Implementation of Distributed Trellis

Bruno Achauer

Computer Science Department, Telecooperation Group
University of Karlsruhe, D-76128 Karlsruhe, Germany

Abstract. DOWL is an extension of the Trellis language supporting
distribution. It allows programmers to transparently invoke operations
on remote objects and to move objects between the nodes of a distributed
system. A few primitives permit the programmer to take full advantage
of distribution and to tune performance; most notably by restricting the
mobility of objects and specifying which objects should move together.
This paper describes the implementation of these extensions: the object
format, communication system and the mechanism to invoke operations
on remote objects. Performance figures are also presented.

1 Introduction

Object-oriented systems are well-suited for distributed processing: in the object-
oriented paradigm, flow of both control and data is performed by sending mes-
sages between objects. Provided that there is an appropriate addressing mecha-
nism, these messages can be sent over a network; thus, operations on objects can
be invoked regardless of their actual location. Moreover, location-independent
invocation allow movement of objects at run time, providing opportunities for
dynamic reconfiguration and load adaption.

In contrast to remote procedure call (RPC), the distributed object-oriented
paradigm is not bound to client/server architectures and provides full syntactical
and semantical equivalence between local and remote operation invocation: in
both cases, arguments can be passed as object references.

However, complete distribution transparency is not desirable. For several
reasons, there have to be mechanisms to make distribution visible. First, dis-
tributing an application obviously requires means for object placement. Second,
even though there is no semantic difference between local and remote invoca-
tion, there are differences in performance. A mechanism to keep related objects
closely together is therefore essential to keep the communication overhead tol-
erable. A related topic is parameter passing. Depending on the intended usage
of arguments passed to an operation on a remote object, it might be beneficial
to migrate arguments to the object instead of simply passing object references.
Finally, there is a need to restrict the mobility of some objects, either because
they are communicating heavily with entities outside the application or because
they are bound to local resources.

This paper describes the implementation of DOWL, an extension of the Trel-
lis language [12] to support transparent distribution. Rather than inventing a

104

new language, we wanted to extend a strongly typed, commercially available lan-
guage to support distributed applications. One of our primary goals was upward
compatibility; existing Trellis applications should run on the extended system
without any changes.

Specifically, we have chosen to support fine-grained distribution because
coarse-grained distribution models (e.g. by clustering objects at the language
level) tend to destroy the uniform object model. Moreover, experience has shown
that coarse-grained distribution usually introduces an additional abstraction
level, which can create problems for the application programmer. For exam-
ple, in the Argus system [10] there are two different object models, guardians
and clusters, with different semantics: Clusters are data types living entirely
within a guardian; they are accessed using local procedure calls. Guardians are
similar to virtual nodes; they are accessed by remote procedure calls (with dif-
ferent parameter passing semantics). While building a distributed application
based on Argus, Greif and others noticed that the semantic differences in this
model can force the programmer to use a guardian where a cluster might be
more appropriate [8].

The Trellis extensions to support distribution are: [1]

— An addressing mechanism allowing object references to span node bound-
aries and to invoke operations on remote objects. This is invisible at the
language level; the only difference between a local and a remote invocation
is a difference in performance.

— The (logical) nodes of the distributed system are represented by $Node ob-
jects. Besides containing information peculiar to the runtime system, they
can also answer inquiries about the topology of the distributed system.

— An object’s $location component contains the object’s current location.

Its initial value is the node on which the object was created, and it changes
whenever the object moves.
Assignment to the $location component causes the object to move (mi-
grate) to the assigned object’s location; thus, two objects can be brought
together by simply specifying the first object’s location to be the second
object. Migration is possible even if the moving object currently has one
of its operations activated; in this case, the operation is suspended and the
operation’s context moves along with the object to the target location where
it is resumed. Finally, operation results are transmitted back to the caller of
the operation.

