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Abstract. Object Oriented Interoperability is an extension and generaliza-
tion of the Procedure Oriented Interoperability approaches taken in the past.
It provides an interoperability support frame by considering the object as the
basic interoperation unit. This way interoperation is based on higher level ab-
stractions and it is independent of the specific interface through which a serv-
ice is used. A prototype implementation demonstrates both the feasibility of
the ideas and the related implementation issues.

1 Introduction

An important issue in today’s large heterogeneous networks is the support for interop-
erability, that is the ability of two or more entities, such as programs, objects, applica-
tions or environments, to communicate and cooperate despite differences in the imple-
mentation language, the execution environment or the model abstractions. The motiva-
tion in the introduction of interoperation between entities is the mutual exchange of
information and the use of resources available on other environments.

1.1 Procedure Oriented Interoperability

The problem of interface matching between offered and requested services has been
identified by many researchers [3][9]{14][15][16][17][20] as an essential factor for a
high level interoperability in open systems. Nevertheless, most of the approaches taken
in the past [9][14][16]{20] are based on the Remote Procedure Call (RPC) paradigm and
handle interoperability at the point of procedure call. We call this type of interoperabil-
ity support approach Procedure Oriented Interoperability (POI). In Procedure Oriented
Interoperability support it is assumed that the functionality offered by the server’s pro-
cedures matches exactly the functionality requested by the client. Thus the main focus
of the interoperability support is the adaption of the actual parameters passed to the pro-
cedure call at the client side to the requested procedures at the server side. An example
of this approach is the one taken in the Polylith system [16]. The basic assumption of
the approach is that the interface requested by the client (at the point of the procedure
call) and the interface offered by the server “fail to match exactly”. That is the offered
and requested parameters of the operation calls differ. A language called NIMBLE has
been developed that allows programmers to declare how the actual parameters of a pro-
cedure call should be rearranged and transformed in order to match the formal parame-
ters of the target procedure. The supported parameter transformations include coercion
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of parameters, as for example five integers to an array of integers, parameter evaluation,
as for example the transformation of the strings “male” and “female” to integer values,
and parameter extensions, that is, providing default values for missing parameters. The
types of the parameters that are handled are basic data types (integers, strings, booleans
etc.) and their aggregates (arrays or structures of integers, characters etc.). The pro-
grammer specifies the mapping between the actual parameters at the client side and the
formal parameters at the server side using NIMBLE and the system will then automat-
ically generate code that handles the transformations at run time.

Whereas NIMBLE focuses in bridging the differences between the offered and re-
quested service interfaces, the Specification Level Interoperability (SLI) support of the
Arcadia project [20] focuses on the generation of interfaces in the local execution envi-
ronment through which services in other execution environments can be accessed. The
major advantage of SLI is that it defines type compatibility in terms of the properties
(specification) of the objects and hides representation differences for both abstract and
simple types. This way SLI will hide, for example, the fact that a stack is represented as
a linked list or as an array, making its representation irrelevant to the interoperating pro-
grams sharing the stack. In SLI the specifications of the types that are shared between
interoperating programs are expressed in the Unifying Type Model (UTM) notation.
UTM is a unifying model in the sense “that it is sufficient for describing those proper-
ties of an entity’s type that are relevant from the perspective of any of the interoperating
programs that share instances of that type”[20). SLI provides a set of language bindings
and underlying implementations that relate the relevant parts of a type definition given
in the language to a definition as given in the UTM. In SLI the implementer of a new
service will need to specify in UTM the service interface and provide any needed new
type definitions for the shared objects and language bindings that do not already exist.
In doing so the user will be assisted by the automated assistance tools which allow him
to browse through the existing UTM definitions, language bindings and underlying im-
plementations. Once a UTM definition for a service has been defined the automated
generation tool will produce the necessary interface in the implementation language se-
lected plus any representation and code needed to affect the implementation of object
instances. This way the automated generation tool will always produce the same inter-
face specification from the same UTM input. However SLI can provide different bind-
ings and implementations for the generated interface allowing a service to be obtained
from different servers on different environments, provided that they all have the same
UTM interface definition.

A similar approach to SLI has been taken in the Common Object Request Broker
Architecture (CORBA) [14] of the Object Management Group (OMG). The Object Re-
quest Broker (ORB) “provides interoperability between applications on different ma-
chines in distributed environments”[14] and it is a common layer through which objects
transparently exchange messages and receive replies. The interfaces that the client ob-
Jects request and the object implementations provide, are described through the Inter-
face Definition Language (IDL). IDL is the means by which a particular object imple-
mentation tells its potential clients what operations are available and how they should
be invoked. An interface definition written in IDL specifies completely the interface
and each operation’s parameters. The IDL concepts are mapped accordingly to the cli-
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ent languages depending on the facilities available in them. This way given an IDL in-
terface, CORBA will generate interface stubs for the client language through which the
service can be accessed using the predefined language bindings. In the current status of
ORB, language bindings exist only for the C language.

Although the above approaches can provide interoperability support for a large
number of applications, they have a number of drawbacks that severely restrict their in-
teroperability support power. The first drawback is the degeneration of the “interface”
for which interoperability support is provided to the level of a procedure call. A service
is generally provided through an interface that is composed of a set of inter-related pro-
cedures. What is of importance is not the actual set of the interface procedures but the
overall functionality they provide. By reducing the interoperability “interface” to the
level of a procedure call, the inter-relation of the interface procedures is lost, since the
interoperability support no longer sees the service interface as a single entity but as iso-
lated procedures. This will create problems in approaches like Polylith’s that bridge the
differences between the offered and requested service interface, when there is no direct
one-to-one correspondence between the interface’s procedures (interface mismatch
problem).

