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Abstract

This paper proposes an extension of the notion of method as it is currently used in
most object-oriented languages. We define polymethods as methods that we can attach
directly to types, as opposed to classes and that we can describe with a second-order
type. Two benefits result from this extension; first, the expressive power of the
language is improved with better modeling abilities. Next, second-order types yield a
more powerful (precise) type inference, which extends the range of static type checking
in a truly extensible object-oriented language. We first show that extensible object-
oriented languages present many difficulties for static type-checking and that second-
order types are necessary to get stronger type-checking. We illustrate how to combine
polymethods through type imnheritance and propose a technique based on abstract
interpretation to derive a second-order type for new polymethods.

1. Introduction

Object-oriented languages have two interesting features that distinguish them from
other programming languages: they are order-sorted and extensible. By order-sorted
we mean that their data structures (objects) are organized into a (class) hierarchy, with
Aimplicit inclusion polymorphism (inheritance). By extensible we mean that new classes
can be added at any time, including dynamically with some languages. Some languages
(Smalltaik [GR83], LAURE[Ca91]) are more extensible than others (C++[Str86]), since
new methods can also be added dynamically. Another interesting feature of some of
those languages is the reflection [MN88] of the organization, when classes (Smalltalk) or
types (LAURE) are first-class objects. This enables (Section 2.3) the definition of light-
weighted parametric polymorphic objects, using classes or types as object attributes.
Generally speaking, these languages are very convenient for prototyping and yield a
substantial reduction in the prototype development time. '

However, the same languages often suffer from a lack of static type-checking
necessary to achieve efficiency through compilation. As a consequence, these languages
are rarely used for large software. Much work has been done to palliate this situation,
starting at the two ends of the problem. In one case, features of object-oriented
programming have been added to safe, strongly typed languages (e.g., QUEST [Car89]).
In the second case, new type systems and their type inference procedures have been
developed for object-oriented languages (e.g., Typed Smalitalk [GJ90]). Still, many
problems remain when we want to apply static type-checking to a truly extensible,
order-sorted language (e.g., the long discussion in the newsgroup comp.object, initiated
by C. Chambers, about the min function, also in Section 2.1). It must be emphasized that
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our goal is not to identify a new language that can be statically type-checked, but to find
a way to do as much static type inference/checking as possible in a knowledge
representation language that already exists (knowledge representatlon demands
flexibility and extensibility).

Here, we describe the solution that we have implemented in the LAURE language,
based on the type system T described in [CP91] and the notion of abstract interpretation
over a function space. If one looks at type inference as an abstract interpretation of the
semantics, poor type inferences are due to an oversimplification in the image lattice
when an ambiguous situation occurs. Our idea is to delay this reduction and to carry an
abstract expression (a type function) instead, which will be applied to the right context,
thus yielding a better decision. We have extended the usual notion of a method with
three features (resu]tmg in polymethods). First, a second-order type (a function on
types from T) is attached to each method. Second, methods are inserted directly in the
type hierarchy, instead of using the class hierarchy, and some additional relations
among method parameters can be specified.

The paper is organized as follows. Section 2 deals with our motivations for
introducing polymethods. We present a set of examples that are hard to type using
current techniques proposed for object-oriented languages. Section 3 recalls the
necessary properties of our underlying type system, developed in [CP91]. We define
polymethods and present a language for second-order types. Section 4 gives a practical
description of polymethods and shows how they can be used. We also give an informal
description of the technique used for second-order type inference. Section 5 first gives
an algorithm for inheritance conflicts and then proposes an inference procedure to
compute the second-order type of each new method. The last section illustrates how
polymethods solve some of the problems presented earlier.

2. Motivations

2.1 Strong Type-Checking

We consider a set of classes integer, number, string .... with an ordering feature <,
Since we need to make a distinction between the property < and its definition on the
various classes <@integer, <@string ... we shall call the first a feature (following the
OSF notations [Smo89] [AP90]) and the others methods (as in any object-oriented
language [Mit90]). We suppose two important hypotheses :

* < supports inclusion polymorphism (e.g., integer C number),
* <is extensible (new classes ¢ can be added with a method <@c).

A correctly typed definition of the min feature has already been given when one of
the hypotheses holds (e.g., ABC[GMP90], Eiffel[Me89]). If we consider the following
method definition, which represents the min feature (entity is the set of everything).

Example:! [define min(x:entity, y:entity) method -> object =>[if (x<y) x else yll

! All examples are given using LAURE syntax. We hope that the simplicity of the examples will make the
syntax self-evident. Keywords are in boldface, -> means range, => precedes the definition of a method.
Messages are written using a functional syntax.



144

This method will not yield static type-checking, since it is defined on the class object
(the top of the hierarchy). If it is applied to an object that doesn't have the feature <, a
dynamic error will occur that was not detected by the compiler. If we have a truly
extensible language, we can do better, we can create a class ordered_set, and define a
method <@ordered_set to be sure that every member of an ordered set has the feature <.