— To prevent migration of an object, it can be fized at a node. There are two
mechanisms available: instances of a type declared with the $fixed attribute
cannot migrate at all; their location is always the node on which they were
created. Any attempt to unfix them will result in an error. The inverse
attribute, $mobile states that instances of this type are able to migrate
(this is the default).

An object’s $fixed_at component contains the node at which the object is
fixed or the constant Nil if the object is able to migrate. For instances of a
fixed type, this component cannot be altered. For others, assigning a node

105

to it atomically unfixes the object and migrates it to the specified location
where it becomes fixed again. Assigning Nil unfixes the object.

— Although both local and remote operation invocation have identical seman-

tics, they have different performance: Using today’s technology, a local oper-
ation is several orders of magnitude faster than a remote one. It is therefore
crucial to keep related objects closely together to reduce communication
costs. DOWL provides two mechanisms to achieve this: explicit migration
requests using the $location components, and attaching objects.
"To specify which objects should move together, objects can be attached [9] to
other objects. Whenever an object migrates, all mobile objects attached to
it will also move. Attachment is transitive; any object attached to a moving
object will move also. However, attachment is not symmetric; an attached
object can migrate without affecting any objects to which it is attached.

— Normally, arguments to an operation are passed as simple references to ob-
jects. In addition, DOWL offers two alternative mechanisms: call-by-move
and call-by-visit [3], causing argument objects to migrate either permanently
or temporarily to the location where invocation takes place.

Finally, there are two low-level primitives allowing which allow the program-
mer to violate distribution transparency: the $replicated type attribute forces
instances of a (mutable) type to be replicated, and the $local operation at-
tribute requests an operation to be performed on the local representative regard-
less of the real object’s actual location. These attributes are DOWL’s equivalent
to the asm statement in C; a programmer should use them only if he knows
exactly what he is doing.

Prototypes of DOWL run on DEC’s VAX and MIPS architecture worksta-
tions, and experience with the Trellis Programming environment (a large, non-
distributed application [5]) suggests that we have achieved a high degree compat-
ibility: Adapting the programming environment to DOWL required only minor
changes to existing code (most of them were necessary to tell the compiler about
the special treatment required for builtin types). In particular, there was only a
single operation which required call-by-move.

The rest of this paper describes how these extensions are implemented: The
next section presents DOWL’s object format and the mechanisms supporting
object references across node boundaries. Communication in DOWL is achieved
by sending objects between the nodes; section 3 details the mapping of this
communication model to facilities provided by the supporting operating sys-
tem. Section 4 shows how remote object invocation and the parameter passing
mechanisms work. Section 5 gives performance information. We conclude with a
comparison with related work.

2 Object Format

Trellis distinguishes between constant and mutable objects. Constant objects
cannot change their state once they are created and thus can be distributed by

106

simple replication. In contrast, mutable objects can change during their lifetime.
These objects can be used to share data; it is therefore important that only
a single copy of a mutable object exists, to ensure that changes to the object
made on one node are seen by all nodes. DOWL ensures this by distributing
mutable objects as prozies [2, 7, 11]. A proxy is a (local) representative for some
object residing on a remote node; it behaves exactly like the object it represents:
invoking an operation on it is trapped by the runtime system and forwarded
to the real object, which carries out the computation. Any results returned or
exceptions raised are then transmitted back and delivered to the (local) caller.

Internally, an object is represented by a pointer to an object header, followed
by several slots containing the object’s instance variables (cf. figure 1). There are
two kinds of slots: Refs are references to other objects, and bytes hold any kind
of data that is not to be interpreted as an object reference (e.g. the individual
characters of a string).

o Cass o class Clas o
G:1: P:0- F:0 #bytes- #refs G:1: P:0- F:0 #bytes- #refs G:1: P:1. F:0 #bytes: #refs
bytes bytes bytes
refs refs refs

A A
hash pointer hash pointer
node-ID ' counter node-ID ' counter
node | age node | age
constant object global object proxy

Fig. 1. DOWL object formats.