Interoperability approaches like SLI and CORBA on the other hand do not suffer
from the interface mismatch problem, since the client is forced to use a predefined in-
terface. Nevertheless, the enforcement of predefined interfaces (that is, sets of proce-
dures with specified functionality) makes it very difficult to access alternative servers
that provide the same service under a different interface. This is an important interop-
erability restriction since we can neither anticipate nor we can enforce in a open distrib-
uted environment the interface through which a service will be provided. With the SLI
and CORBA approaches, the service’s interface must also be embedded in the client’s
code. Any change in the server’s interface will result in changes in the client code.

Another common characteristic and restriction of the above interoperability ap-
proaches is that they require the migration of the procedure parameters from the client’s
environment to the server’s environment. As a result only migratable types can be used
as procedure parameters. These are the basic data types (integers, strings, reals etc.) and
their aggregates (arrays, structures etc.), which we call data types. Composite non mi-
gratable abstract types, like a database or keyboard type, cannot be passed as procedure
parameters. This however is a reasonable restriction since the above approaches focus
in interoperability support for systems based on non-object oriented languages where
only data types can be defined.

1.2 Object Oriented Interoperability

Although Procedure Oriented Interoperability provides a good basis for interoperability
support between non-object oriented language based environments, it is not well suited
for a high level interoperability support for environments based on object oriented lan-
guages. The reason is that in an object oriented environment we cannot decompose an
object in a set of independent operations and data and view them separately, since this
will mean loss of the object’s semantics. For example, a set of operations that draw a
line, a rectangle and print characters on a screen, have a different meaning if they are
seen independently or in the context of a window server or a diagram plotting object. In
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object oriented environments it is the overall functionality of the object that is of impor-
tance and not the functionality of the independent operations. That means that the same
functionality can be offered with a different interface! from different objects found ei-
ther on the same or in different environments. Interoperability support in an object ori-
ented environment should bridge the interface differences between the various objects
offering the same service, while preserving the overall object semantics. We call this
kind of interoperability support Object Oriented Interoperability (OOI).

Object Oriented Interoperability is a generalization of Procedure Oriented Interop-
erability in the sense that it will use, at its lower levels, the mechanisms and notions of
POL However OOI has several advantages over POI. First of all it allows the interop-
eration of applications in higher level abstractions, like the objects, and thus supports a
more reliable and consistent interoperation. A second advantage is that it supports fast
prototyping in application development and experimentation with different object com-
ponents from different environments. The programmer can develop a prototype by re-
using and experimenting with different existing objects in remote (or local) environ-
ments without having to change the code of the prototype when the reused object inter-
faces differ. A last advantage is that since OOl is a generalization of POI, it can be used
to provide interoperation between both object oriented and conventional (non-object
oriented) environments. Furthermore when OOI support is used for non-object oriented
environments it provides a more general frame than POI and can also handle cases
where the requested and offered service interfaces do not match.

In this paper we present the concept of Object Oriented Interoperability and de-
scribe our prototype implementation. In section 1 we give a brief overview of the pre-
vious interoperability approaches and outline the Object Orient Interoperability ideas.
In section 2 we present in detail the Object Oriented Interoperability concepts and ideas
and in section 3 we describe the prototype implementation. Finally in section 4 we give
our conclusions, open issues and further research directions.

2 Overview of Object Oriented Interoperability

We identify two basic components necessary for the support and implementation of ob-
ject oriented interoperability: Type Matching and Object Mapping. Type matching pro-
vides the means for defining the relations between types on different execution environ-
ments based on their functionality abstraction and object mapping provides the run time
support for the implementation of the interoperability links.

2.1 Terminology

In the rest of this section we use the term client interface to specify the interface throu gh
which the client wishes to access a service, and the term server interface to specify the
actual interface of the server. In addition we will use the term node to specify the exe-
cution environment of an application (client or server), as for example the Hybrid [4]
execution environment or the Smalltalk [2] execution environment. In this sense a node

1. From here on we will use the term “interface” to signify the set of public operations
and instance variables, through which functionality and data of an object are accessed.
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can span over more than one computer and more than one node can co-exist on the same
computer. Although we will assume that the client is in the /ocal node and the server in
the remote node, local and remote nodes can very well be one and the same. With the
term parameter we mean the operation call parameters and the returned values, unless
we explicitly state differently. Finally we should note that by the term user we mean the
person that is responsible for the management of the application.

2.2 Type Matching

In a strongly distributed environment [19] a given service will be offered by many serv-
ers under different interfaces. As a result a client wishing to access a specific service
from more than one server will have to use a different interface for each server. Al-
though we can develop the client to support different interfaces for the services it ac-
cess, we might not always be able to anticipate all possible interfaces through which a
service can be offered, or force service providers to offer their services via a specific
interface. Object Oriented Interoperability approaches this problem by handling all in-
terface transformations, so that a client can use the same interface to access all servers
offering the same service. The Type Matching problem consists of defining the bind-
ings and transformations from the interface that the client uses, to the actual interface
of the service.

2.2,1 Towards a solution to the Type Matching problem

Ideally we would like to obtain an automatic solution to the Type Matching problem.
Unfortunately in the current state of the art this is not possible. The reason is that we
have no way of expressing the semantics of the arbitrary functionality of a service or an
operation, in a machine understandable form. In practice the best we can do is describe
it in a manual page and choose wisely a name so that some indication is given about the
functionality of the entity. Nevertheless, since nothing obliges us to choose meaningful
names for types, operations or their parameters, we cannot make any assumptions about
the meaning of these names. Furthermore even if the names are chosen to be meaning-
ful, their interpretation depends in the context in which they appear. For example a type
named Account has a totally different meaning and functionality when found in a bank-
ing environment and when found in a system administrator’s environment. Thus any so-
lution to the Type Matching problem will require, at some point, human intervention
since the system can not automatically deduct either which type matches which, or
which operation corresponds to which, or even which operation parameter corresponds
to which between two matching operations. What the system can do is assist the user in
defining the bindings and generate the corresponding implementations.

We distinguish three phases in providing a solution to the Type Matching problem.
In the first phase, which we call the functionality phase, the user specifies the type or
types on the remote environment providing the needed functionality (service). The sys-
tem can assist the user in browsing the remote type hierarchy and retrieving information
describing the functionality of the types. This information can be manual pages, infor-
mation extracted from the type implementation or even usage examples.