Example:  [define ordered_set class subsets (number string),
with method( <(x:ordered_set) -> boolean
=> [error "< is not defined on ~S and ~S*, self, x])}

Assuming this is allowed by the language (which is rare), this is still not enough,
since we will not catch an error as simple as min(1,"john"). Because of the inclusion
polymorphism, the solution proposed for the Eiffel language, which is to declare the
two arguments self and x of min as having the same type, doesn't work here :
min(1,3.5) is a valid instruction. Similarly, we cannot represent the type of min with a
disjoint union like

min : (integer X integer — integer) U (number X number — number) U ...

because this would miss the link between min and <, any new class can potentially use
the min feature. A complex solution would be to store an explicit disjunction and a
graph of dependencies, which would be used to re-compute the methods' type
dynamically. We have found the use of second-order types to be a much more elegant
way to represent the intimate relationship between the two methods < and mir in the

type system.

2.2 Order-Sorted and Heterogeneous Sets

The question of heterogeneous structures, such as sets, yields many interesting
questions when we try to develop static type-checking inference for a knowledge
representation object-oriented language, because of the inclusion polymorphism
[CW8S). Here, we consider the case of lists as an example; roughly speaking, there are
two ways of grasping the problem.

+ Typed lists: each list (a; ... a):t has a given type ¢ such that all members a; of the
list are of type ¢. This is the solution of ML [HMM86}, or Machiavelli [OBB89],
because it is easier to get type safety on list operations this way. As a consequence,
there are many empty lists ():integer, ():string ... that are all different.

« Untyped lists: a list has no given type, except the generic type list. If we have a type

=n
lattice, we can always associate the type v #; to the list (@ ... an), where ¢ is the
i=]
type of each member a;. As a consequence, there is a unique empty list (). This is a
simpler solution, and it gives a simpler semantics to set operations (as opposed to
the special meaning of set union in Machiavelli [OBB89]).

Although the first solution is simpler, it is not relevant for knowledge representation
object-oriented languages, as is illustrated by the following example. Suppose that we
have two classes, person and employee, and that John and Mary are employees and Peter
is just a person (employee is a subclass of person). What happens if we delete Peter in
the list (John Mary Peter):person? If we define delete with the following parametric
signature.

delete: list{t] — list{t],
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delete(Peter,add(Peter,(John Mary)) is different from (John Mary), because they have
different types. If we give a finer description such as

delete: list[t]— list[¢' \with t< ¢,

then there is no reason why delete(John,(John)) would be of type list{person]; we are
back to the second solution, where there is a unique empty list and where lists have no
fixed types. Therefore, we chose the second solution for an object-oriented solution
because it is more natural. However, this will make static type-checking more difficult
since list[integer] and list[string] are no longer disjoint, their intersection is {()}. Our
solution is to attach methods directly to types, so that the case of the empty list can be
singled out, and to use second-order types to capture parametric type inference.

2.3 Optimization and Parametric Polymorphism

Let us now consider the stack example, as can be written with a reflective object-
oriented language such as LAURE. We attach a slot of to each stack object, which
represents a type for all objects stored in the stack (the rest of the representation is as
usual: an index and an array content).

[define stack class

with slot( of -> type, default &),
slot( index -> integer, default 0),
list_slot(content),
method( top => last{content(sslf))),
method( push(x:entity}
=> [if (x € of(self)) [do (content(self) put_at index(self) x]
(index(self} is (index(self) + 1)))
else range_error( arg x, set of(self)))), ...

[define my_stack stack of integer]

This example shows how a simple polymorphic stack can be implemented with such a
language, which entirely relies on dynamic typing. Here, types are seen as sets (hence
the test (x € of{self)) for checking if x is of type of(oself)) and a type error is created
when the test fails. More details about the power of exceptions as first-class objects can
be found in {D090].

However, this leaves us with two problems. First, we want to introduce parametric
type inference [CW8S5], such as in [OB89], so that we can deduce that top(my_stack) is
an integer. In addition, we would like to perform static type checking to improve safety,
and we would like to generate better code (compiler optimization) when the argument
types are found to be correct. This implies that the test(x € offself)) must be taken out
of the code and placed in the method's type definition. We prefer to extend the method
notion as opposed to extending the object model with class parameters [CP91].

3. Background: The LAURE Type System

3.1 A Set-Based Type System

In this section we recall some of the interesting properties of the type system
presented in [CP91], which are necessary to build polymethods. We see objects as nodes
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in a semantic network, without any structure (such a network, which represents the state
of the object system, is denoted by a function v of the set S ).2 Objects are organized
into a class lattice? (C,<), which is reified [FW84] (the set of classes C is included into
the set of objects O). Each class ¢ represents a set of objects, written y(c). Classes are
used as types, but we also add the following type constructions: finite enumerations
({o1...,0;}) allow the compiler to perform optimizations based on recognition of
constants; disjunctive types permit type inference without loss of information; powerset
types (ser_of) are introduced to optimize set operations and parametric types (p:e,
where p is a parameter from a set P, is the set of objects whose parameter p belongs to
e). We define types through a type expression language E, where each expression
represents a set.

<type:E > : {01,...,0;} | C I set_of( <E> )|
<E> U <E>|<E> n <E>|<E> -{0y,...,0;} | <P>:<E>

Example: ¢ {string) U integer} represents the sets of strings or integers,
* {list - {()}) represents the set of non-empty lists.

Similarly, we write %,(e) the set of objects represented by the type expression e in
the object system v e S. In [CP91] we define the notion of a licit evolution of a system,
which gives a precise meaning to the term extensibility. We have shown that we can
define a type normal form from N, which supports two syntactical operations < and A,
that represent, respectively, subtyping and type combination. We define our type system
T to be the quotient of N by the equivalence relation = (# =1, & (t; <1,)&(t, <1,))

and we get the following result.