The object header consists of several subfields describing the object’s type
and its precise memory layout (i.e. the number of byte and ref slots present).
Three flag bits contain information related to distribution:

— The G-bit distinguishes global objects (which can be referenced across node
boundaries) from local objects (which are distributed by replication). Its
value is determined by the object’s type attributes; it never changes.

The other bits are significant for global objects only:

— The P-bit indicates whether the structure represents a resident object or a
proxy; it is set and cleared as the object enters and leaves the node.

107

— The F-bit determines whether the object is currently fixed. For instances of
a fixed type, its value cannot change; for others, it is set and cleared when
the object is fixed and unfixed.

Finally, the slot part of a global object is followed by a pointer to a global
object descriptor, a structure containing information required to implement nter-
node references:

— The global object identifier (GOID) uniquely identifies the object. It consists
of two parts: an identifier for the node that created the object and the value
of a counter which is incremented whenever a new GOID is fabricated.

~ A forwarding address [9] indicates the location of non-resident objects. It
consists of two parts: an identifier for the node on which the object is be-
lieved to reside, and a counter showing how often the object has migrated so
far. The counter is used to disambiguate conflicting forwarding addresses; a
greater value indicates more recent location information.

— Each node maintains a hash table mapping GOIDs to object descriptors. A
hash pointer chains all descriptors hashing to the same table slot.

— Finally, an object pointer points to the structure allocated for the object.

Descriptors only exist for proxies and resident objects that are referenced
from remote nodes; all other objects may have a NULL descriptor pointer, meaning
that no external references to the object exist. The descriptor is created only
when the object or a reference to it leaves the node for the first time. On the other
hand, object structures are only needed when the object is actually referenced;
either locally or remotely through its descriptor. There is no need to retain
the object for proxies that are not referenced locally; it is sufficient to have
the descriptor which can forward all incoming requests. Eventually, the address
information on nodes referring to these lone descriptors will be updated, and the
descriptor can be reclaimed by the garbage collector.

The real object denoted by a proxy is located by following a chain of for-
warding addresses until the object is found. This process is explained best by an
example (cf. figure 2):

An object originally created on node A migrated to node B and then finally
to node C. Both A and C still have local references to the object, but there are
no more references to it on B and the storage allocated for the object structure
has already been reclaimed by the garbage collector. Accessing the object from
A now proceeds as follows:

1. The P-bit is set, identifying the object structure as a proxy. Consulting
the object descriptor gives the object’s global identifier (A-4711) and the
information to look on node B for it.

2. B’s descriptor table contains an entry for object A-4711, but there is no
associated object structure (the object pointer is NULL). This identifies the
descriptor as part of another proxy. (If the structure were still present, the
proxy nature would be revealed by a set P-bit). Since forwarding addresses
are consistent (B-0 vs. C-1), the search continues on node C.

108

local references local references
sipr 1T SipSr T
4
Yy A
NULL
A-4711 -~ A-4711 =~ ~ A-4711
B-0 -+ N c-1 - . c-5
SN N~ N
\ AN \ O \
hash(aA-4711) \\ ~ 9 hash(d-4711) N~ 9 hash(a-4711)
AN
Node A S~ - _-p NodeB S~-_p NodeC

Fig. 2. Forwarding addresses.

3. Now, C has both a descriptor and a structure for object A-4711. Moreover,
the structure’s P-bit is clear, indicating that the object actually resides on
C. Thus, the desired access can be performed and C sends the result directly
to the original requester, A.

4. A receives both the result and a new location for the object which is more
recent than its current address (C-5 vs. B-0). Consequently, it updates the
object’s descriptor to point directly to node C. If updating the descriptor
destroys the last reference to the descriptor on B, it will eventually be re-
claimed by garbage collection.

