338 inherited methods.

The programmer's task was to replace the button+dialog box input style with
horizontal sliders. No information was provided concerning the appearance or
functionality of the slider, only that they were to use the new class HorizSliderPane.
A typical solution involves the editing of the existing openon: method (this is the
method that creates and initializes the windows and subpanes, and the button creation
code must be replaced with analogous code for the sliders), and the addition of four
new methods (to handle activity in each of the sliders, and to draw any given slider).

flle Edt Smalitalk

bject
Collection o X ' s
Set
Dictionary 167
ColorMixer
FootballAnalyst
Window
ApplcationWindow
Analysiswindow
ColorMixwindow
SubPane
ControlPane
ButtonPane
GraphPane
BarGraphPane
HorizSliderPane
ListPane

Figure 1. The Color-mixer Project: On the left is a listing of the major classes involved in
the color-mixer and football analyst applications; indentation in the list signifies superclass-
subclass relationships. In the upper right is the original color-mixer; beneath it is the appli-
cation enhanced to use sliders as input devices.

The class library included an example application already making use of
HorizSliderPane. The example usage was a football analysis program, in which five
sliders are used to manipulate defensive player characteristics (e.g., speed, age,
height), and the predicted consequences of the characteristics (e.g., sacks, inter-
ceptions, tackles) are graphed in a separate pane. This application uses five main
classes (FootballAnalyst, HorizSliderPane, BarGraphPane, AnalysisWindow, and
Dictionary; only Dictionary is part of the standard library; see Figure 1); method
count ranges from five to 33, with from 118 to 363 inherited methods. Because one
of our research goals was to examine experts' strategies for discovering and em-
ploying example usage information, the programmers were not told of the example
application in advance.

Flle Edt Smaittalk

IndexedCollection
OrderedCollection
Network
Hierarchy
L
OrgChart
NetworkConnection
NetworkNode
Window
ApplicationWindow
LibraryWindow
NetworkWindow
HierarchyWindow
OrgChartWindow
SubPane
GraphPane
NetworkPane

HierarchyPane
ListPane

Figure 2. The Library Project: On the left is a listing of the major classes involved in the
library and organization chart applications; indentation in the list signifies superclass-subclass
relationships. In the upper right is the original library application; beneath it is the application
enhanced to use a graphical hierarchy.

2.2 The Library Project

The second project consisted of enhancements to a library acquisitions application.
This application manages a hierarchical collection of book categories (e.g., Computer
Applications broken into Electrical Engineering, Aerospace Engineering, etc.); cate-
gories are annotated with information about acquisitions (e.g., number of books, ti-
tles). Hierarchical structure is conveyed via an indented list (see Figure 2), and users
manipulate the categories by selecting a list item and making menu selections. In
this way, they can add and delete categories, rename categories, and browse and edit
the acquisitions information.

The library project uses five main classes (Library, NetworkNode, ListPane,
NetworkConnection and LibraryWindow; only ListPane is part of the standard hier-
archy, and the Library class inherits from two novel superclasses, Network and Hi-
erarchy; see Figure 2). The method count for these five classes ranges from 4 to
54, with from 118 to 319 inherited methods.

Programmers were asked to enhance this project by using the new class
HierarchyPane; again, they were told nothing of the appearance or functionality of

the target class. An instance of this class is able to graph a hierarchical network of
nodes (see Figure 2). It also can identify nodes or connections selected via a mouse
click. Finally, the subpane allows users to name nodes by typing directly onto the
graphed elements.

HierarchyPane differs from HorizSliderPane, in that much of its functionality
is inherited from its superclass NetworkPane. Further, it was designed to work in
concert with a number of other novel classes (HierarchyWindow, Node,
NetworkNode and NetworkConnection), whereas HorizSliderPane is a relatively
“standalone” component. A typical solution for reusing HierarchyPane in the library
application involves creation of a new LibraryWindow class as a subclass of
HierarchyWindow (thereby inheriting the ability to draw, select, and name nodes in
the graph), and the updating of five methods from the original LibraryWindow class
(the methods for adding, removing and showing acquisitions for a selected category,
the method defining the menu, and the openon: method).