Theorem: (T, <, A) is a complete lattice and subtyping is inclusion:
Vi, e T, t; <ty & for every licit system v, X (t;) C Xt2)

In addition [CP91], we have defined two interesting functions on types: € and p.
Informally, € is a meta-type extraction procedure (€(f) is a valid type for all members
of a set of type ¢) and p is a parameter-extraction procedure (p(p,t) is a valid type for
the object y as soon as y = v(p)(x) and x is an object of type ). These functions are
necessary to build the lattice structure, but also play an important role for type
inference.

3.2 Features and Polymethods

Objects are described with features, which represent relationships among objects and
operations that can be performed on those objects. The set of features F has a
distinguished subset A of attributes, which are binary relations among objects stored in
the object system v. A itself has a distinguished subset P that represents a set of
parameters (introduced previously), which associates one unique value to each object.

We can now introduce polymethods, used to define features from F.

2 The set S contains functions that associates binary relations on O to each attribute [CP91].

3 We assume that the taxonomy (C,<) is a lattice, without any loss of generality since we can efficiently
extend any hierarchy into a complete lattice. Notice that this does not preclude classes from being mutually
exclusive [CP91).
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Definition: A polymethod is a tuple m = (r(m) € F, o(m), f(m), x(m)) :
* r(m) is the feature that m is defining,
*O(m) =t) X... Xt, and is called the signature of m, where t; € T.
* f(m) is a function (the definition) from S x O »1 — S x O such that:
Vve S Va;..a,;€0,
Vi (aie (1)) & f(m)(a; ... G,1) = (V'y))
= V'is a licit system & y € Yy4t,).
* X{(m) is a second-order type for m:
Yve S, 4 XI5 eery Xp.] € 1: Va], veey Gp € 0,
(Vi, (xi <t;) &(ai€ xy(x) A f(m)ay, ..., ans) = (V'y)) =
Yy € Yv(x(m)(xy, ..., Xn.1)

The signature tells when the polymethod can be used to compute a given feature. Each
polymethod is a restriction of the feature r(m) (z; X...X t,.; is called the domain of the
restriction, 7, is called its range) and is responsible to know when it is valid.# This
definition is an extension over the usual notion of a method in two ways: we attach
polymethods to types as opposed to classes only and we complete the polymethod
definition by a second-order type, which supports better type inference.

Example: e dentity is a feature defined with one polymethod (Id, 6, £, x):

f= (Ax.x),
o= Object x Object,
k= (Ax.x).

 Fibonacci is a feature defined with two polymethods
(fib, {0,1} x Integer, (Ax.1), (At.{1}))
(fib, Integer x Integer, (x.(fib(x-1} + fib(x - 2))), (At.Integer)}

Definition: A feature f is a collection of polymethods m with same arity
and r(m) = f. A feature is well-defined if for any tuple of object (xy, ..., xy)
there exists a unique smaller restriction to apply (restrictions are naturally
ordered by the inclusion product order on their domains).

In this case, f represents a function from S x Or1 — § x O obtained by
applying to each object tuple the unique smallest polymethod that applies.

The underlying assumption is that a restriction on a smaller domain overrides a
more general restriction.5 Transforming any collection of polymethods into a well-
defined feature is the goal of muitiple inheritance conflict resolution, as described in
Section 5.1.

3.3 Second-Order Types

Second-order types are type functions (usually lambda-abstractions) attached to
polymethods to represent the relations among the types between the input parameters
and the result of the polymethod. A second-order type is a finer type description than a
signature. This means if we apply x(m) to a type tuple (x},...,x,.;) that contains an

4 As opposed to each class knowing which feature can be used; this separation between organization and
description makes organizing simpler.

5 For instance, if we say f(x)=x + 1 A f(0) = 0, the second equation is used to define f(0) rather than the
first.
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object tuple (ay, ..., as.1), we will get a type that must contain the result of applying m
to the object tuple. Fore instance, we can always use the canonical second-order type
(AXi ... Xp.1.range(m)) obtained from the signature. Here are some other valid second-
order types.

Examples:

AXX which is a second-order type of the identity polymethod,

AX. &(X) which is the second-order type of the car polymethod (first member of a list),
AX. p(of,X) which is the second-order type of the top polymethod.

Our first motivation to introduce second-order types is to associate them with
primitive polymethods to get better type inference. For instance, with the previous
information, the compiler will know that the type of Id(e) is the same as the type of the
instruction e.

However, we also want to infer such second-order types for new polymethods. For
this purpose, we define a language of functional types A(T) as lambda-abstractions over
the set of types T, using the operations introduced in the previous sections and a type
inference function . This function is defined in [CP91] so thaty(ft;, ..., t,) is a type
that will contain the type of the result of applying the feature f to objects of types
ty,..., t. We will give an informal description of \ in the next section.

A 2 Axp...oxn . <exp(x], ..., xp)>.
<exp(x], ... xp)> 2 xi | T Viff <test(x}, ..., xn)>, <exp(x], ..., xp)>, <exp(x], ..., xn}>) |

Y( <F>, <expix}j, ..., xn)>, ..., <exp(x], ..., xn)>) | feature inference

&<exp(x], ..., xn)>) | powertype inference

p(<P>, <exp(x], ..., xp)) | parametric inference

<exp(x], ..., xp)> A <exp(x], ..., xn)> | lattice join

<exp(x], ..., Xxn})> v <exp(x], ..., xn)> lattice meet
<test(x], ..., xp)> :: <exp(x], ..., xn)> = <exp(x], ..., xp)> | type equality

<exp(x], ..., xn)> < <exp(x], ..., xn)>. type subsumption

Each lambda-abstraction of A with n variables represents a function from T"— T.
Such a function is a second-order type for a polymethod m, if it can be used to predict
the type of the result of applying m. to a set of arguments with known types.