The primary drawback of this object structure is the extra space required
for proxy structures; each proxy must provide enough space to accommodate
the real object just in case the real object should migrate to a node which has
a proxy. This is not a severe problem since Trellis objects are rather small (the
average object size is less than 40 bytes); moreover, for permanently fixed objects
even this space can be saved because these objects will never migrate and thus
can never replace one of their proxies.

On the other hand, representing both proxies and resident objects by the
same structure increases efficiency; no indirection is required to access a slot of
an object and there is also no need to convert between pointers to proxies and
pointers to resident objects or to find and update any pointers. Furthermore,
both local and remote objects are implemented by the same object layout, which
allows the compiler and runtime support routines to deal with only a single kind
of object structures.

A final advantage is the separation of object structures (manipulated by
compiler-generated code and a few runtime support routines) and object de-

109

scriptors (maintained entirely by the runtime system); this allows separation
of local garbage collection (reclaiming object structures within a node) from
distributed GC (reclaiming object descriptors).

3 Communication

Communication in DOWL is based on message passing. The communication
system is implemented as two layers to hide the ultimate transmission method
provided by the supporting operating system: a lower layer maintains connec-
tions between nodes; it provides functions to send or receive byte streams to or
from any node in the system. The upper layer sends objects (more specifically,
object graphs) to receivers denoted by arbitrary objects (usually proxies), using
the lower layers’s functionality for actual transmission. Communication between
the layers is achieved by several FIFO queues to allow concurrent operation of
both layers.

Besides converting messages between the object graph and byte streams for-
mat, the upper layer maintains the object descriptors (notably forwarding ad-
dresses and the P- and F-bits) and implements the attachment functionality. It
is implemented as two procedures: linearization and delinearization.

Linearization is invoked by sending an object; it traverses the object graph
to convert it into a byte stream that will finally be handed to the lower layer for
delivery. For each object encountered during the traversal, it decides whether
the object has to be included in the byte stream or whether it is sufficient to
include the object’s GOID and addressing information: Objects to be included
are the root object, all local objects and all attached objects which are both
resident and mobile. A side effect of the traversal is to allocate and initialize an
object descriptor for each global object encountered {unless there is already a
descriptor).

Encoding of an object consists of the the object’s class, its storage layout
and all slot values. Object references are encoded as offsets into the generated
byte stream. For global objects, both the GOID and forwarding address from
the object descriptor are also included. If the object itself is to be included into
the byte stream, the forwarding address in the descriptor is updated to point to
the the target node, and the age counter in the passed object is incremented.

A few objects are known to the runtime system and must be present on every
node; examples are constants like True, False or Nil, types and methods. These
objects are encoded specially and will be mapped to their remote counterparts.

Attached objects are recognized by attachment maps. The compiler creates
one map for every type and every operation processed. Type maps identify those
slots in the object structure containing attached objects, and operation maps
show the location of attached variables in the operation’s activation record.

Finally, the linearized structure is handed to the lower layer for actual trans-
mission. Additional parameters (determined from the original object’s type and
from the way linearization was invoked) shows how the message must be dis-
patched on arrival:

110

— Invocation messages are sent by a thread trying to invoke an operation on a
proxy. They are handed to the target node’s distribution server, which will
spawn a new thread to perform the operation.

— Results of remote operation are returned in result messages. They are passed
to the thread that invoked the operation.

— All other messages are caused by object migration. Depending on how lin-
earization was invoked, the object either becomes fixed or remains mobile.

At the target node, the byte stream is received by the lower layer and handed
to the upper layer to reconstruct the object graph (delinearization). A major
side-effect of this process is the updating of the descriptor table: in particular,
descriptors are allocated for all unknown global objects found in the message and
the received forwarding addresses are compared to the data from the descriptor
table. If the received information is more recent, the descriptors are updated.

Reconstructing the object graph is done in two passes. The first pass locates
all special objects and finds (reusing already existing proxies) or allocates storage
for all others. The second pass initializes the slots in the non-special objects.