As for the color-mixer project, the class hierarchy included an example usage
of HierarchyPane — an organization chart, in which the nodes correspond to em-
ployees, and in which employees of various job descriptions (e.g., staff member,
secretary, visitor) can be added to the hierarchy, given names, reassigned, and given
project descriptions. The example uses seven main classes (OrgChart,
OrgChartWindow, HierarchyPane, Node NetworkNode, NetworkConnection, and
TextField; none of these are part of the standard hierarchy, and both
OrgChartWindow and HierarchyPane inherit from novel superclasses; see Figure 2).
The method count for these classes ranges from 1 to 37, with inherited methods
ranging from 118 to 442. Programmers were not told in advance about the
HierarchyPane usage example.

3 Reuse of Uses

In most discussions of component reuse in object-oriented systems, the focus has
been on the class or classes reused. Design methodologies attempt to articulate
characteristics of reusable classes [15,18] and tool builders develop techniques for
classifying and retrieving useful classes [12,21] The dominant metaphor is “con-
struction” — the programmer finds parts that can be reused, modifies them as nec-
essary and connects them together (see, e.g., [4,5]).

Our observations suggest that this focus on components may be over-simplified.
To develop the knowledge needed to reuse the components directly, the programmers
would have had to stop work on their overarching goal — enhancing the project they
had been given — and spend time analyzing and reflecting on the target class.
These programmers were too focussed on their end goal to engage in protracted
analysis. Instead, they made active use of all resources available in the environment,
and began programming immediately. This led them to reuse the components only
indirectly, through the reuse of “uses”. That is, the main entity participating in the
reuse programming was not the target class but rather the example application of that
class. The programming consisted of finding and reusing the patterns of component

10

reuse reified in the example application. As one programmer put it, on discovering
the example application, “so there's a solution in the system!”

The extensive reuse of the example occurred despite mixed feelings expressed
by the programmers. There was a sense that this wasn't the “right” way to reuse a
class, that it was somehow cheating or taking the easy way out. One programmer
said that he would look at the example only if all else failed, but then immediately
began to work with it. Another viewed the example as a mixed blessing, because
although it offered information on how to use the target class, it now required anal-
ysis itself: “Whenever you provide help, you provide trouble, now I have to under-
stand this!” However, when probed about these feelings at the close of the
experiment, the programmers indicated that the strategy of borrowing heavily from
examples is one they use frequently in prototyping Smalltalk applications, and that
their reservations were due to a perceived demand to use more conservative methods
in this experimental situation.

Smalltalk provides explicit support for the identification and reuse of example
usage context through its “senders” query which returns a list of methods in which
a target message is sent. An experienced programmer can browse this list and make
reasonable guesses as to which other classes if any are already using the class of
interest; if motivated, they can then explore these other classes to discover why and
how the target class is being used. All of the programmers made early and repeated
use of the senders query; further, they showed an ability to discriminate among the
various messages defined for the target class, asking for senders only on the more
important methods (e.g., a method providing the contents for the subpane):
“AnalysisWindow seems to be figuring prominently as a sender of interesting mes-
sages”.

3.1 Reusing Pieces of an Example

The most common reuse of the example applications consisted of borrowing code
used as the interface to the target class, both blocks of code copied out of methods
and entire methods. For instance, all of the programmers borrowed code from the
example applications' openoOn: methods; by convention this is a message sent to
a window which instantiates the various subpanes, defining their graphical and be-
havioral characteristics. The instantiation of subpanes in Smalltalk/V is often com-
plex, and typically includes the definition of events that the subpane will handle.
Thus copying an instantiation code snippet (8-15 lines of code) can save considerable
time in working out exactly how a new kind of subpane needs to be initialized.