4. Informal Description of Polymethods

In this section we explain why polymethods are a useful extension from methods. We
also give an informal description of the inference strategy to derive second-order types
for new methods. A more precise description will follow in Section 5.

4.1 Attaching Methods to Types

The first original feature of polymethods is to be attached to a type as opposed to a
class. Since classes are types, this is a generalization of method attachment, which is
made possible because our type system has the same inclusion lattice structure as the
class lattice. The practical advantage is that we can attach the method more precisely
where it is needed, which yields shorter code (in a traditional method we would have to
add some code to test that the first argument satisfies some extra condition) and better
readability. Here are some examples that show how we can now use the type hierarchy
to define methods.
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* Attaching a method to a union. With a traditional OO language, sharing code in
only performed through inheritance. If we have two separate classes A and B that
could share a method, we need either to duplicate the code, or create an additional
class C from which A and B will inherit and to which we attach the method. This
situation has two major drawbacks; first, it is not always possible to inseért the new
class C. Let us consider a toy example where we want to define a new method
very_long? which applies both to strings and lists. Since the two classes string and
list have been created previously, neither C++ or Smalltalk will allow the
definition of a new class from which they would inherit (in a simple manner). The
second drawback is that code sharing yields the definition of multiple classes,
which confuse the initial design of the taxonomy. Because the taxonomy is the
backbone of software organization in an OO language, this sort of "overloading"
should be avoided. Using a polymethod is a simpler solution,

[define very_long(x:{string + list}) polymethod -> boolean, => length(x) > 80],
which allows sharing without useless complexity.

* Attaching a method to a single object or a given collection of objects. Another
problem that we have encountered frequently while writing LAURE applications
is methods that apply to a single object. This occurs either because the object is
one-of-a-kind (e.g., a keyword), or because it needs a special behavior. The usual
solution is to create a special class in the first case and to insert a conditional test in
the generic method when the second case occurs. We already mentioned the
drawbacks associated with the creation of a new class that is not necessary from a
design point of view. Similarly, treating exceptional situations with conditional
statements is not an optimal solution and becomes confusing if there are many such
"special” objects. Since finite collections are types in LAURE, we may attach a
polymethod to one object or to a collection of objects (a la MODULAZ2) as in

[define fact(x:{0}) polymethod -> integer, => 1]
[define fib(x:{(0,1}} polymethod -> integer, => 1].

* Handling exceptional objects. The previous example showed how exceptional
objects could be handled positively (by saying how to deal with them). Type
difference can be used to deal with them negatively. For instance, we can define
inversion on non-zero numbers.

[define inverse(x:{fioat - {0.0}}) polymethod -> float, => (1 / X)].

Dealing with the exception (0) in such a way is safer than relying on a specialized
method defined on {0} and is more elegant than using a conditional statement.

* Attaching a method to a parameterized type. Last but not least, we may now attach
methods to complex type expressions that represent subsets of a generic class. For
instance, the sum feature should be defined only on lists that contains numbers
(integer, float ...). This is captured easily with a polymethod

[define sum(l:{list & {number set_of}}) polymethod -> number,
=>[letnas 0, [forxinl, n<-(n+x)], nj]

The same example would hold with {stack & {of in {number}}}.

Such an improvement in expressive power is bound to entail additional complexity.
The two main issues are the resolution of multiple inheritance conflicts and the efficient
compilation of polymethods. The efficient evaluation is actually a sub-problem of the
compilation, which we consider less important since our focus with LAURE is to bring
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flexibility in the interpreted mode but deliver performance in the compiled mode
(actually LAURE's interpreter is faster than equivalent COMMONLISP interpreters).

Inheritance conflicts are more frequent with polymethods since the type lattice is
more complex and there is a greater chance for two polymethods to have signatures
with a non-empty intersection. However, we can re-use the strategy that was developed
for LAURE previously [Ca89], where resolution is done by applying a commutative
and associative combination operator over the lattice structure. We used to rely on the
class lattice structure of LAURE, but the solution still works with a more complex
lattice structure (cf. Section 5.1).

We deal with the compilation issue in the same way, using the techniques that were
developed to compile methods. When LAURE tries to compile a message using the
feature f, it uses the type inference module to determine a type for each sub-expression.
If the feature fis closed [Ca89] (which really means that we allow static binding),
LAURE will search if the types of the arguments yield a unique method m for the
feature f. This is the case when

(1) the argument signature is included in the method m's signature,

(2) the argument signature has an empty intersection with the signature of any other
method that is not bigger than m according to order defined in Section 3.2 (f is
well-defined).

Practically, this is often the case, which explains why compilers such as Typed
Smalltalk [GJ90} or LAURE can improve performance up to C++ level. However, when
this does not occur, we must rely on dynamic binding and determine at run-time which
method to call. The only way to get rid of this last case is to build a statically-typed
language, but this creates a large set of problems as we have seen in the first section,
and does not seem relevant for a prototyping/ knowledge representation language. By
combining a powerful type inference mechanism (such as the one we are describing)
with the flexibility of dynamic typing/binding (when required), we can combine
advantages and win on both aspects.