Finally, the reconstructed object is handed to the designated receiver: invo-
cation messages are put on a queue from where they finally will be picked up
by the distribution server. Result messages are handed directly to the thread
awaiting completion of its remote invocation. All other messages request object
migration; they are completely processed after the object graph is reconstructed.

The lower layer is responsible for reliable transmission of byte streams be-
tween nodes, using comimunication primitives provided by the supporting op-
erating system. Its implementation in the current prototypes is based on TCP
(stream sockets), which already provides reliable transmission. The actual im-
plementation is therefore very simple. Every pair of nodes is connected by a
bi-directional communication channel, which is operated by two activities on
each side:

— A write server waits for byte streams to be put on a queue by the upper
layer. It removes them and sends them asynchronously over the channel.

— The read server waits to receive byte streams from the channel. After re-
celving a message, it hands it to the upper layer for delinearization and
dispatching to its receiver.

Finally, a connection server is used to implement system startup: A new node
wishing to join the network first queries the connection server of an existing node
about the topology of the system. Next, it contacts the connection server of every
node, asking it to create the communication channel and to spawn the servers
operating the channel. Finally, the new node creates its own server activities to
access the channel and joins the system.

All servers are written in Trellis itself, backed up by a few builtin routines
to access operating system services. Communication within a node is based on
FIFO queues, which are part of the predefined library.

Implementation of the $location and $fixed_at components takes advan-
tage of the migration primitives and the fact that invoking an operation on an
object takes place at the object’s actual location:

111

TYPE_MODULE Object

COMPONENT ME.$location: OBJECT
GET IS (Local_Node($Node))
PUT IS BUILTIN ("Object_PutLocation", "trellis$image");

Since both operations are guaranteed to be performed at the object’s actual
location, the get operation is implemented by returning the node on which the
operation takes place. Likewise, the put operation simply calls an entry point
which checks whether the object to be moved is fixed. If so, it returns silently;
otherwise, it moves its (resident) argument to the specified location.

$Fixed._at is implemented similarly!, using a different entry point:

TYPE_MODULE Object

COMPONENT ME.$fixed_at: $Node|Null

GET IS BUILTIN ("Object_GetFixedAt", "trellis$image")
PUT SIGNALS (is_fixed)

PUT IS BUILTIN ("Object_PutFixedAt", "trellis$image");

4 Remote Invocation and Parameter Passing

The basic idea to implement operations on remote objects is borrowed from
Amber [6]: Whenever there is a chance that an operation’s controlling object
(self in Smalltalk parlance) might be a proxy, check whether the operation
operates on a resident object. If so, invocation can proceed; else, the operation
is suspended, its context is migrated to the controlling argument’s actual location
where the operation is resumed. After the operation has returned, its results are
sent back to the caller. Another benefit of this scheme is that objects can be
moved even if they have one of their methods activated; the invocation context
will follow the object as soon as it tries to access the object.

For operations on local objects, the residency check can be omitted because
these objects are guaranteed to be always resident. For all others, it must be
performed in three situations:

1. when invoking an operation (its controlling argument might be a proxy),

2. when returning from an operation (which might have migrated the control-
ling argument} and

3. after a context switch (another thread might have moved the controlling
argument).

Implementing the check is cheap for the first two cases; on the VAX, it requires
only two machine instructions (one of which is hardly ever executed):

BBC #34,me(LP) ,5 ; is controlling argument a proxy?
JSB GoOn_Remote ; yes, trap to the run time system

! Here, the get operation is implemented by a builtin routine to avoid atomicity prob-
lems; builtin routines are guaranteed to be never interrupted.

112

In the current version of Trellis, context switches can occur only at prede-
fined sequence points which are already covered by the other two checks, so the
check for the third case can be omitted; it could be implemented by making the
interrupt return sequence check for a proxy controlling argument.

r—=—=== l
7 I PROXY !
O |
GoOn_Remote
result queue

read
server

I socket I

read
server

buffer queue
distribution
server

Method ContInvoc

OBJECT

Fig. 3. Remote object invocation.