In the second phase, which we call the interface phase, the user defines how the op-
erations of the remote type(s) should be combined to emulate the functionality repre-
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sented by the client’s operations. This can a be a very simple task if there is a direct cor-
respondence between requested and offered operations, or a complicated one if the op-
erations from several remote types must be combined in order to achieve the needed
result. As in the functionality phase the system can assist the user by providing infor-
mation regarding the functionality of the operations.

The third phase is the parameter phase. After specifying the correspondence be-
tween the requested and remote interface operations the user will need to specify the
parameters of the remote operations in relation to the ones that will be passed in the lo-
cal operation call. This might require not only a definition of the correspondence be-
tween offered and requested parameters, but also the introduction of adaption functions
that will transform or preprocess the parameters. The system can assist the user by iden-
tifying the types of the corresponding parameters, reusing any information introduced
in the past regarding the relation between types and standard adaption functions, and
prompt the user for any additional information that might be required.

2.2.2 Type Relations

In OOI we distinguish three types of type relations, depending on how the local type
can be transformed to the remote type. Namely we have equivalent, translated and type
matched types.

Migrating an object from one node to another means moving both of its parts, that
is data and operations, to the remote node, while preserving the semantics of the object.
However, moving the object operations essentially means that a new object type is in-
troduced on the remote node. This case is presently of no interest to OOI since we wish
to support interoperability through the reuse of existing types. Thus in OOI migrating
an operation call parameter object means moving the data and using them to initialize
an instance of a pre-existing equivalent type. This is most commonly the case with data
types, like integers, strings and their aggregates, where the operations exist on all nodes
and only the data need to be moved. In OOI when this kind of a relation exists between
a type of the local node and a type of the remote node we say that the local type X, has
an equivalent type X" on the remote node and we denote it as

X=>X"; Local type X has X’ as equivalent type on the remote node.

Although data types are the best candidates for equivalency relation, they are not
the only ones. Other non-data types can also exist for which an equivalent type can be
found on a remote node. For example a raster image or a database type can have an
equivalent type on a remote node and only the image or database data need to be moved
when migrating the object. In general two types can be defined as equivalent if their se-
mantics and structure are equivalent and the transfer of the data of the object are suffi-
cient to allow the migration of their instances. In migrating an object to its equivalent
on the remote node, the OOI support must handle the representation differences of the
transferred data. In this sense type equivalency of OOI corresponds to representation
level interoperability [20].

In an object oriented environment we are more interested in the semantics of an ob-
Ject rather than its structure and internal implementation. For example, consider the Hy-
brid [13] type string and the CooL [1] type ARRAY OF CHAR. In the general case the
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semantics of the two types are different: the string is a single object, while the ARRAY
OF CHAR is an aggregation of independent objects. Nevertheless when in CooL an AR-
RAY OF CHAR is used for representing a string, it becomes semantically equivalent and
can be transformed to a Hybrid string, although the structure, representation and inter-
faces of the two types are different. In OOI this type relation is defined as type transla-
tion and it is noted as

X+> X : translationFunction ; The local type X is translated to type X~ on the
remote node, via the defined translation function.

Translation of the local type to the remote type is done with a user definable translation
function. This way the particularities of the semantic equivalency can be handled in
case specific way. The user can specify different translations according to the semantics
of the objects. For example if the local node is a CooL node and the remote a Hybrid
node then we can define two different translations for an ARRAY OF CHAR:

ARRAY OF CHAR +> string : array2string ;

ARRAY OF CHAR +> array of integer : array2array ;
Where in the first case the ARRAY OF CHAR represents a character string, while in the
second a collection of characters that need to be treated independently (in Hybrid char-
acters are represented via integers).

Type translation can be compared to Specification Level Interoperability [20],
where the interoperability support links the objects according to their specifications.
Nevertheless, type translation is more flexible than SLI since it allows muitiple transla-
tions of the same type according to the specific needs and semantics of the application.

A local type for which bindings to a remote type or types have been defined, as a
solution to the Type Match problem, (that is, bindings and transformations from the in-
terface that the client uses, to the actual interface of the service) is said to be type
matched to the remote node. We can have two kinds of type matched types: multi-type
matched and uni-type matched types. Multi type-matched types are the ones that are
bound to more that one type on the remote node, and uni-type matched types are the
ones that are bound to a single type on the remote node. In OOI we denote that a type
X is type matched to types X" and X** on the remote cell as

X =>X"; Local type X is type-matched to remote type X * .
X—=>< X', X" >; Local type X is type-matched to remote types X and X",

The target of OOI is to allow access to objects on remote nodes. The basic assump-
tion being that the object in question cannot be migrated on the local node. However,
the access and use of the remote object will be done with the exchange of other objects
in the form of operation call parameters. The parameter objects can, in their turn, be mi-
grated on the remote node or not. Parameter objects that cannot be migrated on the re-
mote node are accessed on the local node via a type match, becoming themselves serv-
ers for objects on the remote node.

Type relations are specific to the node for which they are defined and do not imply
that a reverse type relation exists, or that they can be applied for another node. For ex-
ample, if the local node is a Hybrid node and the remote is a C++ node, the Hybrid type
boolean has as equivalent in the C++ node an int (integer) (booleans in C++ are present-
ed by integers), while the reverse is, in general, false.
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2.2.3 To Type-Match or not to Type-Match?

Type matching is a general mechanism for interoperability support and it can be used
in all cases in place of equivalency and translation of types. However, the existence of
translation and equivalency of types is needed for performance reasons since accessing
objects through the node boundary is an expensive operation. If an object is to be ac-
cessed frequently on the remote node, then it might be preferable to migrate it, either as
equivalent or translated type. For example, it is preferable to migrate “small” objects,
like the data types, rather than access them locally. Nevertheless the user has always the
possibility to access any object locally, even an integer if this is needed, as it might the
case with an integer that is stored at a specific memory address which is hardwired to
an external sensor (like a thermometer) and which continuously updated. This can be
done by defining a type match and using it in the parameter’s binding definitions.