4.2 Attaching Type Expression to Methods

The second original feature of polymethods is the ability to receive a second-order
type. In the rest of the paper, we will concentrate on how such a type can be derived
automatically. Here we would like to show that second-order types can be used directly
by an (advanced) user to help the compiler. When defining a polymethod, the user
writes an expression introduced by the keyword =>, with an implicit lambda-
abstraction; it is also possible to write another expression, introduced by the keyword
:=>, which represents the type of the result using the method variables to represent the
types of the parameters. Let us consider an example where we define addition over lists,
sets and strings. We also want the compiler to detect errors (one cannot add a string and
a set) and to make polymorphic type inference (adding two strings will produce a
string). Thus we write the following definition:

[define plus(x:{set + {list + string}} y:{set + {list + string}}) polymethod -> {set + {list + string}},
=>[case x set (x+Y),
list (copy(x) append vy),
string (x append y)},
:=> [If (x < set) [if (y < set) set else {})
elge_if (x < list) [if (y < list) list else {}}



151

else_if (x < string) [if (y < string) string else {}]
else entity])

In the second expression (after :=>) the variable x and y represent the types of the
two arguments. Here we only use conditional expression and the type lattice order (<),
but we could build more complex type expressions using the operators in: and @ (in(x)
is the LAURE equivalent of &(x) and (x @ p) the equivalent of p(x,p)). We can use
LAURE to write second-order types because types are first-class objects in LAURE.6

Indeed, the goal of second-order type inference is to produce the type function
automatically for such an example. However, there are still cases when the user must
give the second-order type, because it could not be deduced. This is, for instance, the
case for primitive methods or for methods that use heterogeneous data structures, such
as in the two examples

[define car(|:list) method -> entity, => #'car_list, :=> in(l)]
[define top(x:stack) method -> entity, => last(content(x)), :=> (x @ of)}

Second-order types are used at compile-time during type inference. If we remember
from the last section how messages were compiled, the second-order type will be used
when the compiler has found which method to apply. If such a method m has a second-
order type x(m), the compiler will apply this function to the tuple of types of the
arguments in the message to compute the type inferred for the result of the message, as
opposed to simply using the range of the method. Thus, if we compile the message.
plus("aa","bb"), the compiler will infer the type string and not simply {set + {list +
string} }. The combined process of finding which method of the feature f to apply for a
set of arguments (x;, xz, ... x,) with given types (;, 15, ... ,) and of computing the
predicted type of the result is embodied in the function y (i.e., W(£.t, ta, ... t,) is the
type inferred for the expression f(x;, x3, ... x,).

4.3 Second-Order Type Inference

In this section we would like to describe informally the principles used to build
automatically second-order types for methods. A more precise description will follow
in the next sections. A type inference procedure is an abstraction mechanism, that can be
seen formally as an abstract interpretation. This means that we abstract values into set of
values and we predict the result of an expression with a set that will contain the actual
result. For instance, a usual abstraction of a method is to check if the types of the
arguments are correct and return the range of the method as the type inferred for the
result.

Precision in type inference is lost when the abstraction is performed at a coarse
level. For instance, if the identity method (Ax.x) is abstracted into Entity — Entity, then
the type inferred for identity(1) is Entiry (as opposed to integer or {1}). To get better
type inference, we need a better abstract domain that can carry more information. We

6This idea that the user would like to help the compiler with a second-order type has actually been
extended in the LAURE language to a further degree. When the user gives the type function, this function
may either return a type, in which case it is understood as a second-order type, but it can also return a
method, in which case the function is seen as an optimization rule. The method returned by the type
expression is substituted to the original method in the compilation process. This allows to perform

optimizations based on type information in a way that is (somehow) elegant and extensible (the user can
add his own rules).
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can also see that a better inference for identity(1) depends both on the abstraction for the
identity method but also from the actual type of the argument.

Thus, using functions over types as an abstraction domain is a natural method to
improve the precision of type inference. This is the principal intuition behind the use of
second-order types. We want to abstract each method into a lambda-abstraction that
gives the type of the result as a function of the type of the arguments. Since a method is
defined by an expression of the language, this means that the type inferred for an
expression e must not be a simple type (e.g., Entity in the case of the identity method)
but rather a type expression that uses the types of the method arguments as its own
arguments (e.g., x for the same identity method). Then we can obtain a second-order
type by lambda-abstraction (e.g., Ax.x for the identity method).

Using a functional domain allows some typing decision to be delayed until the type is
actually applied, thus we can describe it as a lazy abstraction since part of the work is
done later. For instance, type inference on the message identity(1) will return {1}, when
the type of the identity method (Ax.x) is applied to the type of the argument 1 (which is
{1h.

Practically, we use an abstraction method E which translates an instruction on values
into an instruction on types, using the basic type constructors and some type inference
methods (such as ). This method is implemented on each kind of LAURE instruction
(all LAURE instructions are first class objects). The result of each method is another
LAURE instruction, which represents an expression from A(T).

5. Using Polymethods

5.1 Framework for Inheritance Conflict Resolution

In order to get well-defined features, we need to solve "multiple inheritance
conflicts". To do so, we assume the existence of a combination property, which takes
two methods of the same feature and creates a third.