Sometimes the borrowed code was not directly reusable itself, but rather was
used more as a functional specification. In working out slider event handling for the
color-mixer project, the programmers copied over the sliderActive: method
from the football program. This method does three things: first, the affected slider
processes the mouse activity; second, the relevant player characteristic is updated;
and third, predicted player performance is graphed. Only the first of these events
maps directly to (and thus could be reused in) the color-mixer project. Nonetheless,

11

the programmers were able to understand the code in sliderActive: as a spec-
ification of what they needed to do in their own version: process slider activity,
re-set the model data (in this case, the color settings), and display the results (the
new color swatch).

On a few occasions, the borrowed code came from work the programmers had
just completed themselves (as in the “new code reuse” situation described in [6]).
For example, both programmers working on the color-mixer first developed the code
for one slider, then worked from that code to implement the other two. In these
cases, the programmers knew exactly what needed to be changed, and the “pro-
gramming” consisted simply of the physical edits.

In general, the copy/edit strategy worked quite well (see also [16]). It reduced
the amount of typing required of the programmer, and helped to insure that the de-
tails of the code (e.g., placement of line separators) would be correct. More impor-
tantly, it removed the burden of analyzing the target class enough to generate the
correct protocol for a particular usage situation, enabling a rapid programming
progress. For many parts of the borrowed protocol (e.g., the event definitions in the
openOn: method), the programmers knew what parts of the code needed to be ed-
ited and how to do this.

However, the copy/edit strategy did lead to some problems stemming from the
novel parts of the target class' protocol, in that the programmers were now able to
copy and “use” protocol that they didn't fully understand. A good example comes
from one programmer's work on the color-mixer. In the football analyst example,
each slider is instantiated with a different starting value. Because the slider
instantiation code was copied from the football openon:, instantiation of the value
variable also became part of the color-mixer openon. The value attribute is not
generic to subpanes, so the programmer did not know off-hand whether it was pre-
requisite to slider functioning, and if so, what a reasonable starting value would be
for the color-mixer. The programmer did not know enough about the protocol for
sliders to answer these questions, so he simply made a guess. Later on, this guess
caused problems, as the initial positions of the sliders did not match the starting color
(white). Subsequently, the programmer solved the problem not by going back and
correcting the initialization code, but rather by adding code at a later point that
simulated the selection of white in the color list pane.

In some cases there was a conflict between the component interface suggested
by the example, and the current design of the project. In the football program, the
activity of all the sliders is handled by a single method slideractive:. Modeling
on the example, one of the programmers began by copying over the method and
modifying it to refer to color-mixer objects. However, in the course of doing this,
he recognized that there would be a problem in discriminating among the different
slider instances. Despite the suggestion by the football example that multiple sliders
could be managed by one method, he decided to change his approach and work from
the more familiar model of the buttons used by the original user interface. Noting
that three separate methods had been written to handle button activity, he developed
an analogous set of three slider activity methods.

12

The Smalltalk environment is very supportive of the copying/editing of example
usage code. Programmers can open as many code browsers as they like, and can
freely select and paste text among them. In this study, the programmers almost al-
ways had at least two browsers open (one for the example and one for the project)
and often used more when the code involved a number of embedded messages. In
this way, they could preserve their top-level context while going off to answer a
question or to find additional relevant code in other classes or methods.

3.2 Reusing an Application Framework

All of the programmers’ initial efforts to reuse the example application involved
bringing methods or pieces of methods from the example application into the project.
However, the two programmers working on the library project ultimately decided to
create a new kind of library window, one that was a sibling of OrgChartWindow (i.e.,
had HierarchyWindow as a superclass, this was in fact the solution requiring least
programming effort). In doing this, they were deciding to inherit rather than borrow
from the example usage context. After this decision, their activity shifted, as they
began bringing code from the original library window into the new window. This
was in marked contrast to the programmers working on the color-mixer project, who
appeared to never even consider inheriting functionality from the football example.