A typical scenario we envisage in the development of an application with OOI sup-
port is the following. The user (application programmer) will first define a set of type
matchings for accessing objects on remote nodes. These will be used in the develop-
ment of the application prototype. When the prototype is completed the user will meas-
ure the performance of the prototype and choose for which types a local implementation
is to be provided. For these types an equivalency of translation relation will also be es-
tablished, possibly on both nodes, so that they can be migrated and accessed locally.
This way the performance of the prototype will be improved. This process can be re-
peated iteratively until the performance gains are no longer justifiable by the implemen-
tation effort.

One of the major advantages.of the OOI approach is that in the above scenario the
application prototype will not be modified when local implementations of types are in-
troduced! and the type relations change. The new type relations are introduced in the
OOI support and do not affect the application programs.

2.3 Object Mapping

Whereas type matching maintains the static information of the interoperability tem-
plates, object mapping provides the dynamic support and implementation of the inter-
operability links. We distinguish two parts in object mapping: the static and the dynam-
ic. The static part of object mapping is responsible for the creation of the classes that
implement the interoperability links as specified by the corresponding type matching.
The dynamic part on the other hand, is responsible for the instantiation and management
of the objects used during the interoperation.

2.3.1 Inter-Classes and Inter-Objects

The essence of object mapping is to dynamically introduce in the local node the services
of servers found on other nodes. This however must be done in such way so that the ac-
cess of the services is done according to the local conventions and paradigms. In an ob-
ject oriented node this will be achieved with the instantiation of a local object that rep-
resents the remote server, which in OOI we call an inter-object. An inter-object differs

1. With the exception of a possible recompilation if dynamic linking is not supported.
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from a proxy, as defined in [18], in three important points. First in contrast with a proxy,
an inter-object and its server can belong to different programming and execution envi-
ronments and thus they follow different paradigms, access mechanisms and interfaces.
The second difference is that while a proxy provides the only access point to the actual
server, that is the server can be accessed only via its proxies, this is not the case with
inter-objects. Objects on the same node with the server can access it directly. An inter-
object provides simply the gateway for accessing the server from remote nodes. Finally
while a proxy is bound to a specific server, an inter-object can dynamically change its
server or even access more than one server combining their services to appear as a sin-
gle service on the local node.

An inter-object is an instance of a type for which a type match has been defined.
The class (that is, the implementation of a type) of the inter-object is created by the ob-
ject mapper from the type match information and we call it inter-class. An inter-class
is generated automatically by the object mapper and it includes all code needed for im-
plementing the links to the remote server or servers.

2.3.2 Dynamic Support of the Object Mapping

After the instantiation of an inter-object and the establishment of the links to the remote
server, the controlling application will start calling the operations of the inter-object
passing other objects as parameters. OOI allows objects of any type to be used as a pa-
rameters at operation calls. The object mapper will handle the parameter objects accord-
ing to their type relations with the remote node. This way objects whose type has an
equivalent or translated one on the remote node, will be migrated, while objects for
which a type match exists will be accessed through an inter-object on the remote node.

In the case where no type relation exists for the type of a parameter object, the ob-
ject mapper will invoke the type matcher and ask the user to provide a type relation.
This way type relations can be specified efficiently taking into account the exact needs
and circumstances of their use. In addition the dynamic definition of type relations dur-
ing run time relieves the user from the task of searching the type hierarchy for undefined
type relations. Also the incremental development and testing of a prototype becomes
easier since no type relations need to be defined for the parts of the prototype that are
not currently tested.

3 Prototype Implementation

A prototype implementation of Object Oriented Interoperability support was designed
and developed for the Hybrid cell [5]. In this section we present the prototype imple-
mentation and discuss the related issues. In our presentation we are using interoperabil-
ity examples for Hybrid and CooL. Hybrid is an object oriented language designed
[13][7] and implemented [4] at the University of Geneva, whereas CooL is a an object
oriented language designed and implemented in the ITHACA Esprit [1] project and
which is now a product from Siemens-Nixdorf Inf. AG.

The implementation of the OOI support was part of the Cell prototype implemen-
tation [8]. The Cell is a frame for the design of strongly distributed object based systems
[6]. In the Cell frame each node is transformed to a cell composed by a nucleus and a
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membrane. The nucleus is the original execution environment while the membrane sur-
rounds the nucleus and is responsible for all external (to the nucleus) communication.
The main goal of the Cell frame is to allow the objects of a node (nucleus) to transpar-
ently access and use services found on other heterogenous nodes, without introducing
any changes to the nucleus.

3.1 Type Matching on the Hybrid cell

In order to provide support for type matching in the Hybrid cell, we designed and im-
plemented a Type Matching Specification Language (TMSL) that allows the user to ex-
press type relations in a syntax very similar to the Hybrid language syntax. Although
the design of the Hybrid TMSL (which we will refer as H-TMSL) has been influenced
by the interface language NIMBLE [16], H-TMSL is more general since it allows any
type to be used as parameter of an operation. In the following we describe the H-TMSL
using examples of how the type relations for a CooL cell can be expressed. The full
grammar of the H-TMSL is given in Annex I,

In the Hybrid cell the type relations defined in H-TMSL are stored in membrane ob-
Jects. Nevertheless, in order to allow easier access from the UNIX environment (for de-
bugging and verification) the definitions are also stored and kept synchronized in a
UNIX file in H-TMSL syntax. At initialization of the membrane the file containing the
type relation definitions is opened and all information is loaded into the membrane ob-
jects.