Proposition: There exists a commutative and associative combination
operation, written ®, which takes two methods of the same feature and
returns a new method whose domain is the intersection of the domains.

The actual combination operation that we use in the language depends on the degree
of description that we have for each method. For instance, if a set value is returned by
m; and m; , a natural convention is to return the union of the two sets for the method
m; ® m,.7 Another common rule is to choose m; over m; if the domain of m; is
included in my's domain. The more information we have on each method, the better the
resolution conflict (thus, reflection is interesting, because we can enrich the description
of a method). Last, we need to introduce an error value, which is the only way to deal
with some situations (e.g., Vxe {1,2} f(x)=1& V x e {2,3} f(x) = 2). We now use
the combination operation to solve all virtual conflicts.

7 This point of view comes from a knowledge representation and Al background. Conflict resolution is a
semantic problem that does not have a unique well-founded solution. What is described here is a

framework which allows us to build a consistent conflict resolution strategy from a few semantic rules
given by the user [Ca89)].
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Strategy: If f is a feature with two methods, whose domains have a non-empty
intersection D such that there is no other restriction with domain D, we add a new
method obtained by combining two such methods with ®. We repeat this process
until there are no such pairs of methods. The result of the iteration is independent of
the choice of a particular pair at each step. The result is a well-defined feature.

The Church-Rosser property results from associativity and commutativity of ®. This
strategy has many advantages. First, we get a truly declarative semantics for multiple
inheritance, which is more satisfying than operational ones based on the order in which
the taxonomy is explored. Because of the lattice structure, each conflict is solved once at
the "higher" possible level. Moreover, the conflict resolution strategy can be enriched
with new rules for method combination. An important corollary is that for each well-
defined feature, the set of method's domains is closed by intersection, which is close to
the condition imposed in OBJ2 [GM86].

5.2 Type Inference and Abstract Interpretation

The LAURE language is an imperative language, built around the notion of message
passing, which associates a function written [e] from § — O X § to each expression e of
the language. The input parameter is the state of the system and the output is a pair
(resulting value, resulting state). We have developed a type inference procedure as an
abstract interpretation [CC77) of the semantics [AM91] [CP91]. We abstract each
semantics function [e] as a type [e]r* from T, which represents the type expected for
the result of evaluating e. The fact that each variable is typed in LAURE is represented
by the context T = {a; : X, i = 1... n}, where a;s are variables and X; are types. The
definition of the abstraction is given by the fact that the type lattice is a sub-lattice of
O's powerset. The consistency of the abstract interpretation [CC77] guarantees that
Vv ve S leli € x(Telr*). This standard abstraction is shown as type inference in
Figure 1.

LAURE
INSTRUCTIONS

lazy
abstract
interpretat

ion

SEMANTIC DOMAIN

TYPE FUNCTIONS: A(T)

Figure 1: Two Schemes of Abstract Interpretation

However, the problems that we have presented in the first section can be
characterized as an oversimplification in the abstraction process. Our abstract domain is
too limited to reflect the complex type information needed for such tricky problems.
This is why we have introduced second-order types, as a more complex abstract domain
(the canonical second-order type presented previously can be seen as a canonical



154

injection from the simpler abstract domain to the other, as in Figure 1). We call this a
lazy abstraction because representing the type of an instruction as a function over types
avoids making simplifications too soon and delays the decision until a finer context I is
known. For instance, the type obtained for the identity will be (At.t) as opposed to
Object — Object. The abstraction arrows from the TYPE FUNCTION abstract domain
to the semantics domain in Figure 1 reflects the fact that each second-order type is an
abstraction of the semantics (cf. the definition of a second-order type in Section 3.2)

5.3 Lazy Abstract Interpretation with A(T)

The key step to second-order type inference is to "abstract” the abstract
interpretation rules into functions from A(T). If e is an expression with free variables
aj, ... an, we consider the types x;, ... x, of those variables as meta (type) variables and
we look to express [e]* as a function of xj, ... x,, using A(T). Therefore, we shall build
a function Z from the set of LAURE expression to A(T) such that

Vi,.,thne T, Z(e)t),...t,) = [e]r* where I = {a; :t;, i = 1... n}.

We have extended the class lattice with two additional sets: error and ambiguous =
error v object . [e]lr* = error means that the execution of e produces an error; [elr* =
ambiguous means that the execution of e may produce an error.

Z is built by structural induction over the LAURE language, in a similar manner as
the abstract interpretation is defined in {CP91). We know a bound for each type variable
X;i (since x; < Xj), so we carry the context I' = {a;: X;, i = 1... n}. Here is a first
(simplified) example for applying = to a conditional statements.

E( [if e; e;then e3 ]) = if [ej]* < boolean
then (BAC)|B = Erez), C = Effes)
else_if fe;]* < error then error
else iffA N boolean = &, error, B A C)
|A = EHe;), B=EHez), C = Er{es)

This means if the test is known to return a boolean we return the union of the types
of the two branches. Otherwise, we create an if structure that will test the correctness
of the test against the type arguments. This is a good example of laziness: when there is
some ambiguity, we carry the test in the result as opposed to making a hasty decision.