The decision to subclass reflects a desire to reuse more than just the snippets
of code involving the target class; in this case, the programmers elected to adopt the
entire application context of the example. In Smalltalk/V PM, this context is
normally managed by a window; the window communicates with the underlying
application objects (e.g., a hierarchical collection of employees) and with the
subpanes used to display application information. Thus reuse of the context can be
accomplished by subclassing the application window; reuse of this sort is often re-
ferred to as reuse of an “application framework™ [7]. Framework reuse brings along
the component of interest “for free” in some sense, in that it is already a component
of the framework, and the example window already has the code needed to interface
between the component and other application objects.

Deciding to reuse the example's application framework had a remarkable effect
on the programmers' reuse efforts. What had at first been a rather complex process
of tracking down individual methods and instance variables distributed across
NetworkWindow, HierarchyWindow and OrgChartWindow, and copying and editing
methods or pieces of methods, now became a straightforward process of copying
over and updating the menu functions from the original LibraryWindow class. One
of the programmers spent over an hour reaching the decision to subclass; once he
did, he was rather frustrated at the thought of throwing away all the work he had
done so far, but even so was able to complete the project in fifteen minutes.

The problems of tracking down functionality distributed throughout an
inheritance hierarchy have been noted before; Taenzer, Ganti and Podar [23] refer
to this as the “yoyo” problem. The Smalltalk/V class hierarchy browser offers little
support for dealing with hierarchically distributed function, as programmers must

13

navigate from superclass to superclass in search of methods. Taenzer et al. [23] point
to this problem as an argument against reuse via inheritance, suggesting that under-
standing how to subclass an extensive hierarchy requires much more distributed code
analysis than simply reusing a component. Our situation offers a new twist on
considering whether to reuse functionality directly or through inheritance: when a
component has already been incorporated into a rich application framework, pro-
grammers may find that indirect inheritance of the component's functionality (i.e.,
through subclassing the framework) will simplify enormously the task of reusing the
component.

Several factors seemed to contribute to the programmers' decision to reuse the
application framework for graphical hierarchies. One was simply the difficulties in
tracking down, borrowing and integrating function. There seemed to be a sense that
the process was more complicated than it should be, e.g., “I should probably be
trying to inherit some of this...”. When asked later, one of the programmers indicated
that it was his realization of how many of his borrowed methods were inherited from
superclasses of OrgChartWindow that made him decide to move the library window.
For the other programmer, a critical incident was his effort to compile a key method
(the one allowing selection of nodes in the graph), and discovering a instance vari-
able of the example window that had no analog in the library application. Up to that
point, he had seemed willing to work with the complexity of tracking down and
borrowing example protocol, but adding a new (and mysterious) piece of state in-
formation was too much.

Another factor may have been the similarity between the example usage and the
project. On first discovering the HierarchyWindow class, one programmer tried a
simple experiment while voicing his belief that it would never work: he tried
opening a HierarchyWindow “on” the library object (an instance of Library, part of
the Collection hierarchy). To his (and our!) surprise, this experiment was successful.
Of course, the LibraryWindow functionality was not present, but at least the book
collection was displayed in a nice graphical hierarchy. This experiment may seem
extreme, in that it has a rather low probability of pay-off. However, it was simple
to do, and it provided the programmer with considerable insight into the example
application that he was able to apply to his later efforts.

The subclassing strategy did simplify the reuse programming project. However,
it also introduced some rather subtle problems. There was considerable overlap in
the functionality of the example and of the library (e.g., both had facilities for adding
and removing elements in a hierarchy, for renaming these elements). One of the
programmers, having decided to subclass, wanted to inherit as much functionality
as he could. So, when updating the menu selections, rather than copying over the
methods from the original library window and editing them to work in this new
context, he first tried simply inheriting the methods defined in the superclasses. On
the surface, this strategy seemed to work — he was now able to add and delete li-
brary categories and rename them. He never realized that the underlying library
structure was not being manipulated correctly (the relationships among categories
weren't being specified). It may be that programmers following a subclassing strat-

14

egy are more likely to satisfice, accepting generic inherited functionality that is al-
most but not quite right simply because it is there and is already working.