3.1.1 Type Relations

A type relauon in H-TMSL is defined for a specific remote cell which is identified by
its name.! For the examples given bellow we assume that the local Hybrid cell is named
HybridCell and the remote CooL cell is named CoolCell. The general syntax of a type
relation on the Hybrid cell is

IdOfRemoteCell :: <TypeRelation> ;
where TypeRelation can be either equivalent, translated or type matched and IdOfRe-
moteCell is the id of the remote cell, which in the case of the CooL cell is CooL.Cell.

Equivalent and Translated types.
In both CooL. and Hybrid integers and booleans are equivalent types. On the Hybrid cell
this is expressed as

CooLCell :: integer => INT ;

CoolLCell :: boolean => BOOL ;
Although the notion of a string exist in both languages, in CooL strings are represented
as arrays of characters while in Hybrid they are basic data types. Thus the relation be-
tween them is of a translated type

Cool.Cell :: string +> ARRAY OF CHAR : string2arrayOfChar ;
In the CooL cell the corresponding definitions will be:

HybridCell :: INT => integer ;

1. The names of the cells are managed by the membranes and are specific to it.
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HybridCell :: BOOL => boolean ;

HybridCell :: ARRAY OF CHAR +> string : arrayOfChar2string ;
In the definition of translated types we specify a translation function, like string2array-
OfChar and arrayOfChar2string, which performs the data translation.

Because type equivalency and translation imply knowledge and ability to access the
internal representation of the objects, we do not allow, in the present implementation,
the dynamic introduction of equivalent and translated types by the user. All information
about equivalent and translated types is defined statically and loaded at initialization.

Type Matched types.

In contrast to equivalent and translated types, type matchings can be defined dynami-
cally at run time by the user. A type can be matched to either a single remote type or to
a collection of remote types (multi-type match). For example if we have on the local Hy-
brid cell a type windowServer, which is matched to the type WINDOW_CONTROL of
the remote cell, the type match will be expressed as

CooLCell :: windowServer -> WINDOW_CONTROL {<operation bindings>} ;
while a multi-type match will be expressed as

CoolL Cell :: windowManager -> < WINDOW_CONTROL, SCREEN_MANAGER >

{ <operation bindings>} ;

When an object of the local nucleus in its attempt to access a service creates an in-
stance of a type matched type (an inter-object), a corresponding instance of its type
matched type will be created on the remote cell. However, there are cases where we do
not want a new instance to be created on the remote cell but we need to connect to an
existing server. This for example can be the case with a data-base object. We do not
want an instance of an empty data-base but we want to use the existing one with all its
stored data. In H-TMSL this is noted with the addition of @ at the of remote type name:

CoolCell :: personnel -> PERMANENT_PERSONEL_DB @
{ <operation bindings>} ;
If there are more than one instances of type PERMANENT_PERSONEL_DB at the CooL
cell then it is up to the membrane to choose which one will be used. However in the case
of an instantiation of an inter-object due to a parameter mapping, the object mapper will
always bind the inter-object to the corresponding (pre-existing) parameter object.

In the rest of this section we describe the H-TMSL type matching syntax using as
examples a Hybrid type windowServer, which defines in the Hybrid cell the interface
through which a window server is to be accessed (requested interface), and a CooL type
WINDOW_CONTROL which provides an implementation of the a window server (of-
fered interface). For simplicity we assume that the operation names of the two types de-
scribe accurately the functionality of the operations. For example the operation named
newWindow creates a new window, while the operation get_Position returns the posi-
tion pointed by the pointing devices (i.e. mouse, touch-screen etc.).

The Hybrid type windowServer (Figure 1) has five operations. Operations newWin-
dow and newSquareWin return the id of the newly created window or zero in case of
failure. Operation refreshDisplay returns true or false signifying success or failure. Op-
eration readCoordinates returns the coordinates of the active point on the screen as read
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type windowServer : abstract {

newWindow : (integer #{ : topLeftX #}, integer #{ : topLeftY #},

integer #{ : botRightX #}, integer #{ : botRightY #})

-> integer #{: windowl|d #} ;
newSquareWin : (integer #{ : topLeftX #}, integer #{ : topLeftY #},
integer #{ : side #} ) -> integer #{ : windowld #} ;
refreshDisplay : (display ) -> boolean ;
readCoordinates : ( mouse, keyboard, touchScreen, integer #{ : scaleFactor #} )
-> point ;

windowSelected : (mouse, keyboard, touchScreen ) -> integer ;

}s

Figure 1 Hybrid Type windowServer.

from the pointing devices and operation windowSelected returns the id of the currently
selected window or zero if no window is selected.

The CooL type WINDOW_CONTROL (Figure 2) has 4 methods. The methods cre-

TYPE WINDOW_CONTROL =
OBJECT
METHOD create_win ( IN botRightX : INT, IN botRightY : INT,
IN topLeftX : INT, IN topLeftY : INT, IN color : INT ) : INT
METHOD redisplay_all (IN display : DISPLAY) : INT
METHOD get_Position (IN inDevices : IO_DEVICES, IN scaling : INT)

: POSITION
METHOD select_Window (IN position : POSITION) : INT
BODY
END OBJECT

Figure 2 CoolL Type WINDOW_CONTROL

ate_win and select_Window return the id of the newly created window and of the win-
dow into which the specific position is found, or -1 in case of an error. Method redis-
play_all returns O or 1 signifying failure or success, and method get_Position returns the
position pointed by the I/O devices (i.e. keyboard, mouse, touch-screen etc.) as adapted
by the scaling factor.

3.2 Binding of Operations

Although type WINDOW_CONTROL provides all the functionality that type win-
dowServer requires, this is done via an interface different to the one that windowServer
expects. In general in H-TMSL we anticipate two levels of interface differences. First
in the required parameters (order, type etc.) and second in the set of supported opera-
tions, that is, different number of operations with aggregated, segregated or slightlyl

1. The term is used loosely and it is up to the user to define what constitutes a minor
(slight) difference in functionality.
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different functionality. The resolution of these differences corresponds to the parameter
and interface phases of the type matching definition.