We handle messages in a similar manner using the y operation. The semantics
associated with a message f(aj,...,an) is to apply the restriction of the feature f, which is
relevant (f is well-defined) to the tuple [(ay, ...,an)] (evaluated from left to right). In

[CP91], we have defined a function y for message type inference and shown the
following result

th: AR ] tn € 7.’ Va,'E tir VV, [ f(al :"-ran )] (V)l € \',(fr t] EERE A tn)-
This means we can use  for direct type inference
[ f(ar....an )Ir* = (£, laidr* la2dr, ..., [andr*).

Since y was introduced as a symbol of A(T), we can define

8 In the rest of the paper, we write E(x,y,...)Ix=2a,y=b, ... for the expression E from A(T) obtained
by substitution.
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sr( f(el ,22 e xen )) = W(f) A]: LA | An) IAI = Er(ei)'

Thus, instead of simply associating to the message a type that would contain its
results, we associate an expression that we can use to compute a better type for each
variable context I'. The previous definition has been extended in our current system to
catch finer inference (e.g., using the test in an if statement).

5.4 Application to New Polymethod Definitions

We can use the function = for classic type inference and compiler optimization
[CP91]. In addition, we can also use it to infer a second-order type for a new method
defined by some variables and a LAURE expression, according to the following result

Theorem: If (ay,..., a,) are some variables, X;,...,X, are some types and
e(ay,...,a,) an instruction made from these variables, we can define a method m
Jfrom e with: o fim){xp,x2,...,%0,V) = fe(x},X2,...., x5 )J(V),

exX(m)=Ere) withT' ={a;: X, i=1...n}

co(m)=X; x . XXy xk(m)}(X;,....,Xn)

The important point is that x(m) (= x(e)) can be represented by a function from A
which is "compiled” from the expression e. Here is a short example that shows how a
second-order type is inferred

Example: ¢ Add1 is defined by one variable seif and one instruction (seff + 1) ;
f(m) = (Ax.x+1),
o{m) = Number x Number,
x(m)(x) = [ (self+1) Kiselt:x}* = wi+, x, {1)).
This second order type means that Add1 returns an integer when applied to an
integer and a number whan applied to a number.

- To avoid problems, we use the canonical second-order type when we need it inside a
recursive definition of a method. A better solution is to produce a fix-point upper
bound of the second-order type, which we are currently experimenting.

From a practical perspective, A(T) is included in the LAURE language through
reflection of the type system (all type operations, such as \y, are methods implemented
on objects that represent LAURE types). This means that the result x(m) of the type
inference procedure is simply a LAURE instruction, from which a function is made by
lambda-abstraction. This means that the procedure for second-order type inference,
which is given a LAURE object representing the instructions (self + 1), will not
produce a complex term but rather another LAURE expression (as an object) which is
used to produce the second-order function. Here are some example of such a
transformation:

selt — self
(self+ 1) — range_message(+,self,{1})
[if (self < x)self else x} = [if ((range_message(s,self,x) glb boolean) = {}) {} else (self lub x))

The transformation is implemented by structural recursion as an abstract
interpretation. Because we do not deal with recursive functions yet, the complexity of
type inference is linear in the size of the program and polynomial in the size of the class
taxonomy.
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6. Application to Common Problems

6.1 The Min Method

We can now consider the min feature and see how second-order types can be used to
get a proper type description. We assume here that < is a primitive feature, defined by
methods whose second-order types are derived from their signatures. The second-order
type inferred by LAURE for the min method will be

E( [if (self <x)self else x] ) {seifentity, x:entiry)-
Since [ (self <x) ]I*{se]f;emj(y_ xentity} = W (S,entity,entity) = ambiguous, we get
Mx,y). iflt W(<, x,y) M boolean = @, error, x v y)).

With this second-order type, the compiler can both perform polymorphic type
inference and detect errors, while the user may extend the feature < by new methods
(such as a lexicographic order on lists introduced in the next section). Here are some of
the strong points.

+ Strong type checking is possible: min(1,“a”) or min(“a”,2.3) will be detected as
errors because Y(<, integer, string) = error. This would, of course, be also true
for a message min(x,y) where we simply know that x and y belong to two types
that are not comparable.

* Min is a truly polymorphic function: if we find the expression min(x,y) in an
environment where the type of x and y is very imprecise (e.g., Object), the
inferred type will simply be Object. If x and y are known to be integers, the
inferred resulting type will be integer.

» This is an extensible description: if < is augmented by a new method, the type for
min is still valid without any re-computation. The dependency between < and min
is represented in the second-order type.

6.2 List Operations and Polymethods

Let us now consider the case of lexicographic order on lists, as defined the following
method.

Example:  [define (Llist < x:list) method -> boolean,
=[ if {(I={)true
else_if (x = {}} false
else [or (car(l) < car(x)}, [and (car(l) = car(x)), (cdr({!) < cdr(x))]]l]

The second-order type inferred by the system will not detect that the expression (x <
¥), where x is of type {list A set_of(integer)} and y is of type {list A set_of(string)}, is
a type error. Actually it is not ! x and y could be two empty lists (cf. Section 2.2) and
the message (x < y) is legitimate. This means that we lose some safety in type-checking
when we take a "truly object-oriented, extensible" point of view on lists. On the other
hand, [MMMS91] shows that if the good type-checking properties of ML are kept, some
aspects of object-orientation must be simplified. However, here we can get a better
typing if we use polymethods to distinguish the case of the empty list.