4 'The Reuse Programming Process

The programmers were opportunistic in the objects of reuse — extensive recruitment
of the example contexts reduced considerably the amount they needed to learn about
the target class. But they were also opportunistic in how they went about doing the
reuse task. They spent little time in deliberated analysis of the example, in under-
standing how it was going to help or interfere with their enhancement efforts. Rather
they began using the code of the example immediately to make progress on their
goal. These were active users of Smalltalk [1]: as has often been observed for hu-
man problem-solving [11[the process we observed was very locally driven, with
specific features of the environment and the evolving solution determining each
succeeding step.

4.1 Getting Something to Work With

An early goal for all of the programmers was to get an instance of the target class
up and running, so that they could see what it looked like. One of the programmers
working on the library project was able to use the organization chart example to do
this. After discovering the example, he immediately took on the goal of starting it
up. He found an OrgChart class method fromUIIData, the name of which signalled
to him that it was a special “set-up” method, and that he could use it to create an
appropriate OrgChart object and start up the application. By doing this, he was able
to see what a HierarchyPane looked like, as well as to experiment with the interaction
techniques it supported.

With respect to programming activities, the focus of initial efforts for all of the
programmers was on modifying the project's openon: method to include the new
class: “I want to get one of these things as a subpane”. However, while there was
some browsing of the target class methods to see how to do this, the browsing tended
to yield inferences about class functionality rather than usage protocol; as we noted
earlier, the programmers seemed to resist carrying out an analysis of the target class
comprehensive enough to allow them to write code to instantiate it for their project.
Instead, they sometimes looked for clues in the code they were replacing. Thus the
two programmers working on the color-mixer examined the code used to create the
buttons, thinking about how they might modify it for sliders (e.g., what events a
slider might handle in contrast to a button).

One programmer working on the color-mixer tried to take advantage of other
code -in the openon: method as well. Noting that HorizSliderPane is a subclass
of GraphPane, he examined the code instantiating the color swatch (an instance of
GraphPane), thinking that he might be able to build a slider definition from it. This
led to a variety of problems, as he began to hypothesize that the slider functionality
was somehow built from the scroll bars present in every subpane, and that the pro-

15

tocol controlling these scroll bars for GraphPanes must be critical in creating sliders.
This was certainly a reasonable hypothesis on functional grounds, but in fact was
quite misleading.

The programmers seemed to feel that successfully instantiating the target class
within the project context was a momentous event. It appeared that this was con-
sidered to be the major hurdle of the project, and now they could get on with busi-
ness as usual, adding the remainder of the component's functionality (i.e., its event
handling). One explanation for this is that the programmers could “see their end
goalin sight” — a new and improved view of their project data. But another equally
important factor is that by instantiating the new component as part of the project, the
programmers could now rely much more on the environment to guide their pro-
gramming. In a Smalltalk application, objects are created and code references are
established only when the application is run, making the code alone inherently am-
biguous and mental simulation of it difficult. In contrast, if the programmer is able
to start up an application, all ambiguities in the code are resolved, and the pro-
grammer can use Smalltalk's sophisticated interactive debugging tools to analyze and
modify the code.

4.2 Debugging into Existence

We have seen that the programmers relied heavily on code already in the environ-
ment in attacking the reuse projects. But they also relied heavily on the tools of the
environment to locate and make sense of the relevant code. In particular, they re-
peatedly started up the application they were working on, and looked to see where
it “broke” to plan their next move.

Smalltalk is particularly supportive of this debugging-centered style of program
construction. The language is non-typed and compiled incrementally, which permits
rapid and repeated experimentation with the code used to run an application. The
debugger and inspector tools support such experimentation directly, providing flexi-
ble access to and manipulation of the runtime context for an application (i.e., objects
and their state, messages in progress).