3.2.1 Parameters phase
Assuming that the functionality of the provided operation corresponds to the requested
functionality, the differences between the parameters passed to the local operation call
(offered parameters) and of the parameters required by the remote operation (requested
parameters) can fall into one or more of the following categories:
» Different order of parameters. For example the first parameter of the local opera-
tion might correspond to the second on the remote operation.

» Different representation of the information held by the parameter. For example a
boolean condition TRUE or FALSE can be represented locally by an integer
while on the remote operation the string “TRUE" or “FALSE” might be expected.

+ Different semantic representation of the information. For example if we have a
Hybrid array with ten elements indexed from 10 to 19, an equivalent array in
CooL will be indexed 1 to 10. Thus an index, say 15, of the Hybrid array should
be communicated as 6 to the CooL cell.

+ Different number of parameters. The requested parameters might be more or less
than the offered ones. In this case the parameters offered might include all infor-
mation needed or more information might be required.

H-TMSL anticipates all the above differences and allows the user to specify the needed
transformations for handling them.

Migrated parameters

In our example we consider first the operations newWindow and create_win which have
the same functionality specification. The binding of newWindow to create_win is ex-
pressed in H-TMSL as

newWindow : create_win(3, 4, 1, 2, int17() ) * RET ;
Operation newWindow offers four parameters which are identified by their position
with a positive integer (1 to 4). Method create_win will be called with these parameters
transposed. Its first parameter will be the third passed by newWindow, the second will
be the fourth and so on. The fifth parameter of create_win specifies the color of the new
window. This information does not exists in the offered parameters. Nevertheless, in
this case, we can use a default value with the use of an adaption function, like int17().
(Adaption functions are described in the next paragraphs.) The returned value from cre-
ate_win, noted as RET in H-TMSL, is passed back to the Hybrid cell and becomes the
value that newWindow will return.

In the above operation binding definition we assume that a relation for the CooL

and Hybrid integers exists. That is we assume that on the Hybrid cell we have

CoolLCell :: integer => INT ;
and on the CooL cell

HybridCell :: INT => integer ;
This way the migration of the parameters and returned values will be handled automat-
ically.
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Operation newSquareWin does not exist in the interface of WINDOW_CONTROL
but its functionality can be achieved by operation create_win called with specific pa-
rameter values. That is we can have

newSquareWin : create_win (bottomRX(1, 3), bottomRY(2, 3),1, 2, int17()) » RET;
where functions bottomRX and bottomRY are adaption functions. Adaption functions
are user defined functions, private to the specific type match. They provide the means
through which the user can adapt the offered parameters to a format compatible to the
requested parameters. They can be called with or without parameters. The parameters
to be passed to the adaption functions can be any of the offered parameters or even the
result of another adaption function. In the type matching definition of H-TMSL the
adaption functions are included at the end of the type match definition between @{ and
@}. Thus for the previous example we have the following adaption functions:

@

bottomRX : (integer : topLeftX, side ) -> integer ;
{ return (topLeftX + side ) ; }

bottomRY : (integer : topLeftY, side ) -> integer ;
{ return (topLeftX - side ) ; }

int17 : -> integer ;
{return (17) ;}
l@

The adaption functions will be invoked locally (that is, in our example, in the Hy-
brid cell) and their result will be passed as parameter to the remote call (create_win).
An adaption function is effectively a private operation of the inter-class and as such it
can access its instance variables or other operations.

Mapped Parameters

When the parameter cannot be migrated to the remote cell, that is when there is no cor-
responding equivalent or translated type, it should be accessed on the local cell. This
will be done via a mapping of a remote object to the local parameter according to an
existing type match. In our example this will need to be done for the refreshDisplay op-
eration and redisplay_all method.

The parameter passed to refreshDisplay is an object of type display which cannot be
migrated to the CooL cell. Thus it must be accessed on the Hybrid cell via a mapping
on the CooL cell. For this a type match must exist on the CooL cell to the Hybrid display
type.

HybridCell :: DISPLAY -> display { .... } ;
This way the binding of refreshDisplay to redisplay_all is expressed as

refreshDisplay : redisplay_all ( 1 : display <- DISPLAY ) # int2bool(RET) ;
meaning that the first parameter of the method redisplay_all will be an object mapped
to the first parameter passed to the operation refreshDisplay, according to the specified
type match on the CooL cell. In addition the returned value of redisplay_all, which is an

integer, is transformed to a boolean via the adaption function int2bool which is defined
as following:
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@{
int2bool : (integer : intval ) -> boolean ;
{
if (intval ?=0) {return (FALSE);}
else { return ( TRUE ); }
}
@}

Multi-type mapped parameters

In H-TMSL we also anticipate the case where the functionality of a type is expressed
by the composite functionality of more than one type on the remote cell. In our example
this is the case for the CooL type IO_DEVICES, which corresponds to the composite
functionality of the Hybrid types mouse, keyboard and touchScreen.

HybridCell :: IO_DEVICES -> < keyboard @, mouse @, touchScreen @ > { ...} ;

Note that in this example the IO_DEVICES inter-object will be connected to the existing
keyboard, mouse and touchScreen objects on the Hybrid cell.

The definition of multi-type match operation bindings is similar with that of single
type match bindings, but with the definition of the operation’s type. If for example we
assume that type |IO_DEVICES has a method read_keyboard which corresponds to the
operation readinput of the Hybrid keyboard type, the binding would be expressed as

read_keyboard : keyboard.readlnput (...) * ... ;

In fact this syntax is the general syntax for the definition of an operation binding and
can be used in both single or multi type matchings. Nevertheless for simplicity in single
type matchings the definition of the corresponding type can be omitted since there is
only one type involved.