After a failed residency check, a run time support routine (GoOn Remote)
takes control. This routine causes the interrupted operation’s context to migrate
to its caller before being resumed. Specifically, the following steps are performed
(cf. figure 3):

1. GoOn_Remote encapsulates the operation context into an invocation message
object which is sent to the controlling object. GoOn_Remote then waits for a
result message to arrive.

113

The encapsulated context consists of:

— the thread awaiting the result of the remote invocation,

the name of the interrupted operation,

the exact position where the operation was interrupted,

the values of all other registers used by the operation,

— the size and contents of the operation’s activation record and
— the activity’s global context (e.g. its default I/O streams).

2. On the target node, the byte stream is received, the invocation message is
reconstructed and passed to the node’s distribution server.

3. The distribution server creates a new thread to resume the interrupted op-
eration. The new thread executes Method_ContInvoc as its first routine; its
argument is the operation context from the invocation message.

4. Method_ContInvoc restores the context of the suspended operation from the
passed context: First, it allocates stack space to accommodate the opera-
tions activation record and initializes it from the original context. Next, it
restores the values of all registers in use. Finally, the suspended operation
is resumed by jumping to the residency check whose failure triggered the
remote invocation.

When restoring the stack frame, Method_ContInvoc pushed the address of
the instruction after the jump instead of the original return address. This
way, the stacks looks as if Method_ContInvoc had called the suspended op-
eration and it will regain control when the operation finally returns.
Finally, Method ContInvoc encapsulates the operation’s result and the global
context into a result message which is sent back to the original thread. At
this point, Method_ContInvoc returns, causing its thread to terminate.

5. When the result message finally arrives, the original thread is resumed. It
pops the interrupted operation’s frame (which completed on the remote
node), extracts its result from the message and returns it to the operation’s
caller.

The $replicated type attribute is implemented by suppressing the residency
checks for all operations owned by this type. $Local_operation suppresses the
check for a single operation only.

Call-by-move and call-by-visit are implemented by marking the associated
argument slots in the activation record as attached; this ensures that these argu-
ments are always attached to the operation’s controlling argument. In addition,
the compiler generates additional code to migrate the argument objects to the
invocation node. For example, the following code fragments compile to (roughly)
the same machine code 2:

OPERATION foo (ME, arg: $MOVE some_type)
IS BEGIN ...

OPERATION foo (ME, arg: $ATTACHED some_type)

% Colocate is a runtime support routine that tries to migrate its first argument to
the second argument’s location. It returns the initial location of the first argument
if migration succeeded, Nil otherwise.

114

IS BEGIN
colocate (arg, me);

If arguments are passed by visit, the generated code must also remember the
object’s original location; thus,

OPERATION foo (ME, arg: $VISIT some_type)
IS BEGIN

RETURN;
1s equivalent to

OPERATION foo (ME, arg: $ATTACHED some_type)
IS BEGIN
VAR arg_loc: Object := colocate (arg, me);

IF arg_loc "= Nil THEN arg.$location := arg_loc END IF;
RETURN;

5 Performance

We have performed several experiments to evaluate the performance of DOWL.
All figures presented here were obtained by measuring the time required to ex-
ecute the following operation:

OPERATION time (me, x: Dummy, n: Integer)

IS BEGIN
LOOP EXIT WHEN (n <= 0);
foo (x);
n:=n-1;
END LOOP;
END; !'time

where foo is a null operation which returns immediately. Overhead intro-
duced by checking for proxies and by performing remote operation invocation
was determined by varying the characteristics (mutable vs. constant) and the
relative locations of x and me (the object executing the loop). All experiments
were conducted on two unloaded DECstation models 5000/240 connected by our
departmental ethernet.

In the first experiment, both me and x were constant objects. Thus, neither
the calling loop nor the called operation contained any proxy checks and the
generated code was effectively the same as that generated by plain Trellis. The
time required for one iteration was 3.8 microseconds.