In some cases, the programmers knew something of the steps they would need
to take, but used the debugger to help them in carrying these out. Thus, once they
had copied the instantiation code from the example application's openoOn:, they
knew that certain modifications would be necessary: instance variable names needed
to be changed, the menu name needed to be changed, the project would need a
drawing method, etc. Some of the programmers even carried out some anticipatory
activity, perhaps creating a method that they knew they would need, but that they
also knew was not yet functional. However, for the most part, they relied on the
system to detect the absence of methods or the inappropriate states of objects. In a
typical scenario, the programmer would start up the project application, receive a
“message not understood” error, return to the example in search of a method with
that name, copy the method, perhaps making a few changes, try again and see how
far it got, make some changes and try again. This sort of cycle might be repeated

16

many times, but the programmers seemed comfortable with it, and seemed confident
that they were making progress.

In other cases, the debugger was used to untangle more subtle problems. So,
for example, the superclass HierarchyWindow uses the network instance variable
to point to the main application object, whereas the original LibraryWindow class
uses library. A thorough analysis of the example would have revealed the rele-
vant mapping between these two variables. However, the two programmers working
on this project simply borrowed the example code as-is and used the debugger to
ascertain what role the network variable was playing and how to provide this in-
formation within their project.

The compiler was used in this opportunistic fashion as well. When dealing with
complex pieces of borrowed code, the programmers often would attempt to compile
the code before they had completed editing it. The system would flag variable names
not defined for the class (e.g., the HierarchyWindow code refers to graphPane,
while the LibraryWindow uses pane), and the programmers would then replace the
unknown name with the name of the analogous variable. This minimized the amount
to which they needed to read through and analyze the unfamiliar code.

5 Summary and Implications

Our observations describe a process of component reuse in which the component is
reused only indirectly, through the reuse of its “uses” — bits of protocol or even
entire application frameworks. The programmers we studied pursued this style of
reuse piecemeal and opportunistically; they focused initially on getting a runnable
albeit skeletal result which they could exercise and improve incrementally, relying
heavily on interactive debugging. We have characterized these as “active” pro-
gramming strategies, an orientation in which programmers directly and immediately
enlist and transform their software materials in favor of withdrawing from such ac-
tivity to analyze and plan.

5.1 Scope of Active Reuse

This work was exploratory empirical research in its scope and scale. It addressed a
particular programming situation, application prototyping, which may differ signif-
icantly from other situations. However, at least some of our observations are con-
sistent with studies of other reuse situations. Lange and Moher [16] observed that
an experienced programmer extending a library of software components was quite
likely to use existing components with related functionality as templates or models
for the new components. Detienne [6] found that programmers designing and im-
plementing new applications somtimes reused their own code as they worked.
Interestingly, the programmers in this study chose not to borrow code from other
applications, perhaps because the other applications available were only peripherally
related to the problems being solved.

17

Further research is needed to assess the generality of the more specific strategies
we observed. All four programmers relied extensively on the system tools to or-
ganize their work, using multiple browsers to maintain their context across different
parts of the hierarchy, and using the debugger and .inspector to track down and
modify missing or inappropriate pieces of borrowed code. It is not clear though what
the boundary conditions for such an approach might be — it may be that they are
only likely to occur in a tool-rich interpreted environment like Smalltalk.

Some strategies were unique to a particular programmer. For example, only
one programmer made the effort to “run” the example application before borrowing
code from it. He felt that this gave him a chance to preview the functionality he
would be incorporating; it may be that across a wider variety of reuse projects, per-
haps involving more complex components, such a strategy would be more prevalent.
In another case, one programmer experimented with opening a graphical
HierarchyWindow “on” his application data. The success of this experiment con-
veyed a great deal to him about what the graphical network framework expected in
terms of data structures. It is important to understand the generality of such tech-
niques and strategies.