In our original example, the binding of the Hybrid operation readCoordinates to the
operation get_Position will be expressed as

readCoordinates : get_Position ( < 2,1, 3 > : < keyboard, mouse, touchScreen >
<- IO_DEVICES, 4) "RET

assuming that we have on the CooL cell the relation
HybridCell :: POSITION +> point ;

3.2.2 Interface adaption

When defining the operation bindings between two types from different environments
there will be cases where the functionality of the local operation is an aggregation of the
functionality of more than one remote operations. Adapting a requested operations in-
terface to an offered one might require anything from simple combinations of the oper-
ations up to extensive programming. In order to simplify the user’s task, H-TMSL al-
lows the definition of simple operation combinations in the type match specification.
For example the functionality of the Hybrid operation windowSelected can be obtained
with the combination of the CooL. methods get_Position and  select_Window. The op-
eration binding is thus:

windowSelected : select_Window ( WINDOW_CONTROL.get_Position (
<2,1, 3> : <keyboard, mouse, touchScreen > <-|0_DEVICES, 4)) ~RET;
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This defines that the method get_Position will first be called on the remote CooL cell
and its result will not be returned to the calling Hybrid cell but it will be used as the first
parameter to the select_ Window method. Since the result of the get_Position method is
not returned to the Hybrid cell, there is no need for a type relation of the CooL type PO-
SITION to exist on the Hybrid cell.

To be noted that the remote operation call is defined as WINDOW_CONTROL.get_-
Position, that is with the type that it belongs to, so that it be can distinguished from the
adaption functions.

3.3 Object Mapping

Once a complete type match definition has been specified, the information is passed
to the object mapping service (object mapper) which is responsible for the run-time sup-
port of the OOL The object mapper will generate dynamically an inter-class for the local
matched type, which in our example is the windowServer, and add it into the Hybrid
workspace. The operations of the inter-class are generated from a general template and
their task is to forward the operation call to the remote server [8]. When an instance of
the type is requested, an inter-object will be instantiated connected to the remote server
object, that is the instance of the WINDOW_CONTROL, with its operation bound to the
corresponding server’s operations. The object mapping service is responsible for locat-
ing the target cell and establishing and maintaining the communication channel(s). We
then say that the instance of the WINDOW_CONTROL in the CooL cell is mapped into
the Hybrid cell (Figure 3).

CooL cell
Membyane Nucleus

. WINDOW_CONTROL
newWindow

newSquareWin
refreshDisplay
readCoordinates
windowSelected

selgct_Window

Figure 3 Object Mapping.
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In order to outline the functionality of the object mapping service we will describe
the actions taken when an operation of the windowServer inter-object is called. For our
example we consider the operation readCoordinates, which is called with four parame-
ters: a keyboard object, a mouse object, a touchScreen object and an integer (Figure 4)

ybrid cell CooL cell
Nucleus Membra Membzane Nucleus

WINDOW_CONTROL

)

/% psition

touchScreen

Figure 4 Operation call forwarding

and which is bound to the method get_Position.

readCoordinates : get_Position ( < 2,1, 3 > : < keyboard, mouse, touchScreen >
<- IO_DEVICES, 4) »RET

From the 4 parameters passed to operation readCoordinates, the first three ones
(keyboard, mouse and touchScreen) cannot be migrated to the CooL cell but must be
accessed locally via a multi-type match of the CooL type IO_DEVICES. The fourth pa-
rameter is an integer for which an equivalent type exists on the CooL cell and thus it can
be migrated to it. This information is known to the object mapper since it is included in
the type match specifications. The local object mapper will contact the remote object
mapper and request the instantiation of two object: an inter-object of type IO_DEVICES
connected to the Hybrid objects keyboard, mouse and touchScreen and an INT object
initialized to the value of the integer parameter (Figure 5).

‘When the transfer of the parameters has been completed the object mapper will pro-
ceed in the invocation of the remote operation. The remote object mapper will be in-
structed to call the operation get_Position passing it as parameters the |O_DEVICES in-
ter-object and the INT object (Figure 6). The CooL object mapper will invoke the meth-
od and receive the result, an object of type POSITION. Because for the CooL. type
POSITION there is a translation to the Hybrid type point, the CooL object mapper will
instruct the Hybrid object mapper to instantiate an object of type point which it will in-
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CooL cell
Nucleus

INDQ QONTROL
readCoordinates
gsition
touchScreer
l‘llllllll l}// v, @
Figure 5 Parameters’ transfer
CooL cell

Nucleus

touchScreen

Figure 6 Remote operation invocation
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itialize to the translated value of the POSITION object. The Hybrid object mapper will
then be instructed to receive the result of the readCoordinates operation call in the in-
stance of point. This will finally be the result returned to the caller of the readCoordi-
nates operation.

During the transfer of parameters the object mapper might encounter a type for
which no type relation has been defined. For example it might be that on the CooL cell
there is no type relation for the type IO_DEVICES. This is possible since the type match-
er of the Hybrid cell does not verify during a type match definition the existence of re-
verse type relations (i.e. from the remote cell to the local). In this case when the Hybrid
object mapper will request the instantiation of an IO_DEVICES inter-object, the CooL
type matcher will invoke dynamically the type matcher requesting the definition of the
type match. The user will then be required to define on the fly a type match for the
IO_DEVICES type. Once this is done the object mapper will resume the transfer of the
parameters. This way an application can be started even without any type relations de-
fined. The object mapper will prompt the user to define all needed type relation during
the first run of the application.

4 Conclusions and issues to be studied

We have presented the concept of Object Oriented Interoperability and our prototype
implementation that demonstrates both the feasibility of the ideas and the implementa-
tion related issues. Object Oriented Interoperability is an extension and generalization
of the Procedure Oriented Interoperability approaches taken in the past. While Proce-
dure Oriented Interoperability approaches support interoperability at the operation call
level, linking applications through independent operation call, Object Oriented Interop-
erability (OOI) supports interoperability at the object level. That is, it considers the ob-
ject, an inseparable set of operations and data, as the basic interoperation unit. OOI pro-
vides interoperation support based on the abstract functionality of the objects without
being restricted by the specific interface through which their functionality is offered.