In the second experiment, both me and x were mutable objects residing on the
same node, which added four additional proxy checks to each iteration (three

115

in the loop body and one in foo’s entry code). Executing one iteration now
required 4.9 microseconds, an overhead of 29% compared to Trellis.

However, this test models the worst case possible: a very tight loop doing
no useful work. For real programs we’ve encountered much smaller performance
degradations. For instance, a program creating a large graph and rearranging it
several times was found to run about 9% slower under DOWL than it did un-
der Trellis. This difference occurs because all user-defined objects are ultimately
defined in terms of primitive types provided by the system, and a substantial
amount of time is spent in operations on these building blocks. Since most prim-
itive types are either constant or replicated, no proxy checks are required.

Proxy checking overhead could further be reduced by changing the strategy
employed to place the checks: Instead of placing a proxy check at operation entry
and after every operation invocation to guarantee that the controlling object is
always resident, the checks could be placed before each access to an instance
variable to ensure that the object is resident only when it is necessary. Flow
analysis could reduce the number of proxy checks even further (e.g. there is only
one check required for two instance variable accesses without an intervening
operation invocation). This strategy will eliminate all checks from the timing
loop above; its effect on real programs is currently under investigation.

To determine the performance of remote operation invocation, both me and
x were fixed on different nodes. The time required to perform one iteration
was 14.1 milliseconds, of which about 2.4 milliseconds were spent doing the
actual TCP/IP transmission. In contrast, a null remote procedure call to a mu}-
tithreaded server takes only 5.5 milliseconds using DCE RPC.

We suspect that a large fraction of DOWL’s remote invocation overhead is
caused by the message queues and servers connecting the two communication
system layers, because performing a remote invocation requires at least seven
activity context switches (there are even more if a large amount of data is trans-
ferred), which have a high latency in our implementation. Providing a procedural
interface between the two layers could eliminate four of them and should thus
increase performance significantly.

6 Related Work

Over the past years, several new object-based languages and extensions to ex-
isting languages with support for distribution have been presented. Some well-
known examples are Emerald [3, 4, 9], Distributed Smalltalk 7, 2, 11] and Amber
[6]. All systems provide location-independent invocation and migration of objects
at run time.

Emerald is an object-based language. Its major features include a uniform
object model, linguistic support for mobility control and for expressing object
relationships.

Several implementations of Distributed Smalltalk allow interaction between
Smalltalk images on different nodes. None of these systems supports mobility

116

control or mechanisms to express object relationships; however, [2] addresses
issues like access control, remote debugging and connecting heterogeneous nodes.

Amber augments a subset of C++ with primitives to manage concurrency
and distribution. The system is designed to maximize performance by exploiting
concurrency in short-lived applications. This is achieved by providing a network-
wide shared virtual memory. There are no declarative mechanisms to restrict
object mobility or to specify which objects are related; however, objects can be
attached at run time. Both Amber and Emerald locate remote objects using
forwarding addresses.

Most of the DOWL extensions have been inspired by Emerald. However, the
appearance of the location primitives differs: Emerald uses predefined language
constructs, while DOWL implements them in the standard library. Our approach
allows individual types to redefine and customize these operations, e.g. to do
type-specific cleanup or initialization when an object leaves or enters a node.

Emerald represents a global object as pointers to a descriptor containing
addressing information and a pointer to the object’s storage area which is only
valid if the object is resident. Local objects are direct pointers to the storage. This
scheme consumes less memory than DOWL’s object structure (the descriptor
usually is much smaller than the actual data), but it is less efficient because any
access to an instance variable requires double indirection.

Proxies in Distributed Smalltalk are full-fledged objects that know about the
location of the object they represent. Remote object invocation is implemented
based on the doesNotUnderstand mechanism. Conversion between objects and
proxies is achieved by exchanging object table entries, an option not available
to systems like Emerald and DOWL where objects are represented by pointers.