5.2 Consequences of Active Reuse

Beyond the question of generality, we can ask about the consequences of the active
programming strategies we observed. For example, two of the programmers did not
produce a perfectly correct result, and it is not clear whether or how their problems
would have been detected and corrected given unlimited time, or given instructions
that emphasized the accuracy of the result. Indeed, the active programming we ob-
served may be inadvisable from a software engineering perspective, if the small er-
rors or inefficiencies introduced by reliance on example code are very difficult to
unearth subsequently. Further research is needed to determine what if any strategies
experts have developed for minimizing this downside inherent in reuse by example.

It is important not to lose sight of the main benefit of this style of software re-
use: these active strategies reflect a creative and effective resolution of the inherent
tension between the need to distance oneself from one's own project to study some-
one else's code, and continuing to make concrete progress toward a desired result.
Elsewhere we have characterized such a tension as the “production paradox” [1],
wherein users are too focussed on the product they are creating to acquire the skills
that will facilitate its creation. In this Smalltalk reuse setting, the programmers’
borrowing of example code allowed them to quickly incorporate at least some ap-
proximation of the new functionality into their own project; they could then work
within their own project context to “learn” the minimum necessary for successful
reuse.

18

5.3 Training and Tools for Active Reuse

Our work has a variety of implications for how objected-oriented programming
should be conceptualized, taught and supported. Most generally, it suggests the de-
sirability of a broader view of component reuse: the pluggable “software IC” met-
aphor [4,5] is not the only way reuse has been conceptualized, but it is a dominant
image in talking and thinking about reuse. Both of our target objects (the slider and
the graphical hierarchy) could be used as pluggable components; the slider, in par-
ticular, is an interface widget and eminently pluggable. However, all four pro-
gramming projects described here reused the target classes through use of some or
all of their example usage contexts. This suggests a more situational view of reuse
in which pluggable, context-free reuse is the simple and ideal case.

The programmers we studied invented the strategies we observed or leamned
them informally from colleagues. As we noted, they occasionally expressed some
embarrassment at their own reluctance to fully analyze code they wanted to reuse
and their predilection for “stealing” usage protocol. If these practices survive —
indeed emerge from — the natural selection pressures of professional programming,
we should at least consider that perhaps they should be the topic of instruction in
(Smalltalk) programming.

This implication for instruction entrains a related implication for the documen-
tation of software components. Our four programmers were able to find example
uses of the target classes, but in many situations this would not be true, and hence
an example-oriented reuse strategy would be thwarted. Of course, imagining
example-based documentation on a large scale raises many consequent issues. Who
will build the examples? One resource is the test programs built in the course of
development, and often discarded afterward. Delivering these along with software
components would provide some support for the example-oriented strategy at virtu-
ally no cost. Another question is what makes a good example. There is a literature
on concept formation in cognitive psychology that addresses the issue of how ex-
amples are abstracted in comprehension [19]. It is an interesting and open question
whether and how similar characteristics bear on reuse.

Finally, this work embodies three themes for tool support: the sequence of ac-
tivities in reuse programming, recruitment of example usage code, and the use of the
system debugger. Our four programmers seemed to follow a loose script: first they
instantiated the component in the project context, then they successively elaborated
it function by function. Throughout this process they made extensive use of example
usage contexts and of the debugger. An obvious implication is to provide tools that
more explicitly integrate and coordinate the information needed at each point along
the way. Thus tool support might guide reuse activities through a reuse script (for
example, a list of target class behaviors to instantiate in the project context), using
this script to coordinate the programmer's work with the example usage code, the
project code, and the interactive debugging facilities.

19

Acknowledgements

Important contributions to this work were made by Christine Sweeney and Dan
Walkowski, who assisted in the design and development of the reusable components
and the example usage contexts.

References

10.

11.

12.

J.M. Carroll and M.B. Rosson. The paradox of the active user. In J.M.Carroll
(Ed.), Interfacing thought: Cognitive aspects of human-computer interaction
(pp- 80-111). Cambridge, Mass: MIT Press, 1987.