Let us consider the following definition.
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Example:  [define (x:{()} S y:list) polymethod -> boolean, => true)
[define (x:{list - {))} < y:{()}) polymethod -> boolean, => false]®
[define (x:list < y:list) polymethod -> boolean,
=> [or (car(x) < car(y)), [and (car(x) = car(y)),(cdr(x) < cdr(y)}]]]

The second-order type inferred for the last method is
Mx,y).iflt V(S,€(x), €(y)) N boolean = &, error, boolean)
This allows the system to detect typing errors such as

(123)s(aa”): (12 23PN
Obviously, this only happens when the compiler can find out if the list is empty or

not. This is done by extending the type inference rules and by defining primitive
methods, such as cons or append, with more detailed signature.

6.3 Stacks

The last feature of polymethods is the ability to add preconditions on methods’
arguments that bind the type of one argument to another. The preconditions that can be
added are of the form (x € p(y)), where x and y are two methods arguments and p is a
parameter. Syntactically, the special form p(y) is used in place of a type in the definition
of the typed variable x. For instance, here is the revised stack example, using
polymethods

[define of parameter)
[define stack class with slot(of -> type, default &) ...}
[define top(s:stack) polymethod -> integer, => last(content(s)}, :=> (s @ of)]
[define push(self:stack, x:of(self)) polymethod -> void,
=> (content(self) put_at index(sslf} x),
(index(self) Is (index(self) + 1))}

The second-order type for the method top is given explicitly here and enables
parametric type inference on stacks. The argument x of the method push is typed with
the special form of{self), which means that the precondition (x € of(self)) must be
verified before applying the method.

This is a major improvement over the code presented in the first section of this
paper. Not only do we get a more concise definition, but the condition.(x € of(self)) can
be checked automatically by the compiler. The key result for checking such statements
at compile-time is the following [CP91]

[x]* <p(p,[y]*) = (x € p(y)) is always satisfied

Thus, if the message push(s,x) is compiled, and if we know that s is a stack of
integer and that x is an integer, the test [x]* < p(p,[y]*) will be verified at compile-time
and the run-time code will not include any type-checking. Thus we obtain the same
efficiency as a statically type-checked language, with the flexibility of a dynamically
type-checked language, since we can still have heterogeneous stacks.

9 If the domain of the second method was list, the system will complain about a conflict on {()} x {()}.
This is another example that justifies the introduction of type difference.



158

6.4 Comparison with Related Works

This work is one among many attempts to introduce complex type inferences, such as
those performed by ML [Mil78){[HMMS86], into an object-oriented language. Various
type systems have been proposed to efficiently compile such languages [Wan87] [Red88]
[CP89], but none of them was found to be adequate for LAURE [CP91] (Section 2). In
fact, there are two families of approaches. The first tries to develop a statically
strongly-typed language, such as Machiavelli {[OBB89] or extended ML [HMMS86].
Usually the problems that we presented in our motivations are solved, but there are
restrictions on object-orientation or set operations. The second family [JGZ89] [CHCS0]
[PS91] tries to adapt more closely to object-oriented languages, but leaves the same
problems open. We have found that the only way to escape this dilemma is to use
second-order types. Another very important distinction in this family of work is the
philosophy behind the objects. Most of the type-safe, completely static inference
procedures that have been proposed recently use a notion of object that is more like a
value than an object in the database sense (with real updates, side-effects and identity).
For instance, although more powerful, the QUEST [Car89] type system (which
subsumes our goals) could not be used for a language like LAURE.

Using second-order types for getting better type inference [Sce90](HM91] helped us
to solve some very practical problems. The main difference with similar work comes
from our order-sorted, extensible domain. What makes LAURE's type inference
simpler is that abstract interpretation is only an approximation (and is still consistent
{CC77)), which allows some simplification in the difficult cases, instead of running into
complexity problems {HM91]. Using abstract interpretation to define type inference is a
common idea, which is also applied to a simpler dynamically typed language in {AM91].
The reason we can afford to leave some difficult case out is that we use a dynamically
typed language, which allows the compiler to generate type-ambiguous code if
everything else failed. A last promising line of work is safety analysis [PA92], from
which our work borrows some ideas.

Another distinction between the various works is the use of a set-based semantics,
which offers many advantages from a data modeling perspective [SZ87] [LR89].
Although this is a controversial issue [CHC90], we believe that our model, based on sets
and on a separation between taxonomy and methods, prevents some hard problems
related in [PS91] to occur and provides a better foundation for method specialization
and inheritance than [Mit90] in the case of an extensible and reflective object-oriented
language.

7. Conclusion

In this paper we have shown how to extend methods in an object-oriented language
into polymethods to solve some problems related to type-checking. Polymethods are
extended into three directions: they are typed with a second-order type, which captures
parametric and inclusion polymorphism in a complete and elegant manner; polymethods
are attached directly to types instead of classes, which permits a finer description; last,
some tests can be attached to methods' arguments that are verified at compile time by
type inference. We have shown the benefits of a set-based type system for the LAURE
language, from which we can derive a second-order type language and second-order
type inference based on abstract interpretation.
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The type system and its inference procedure have been implemented in the LAURE
language, together with the second-order types. We have found them very practical
since they allow type optimizations that used to be hard-coded into the compiler to be
described in a formal and elegant manner. We are now implementing the second-order
type inference procedure, to derive those types automatically (in the current version of
the language, they are entered explicitly as a lambda expression from A(T)).
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