Object Oriented Interoperability offers many advantages over traditional Procedure
Oriented Interoperability approaches. In contrast to Procedure Oriented Interoperability
approaches which require parameter objects to be migrated to the remote environment,
OO0l allows parameter objects to access locally if they cannot be migrated. As a result
OOI places no restriction to the interfaces used in interoperation. A second advantage
is that OOI does not require exactly matching interfaces nor does it force the interface
through which a service must be accessed. The application designer can decide on the
interface that he wants to use for accessing a service and use it for accessing not only
the target server but also alternative servers offering the same service under different
interfaces. Another advantage of OOI is that it makes no assumptions about the exist-
ence and semantics of types in the interoperating environments. Each type, even the
simplest and most banal integer type, must be explicitly related to a type on the remote
environment. This way OOI provides flexibility in the interconnection of diverse envi-
ronments based on different models and abstractions.

One of the “disadvantages” of OOI comes from the fact that it does not enforce a
common global representation model (Type Matching Specification Language) for ex-
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pressing the interoperability bindings. Each execution environment is free to choose its
own language. As a result the interoperability type matching specifications for a server
need to be defined independently by the user for each execution environment. However,
bilateral mappings can offer a higher flexibility when the interoperating languages sup-
port special features. For example, a common interface definition language, like the
CORBA IDL, does not include the notion of a transaction; thus, even when the inter-
operating languages support transactions, like Argus [11] and KAROS [2], their IDL
based interoperation will not be able to use transactions.

Our prototype implementation for OOI support allowed us to identify several issues
that need further studying. A first issue concerns the security aspects of OOI support.
That is, not only the authorization and verification of the interoperating entities but also,
and most important, the implications of allowing a remote user to define new type rela-
tions in the local environment and then instantiate the resulting inter-classes. The ques-
tions in this issue are who has the right to create new type relations and how this can be
controlled. A second security aspect concerns the inter-relations with third parties. A
user can define a type match and establish links for a type of a second cell that is itself
type-matched to a third cell. In this case we access the third cell indirectly via the second
cell, using accesses privileges that we might not have locally.

A second issue that needs to be studied concerns the public instance variables in the
interconnection of application developed in different programming languages. The is-
sue here is dual: first whether the public instance variables of a local type are meaning-
ful to an inter-object and if so how they are bound and used, and second how do we han-
dle the public instance variables of two applications written in different languages
where one supports public instance variables while the other does not.

A last issue concerns the refinement of the TMSL syntax. For example, the choice
of using numbers for expressing the parameter correspondence was not an optimal one.
A better choice would have been to use a code, like #1, #2 etc., so that it would be easier
to use integers for parameter extensions and not adaption functions. The syntax refine-
ment will also allow us to define a TMSL framework that can adaptedable to more than
one language.

We plan to continue our research by refining the Object Oriented Interoperability
specifications and studying the open issues presented. In parallel we plan to design and
develop OOI support prototypes for different executions environments, based on both
Object Oriented and non-Object Oriented languages. Once the OOI support prototypes
are developed we will use them for interconnecting different applications, both existing
and specially developed, and study the related issues and problems.
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Annex I: Type Matching Programming Language.

typeMatchDef
typeMatch

remoteTypes
remoteTypeList
typeMatchSpec
adaptDefList
operMatchList
operMatch
remoteOpDef
argMatchList
argMatch

returnValDef

localArgldList
local TypeList
localArgld
localType
remoteType
remoteOpName
remoteCellld
transFunction
adaptFunct
Program

: remoteCellld *::” typeMatch *;’

: localType ‘->’ remoteTypes typeMatchSpec
I localType ‘=>" remoteType [ :’ transFunction ]
I localType ‘+>’ remoteType [ :” transFunction ]

: ‘<’ remoteTypeList ‘>’

:remoteType ['@’] [‘,” remoteTypeList]

: ‘(" operMatchList ‘}’ [ adaptDefList ]

: ‘@{’ Program ‘)@’ [adaptDefList]

: operMatch [operMatchList}

: localOpName *:” remoteOpDef ‘('argMatchList ‘)’ ‘A’ returnValDef *;’
: remoteType ‘.’ remoteOpName

: argMatch [*,” argMatchList]

: localArgld

| adaptFunct ‘(’ localArgld *)’

I localArgld *:* localType ‘<-’ remoteType

} <’ localArgldList ‘> “:* ‘<’ localTypeList ‘>’ ‘<-’ remoteType
| remoteOpDef ‘(* argMatchList ‘)’

:RET
| adaptFunct ‘C RET )’
IRET ‘2’ localType ‘->’ remoteType

: localArgld [“,” localArgldList]
:localType [ *,” localTypeList]
: SMALL_INTEGER

: STRING

: STRING

: STRING

: STRING

: STRING

: STRING

: Program code in Hybrid.
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Annex II: Type Match definition example

CoolLCell :: windowServer -> WINDOW_CONTROL {

newWindow : create_win(3, 4, 1, 2, int17() ) * RET ;

newSquareWin : create_win ( bottomRX(1, 3), bottomRY(2, 3),1, 2, int17() )
ARET;

refreshDisplay : redisplay_all ( 1 : display <- DISPLAY ) * int2bool(RET) ;

readCoordinates : get_Position
(<2,1,3 > :<keyboard, mouse, touchScreen > <- I0_DEVICES, 4)
A RET

windowSelected : select_Window (
WINDOW_CONTROL..get_Position

(<2,1, 3> : <keyboard, mouse, touchScreen > <- IO_DEVICES,
int1() )

}
@f{

) *RET;
bottomRX : (integer : topLeftX, side ) -> integer ;
{ return (topLeftX + side ) ; }

bottomRY : (integer : toplLeftY, side ) -> integer ;
{ return (topLeftX - side ) ; }

int17 : -> integer ;
{return (17) ;}

int1 : -> integer ;
{return (1) ; }

int2bool : (integer : intval ) -> boolean ;

{
var boolval : boolean ;
if (intval ?=0)  { boolval := FALSE ; }
else { boalval := TRUE ; }
return (boolval) ;

}

@};