J.M. Carroll and M.B. Rosson. Deliberated evolution: Stalking the View
Matcher in design space. Human-Computer Interaction, 6, 281-318, 1991.

J.M. Carroll, J.A. Singer, R K.E. Bellamy, and S.R. Alpert. A View Matcher
for learning Smalltalk. In CHI'90 Proceedings (pp.431-438), New York: ACM,
1990.

B.J. Cox. Object oriented programming: An evolutionary approach. Reading,
Mass.: Addison-Wesley, 1986.

B.J. Cox. Building malleable systems from software ‘chips. Computerworld
(March), 59-68, 1987.

F. Detienne. Reasoning from a schema and from an analog in software code
reuse. In J.Koenmann-Belliveau, T.G.Moher & S.P.Robertson (Eds.), Empirical
studies of programmers: Fourth workshop. (pp.5-22). Norwood, NJ: Ablex,
1991.

L.P. Deutsch. Design reuse and frameworks in the Smalltalk-80 system. In
T.J.Biggerstaff & A.J.Perlis (Eds.), Software reusability, volume 2: Applications
and experience (pp. 57-72). New York: Addison-Wesley, 1989.

Digitalk, Inc. (1989). Smalltalk/V PM. Los Angeles: Digitalk, Inc.

K.A. Ericsson and H.A. Simon. Verbal reports as data. Psychological Review,
87, 215-251, 1980.

G. Fischer. Cognitive view of reuse and redesign. IEEE Software (July), 60-72,
1987.

B. Hayes-Roth and F.A. Hayes-Roth. A cognitive model of planning. Cognitive
Psychology, 3, 275-310, 1979.

R. Helm and Y.S. Maarck. Integrating information retrieval and domain spe-
cific approaches for browsing and retrieval in object-oriented class libraries.
Proceedings of OOPSLA'9] (pp. 47-61). New York: ACM, 1991.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

20

S. Henninger. (1991). Retrieving software objects in an example-based pro-
gramming environment. Proceedings of SIGIR'91 (pp. 251-260). New York:
ACM, 1991.

RE. Johnson. Documenting frameworks using patterns. In Proceedings of
OOPSLA'92 (pp. 63-76). New York: ACM, 1992.

R.E. Johnson and B. Foote. Designing reusable classes. Journal of Object-
oriented Programming 1(2): 22-35, 1988.

B.M. Lange and T.G. Moher. Some strategies for reuse in an object-oriented
programming environment. In Proceedings CHI'89 (pp. 69-74), New York:
ACM, 1989.

J.A. Lewis, S.M. Henry, D.G. Kafura, and R.S. Schulman. An empirical study
of the object-oriented paradigm and software reuse. In Proceedings of
OOPSLA'91 (pp. 184-196). New York: ACM, 1991.

B. Meyer. Object-oriented software construction. New York: Prentice Hall,
1988.

R. Millward. Models of concept formation. In R.E.Snow, P.-A. Federico &
Montague, W.E. (Eds.), Aptitude, learning and instruction: Cognitive process
analyses. Hillsdale, NJ: Lawrence Erlbaum Associates, 1979.

L. Neal. A system for example-based programming. Proceedings of CHI'89
(pp. 63-68). New York: ACM, 1989.

R.K. Raj and HM. Levy. A compositional model of software reuse. In Pro-
ceedings of ECOOP'89 (pp. 3-24), London: British Computer Society, 1989,

M.B. Rosson, J.M. Carroll, and C. Sweeney. A View Matcher for reusing
Smalltalk classes. Proceedings of CHI'91 (pp. 277-284). New York: ACM,
1991.

D. Taenzer, M. Ganti, and S. Podar. Problems in object-oriented software reuse.
Proceedings of ECOOP'89 (pp. 25-38). Cambridge: Cambridge University
Press, 1989.