Amber’s base architecture is a shared virtual memory; thus, objects are rep-
resented by their addresses which are valid on every node. Remote object invoca-
tion is implemented using residence checks on operation invocation and return;
after a failed check, the invocation context is migrated to the object and the
operation is resumed.

When invoking an operation on a global object, Emerald checks a bit in the
object descriptor to determine whether the object is resident. If this check fails,
the parameters are sent to the object’s actual location to perform the operation.
To allow the migration of an object which has active operation invocations,
the run time system searches all stacks for activation records corresponding to
invocations on the migrating object. Any activation records found are moved
along with the object and copied onto a new stack at the target node. The top
part of the original stack (corresponding to operations called by the migrating
context) is copied to a new stack on the original node. The boundaries of the
three stacks are finally modified to appear as if remote operations were performed
instead of local invocations.

DOWL’s scheme migrates an operation context only if it absolutely has to;
in particular, moving an object temporarily away from a node (which might
happen frequently if call-by-visit is employed) need not result in any overhead
except for migrating the object.

117

7 Conclusion

We have presented the runtime system of DOWL, an extension of the Trellis
language to support transparent distribution: the object format, the structure
of the communication system and the mechanism to invoke operations on re-
mote objects. We believe that the performance of the system is acceptable, even
though no tuning efforts have been implemented so far. DOWL is not radically
different from the (few) other known distributed object-oriented systems, but
excels by several subtle features, e.g. the possibility to circumvent distribution
transparency if required, an object format allowing efficient instance variable ac-
cess, decoupling local from global garbage collection and finally the sophisticated
type system and programming environment inherited from Trellis.

Acknowledgments

I would like to thank Lutz Heuser for many instructive discussions during the
design of DOWL and Max Miihlhduser for providing helpful comments on a
draft version of this paper. Special thanks go to Wulf Becherer. He designed and
implemented key components of the runtime system.

This work was supported by Digital Equipment Corp. and was performed in
part at the Computer Science Department at the University of Kaiserslautern.

References

1. Achauer, B.: Distribution in Trellis/DOWL. Proc. TOOLS USA ’91

2. Bennet, J.: The Design and Implementation of Distributed Smalltalk. Proc. OOP-
SLA 87

3. Black, A., Hutchinson, N., Jul, E., Levy, H.: Object Structure in the Emerald Sys-
tem. Proc. OOPSLA 86

4. Black, A., Hutchinson, N., Jul, E., Levy, H., Carter, L.: Distribution and Abstract
Types in Emerald. IEEE Trans. Software Engineering SE-13, 1987

5. O’Brien, P., Halbert, D., Kilian, M.: The Trellis Programming Environment. Proc.
OOPSLA 87

6. Chase, J., Amador, F., Lazowska, E., Levy, H., Littlefield, R.: The Amber System:
Parallel Programming on a Network of Multiprocessors. Proc. 12th ACM Symp.
Operating Systems Principles, 1989

7. Decouchant, D.: Design of a Distributed Object Manager for the Smalltalk-80 sys-
tem. Proc. OOPSLA 86

8. Greif, 1., Seliger, R., Weihl, W.: A Case Study of CES: A Distributed Collaborative
Editing System Implemented in Argus. Programming Methodology Group Memo
55, MIT, 1987.

9. Jul, E., Levy, H., Hutchinson, N., Black, A.: Fine-Grained Mobility in the Emerald
System. ACM Trans. Computer Systems 6(1), 1982

10. Liskov, B.: Overview of the Argus Language and System. Programming Method-
ology Group Memo 40, MIT, 1984.

11. McCullogh, P.: Transparent Forwarding: First Steps. Proc. OOPSLA ’87

12. Schaffert, C., Cooper, T., Bullis, B., Kilian, M., Wilpolt, C.: An Introduction to
Trellis/OWL. Proc. OOPSLA '86

