Solving the Inheritance Anomaly in
Concurrent Object-Oriented Programming*

José Meseguer

SRI International, Menlo Park, CA 94025, and
Center for the Study of Language and Information,
Stanford University, Stanford, CA 94305

Abstract. The inheritance anomaly [23] refers to the serious difficulty
in combining inheritance and concurrency in a simple and satisfactory
way within a concurrent object-oriented language. The problem is closely
connected with the need to impose synchronization constraints on the
acceptance of a message by an object. In most concurrent object-oriented
languages this synchronization is achieved by synchronization code con-
trolling the acceptance of messages by objects. Synchronization code is
often hard to inherit and tends to require extensive redefinitions. The
solutions that have appeared so far in the literature to alleviate this
problem seem to implicitly assume that better, more reusable, mech-
anisms are needed to create and structure synchronization code. The
approach taken in this paper is to consider the inheritance anomaly as a
problem caused by the very presence of synchronization code. The goal
is then to completely eliminate synchronization code. This is achieved by
using order-sorted rewriting logic, an abstract model of concurrent com-
putation that is machine-independent and extremely fine grain, and that
can be used directly to program concurrent object-oriented systems. Our
proposed solution involves a distinction between two different notions of
inheritance, a type-theoretic one called class inheritance, and a notion
called module inheritance that supports reuse and modification of code.
These two different notions address two different ways in which the in-
heritance anomaly can appear; for each of them we propose declarative
solutions in which no explicit synchronization code is ever used.

1 Introduction

The term “inheritance anomaly” has been coined by Satoshi Matsuoka and Aki-
nori Yonezawa {23] to describe what is widely recognized as a serious difficulty in
combining inheritance and concurrency in a simple and satisfactory way within

a concurrent object-oriented language. Early references pointing out serious dif-
ficulties in this area include [20, 32, 35, 6].

* Supported by Office of Naval Research Contracts N00014-90-C-0086 and N00014-
92-C-0518, and by the Information Technology Promotion Agency, J apan, as a part
of the R & D of Basic Technology for Future Industries “New Models for Software
Architecture” sponsored by NEDO (New Energy and Industrial Technology Devel-
opment Organization).

221

The problem is closely connected with the need to impose synchronization
consirainis on the acceptance of a message by an object. A well-known example
is a bounded buffer, where a put message should be accepted only if the buffer
is not full, and a get message should be accepted only if the buffer is not empty.

In most concurrent object-oriented languages this synchronization is achieved
by special code controlling how the messages will be accepted. The code per-
forming such control is called synchronization code. The problem is that often
this kind of synchronization code is hard to inherit and tends to require exten-
sive redefinitions. This difficulty has been illustrated by a number of examples
in the literature. Indeed, the problem is considered so thorny that a number
of well-known concurrent object-oriented languages such as POOL/T [6], Actl
[22], and ABCL/1 [37] have given up supporting inheritance as a basic language
feature.

A number of proposals to alleviate this problem have appeared in the litera-
ture, including [20, 35, 33, 7, 31, 36, 23, 19, 9]. It seems fair to say that, although
some good progress has been made, the problem is considered far from solved.
Matsuoka and Yonezawa [23] present an excellent analysis and survey of the
anomaly by means of a series of increasingly more difficult examples that show
where some of the proposed solutions break down. We adopt those examples in
this paper to illustrate the characteristics of our own solution.

Somehow implicit in all the solutions that have appeared in the literature
is the assumption that better, more reusable, mechanisms are needed to create
and structure synchronization code. Indeed, what the different languages and
solutions proposed so far seem to have in common is the presence of two different
kinds of code, namely usual code for changing the state of an object by the
reception of a message, and synchronization code to control the invocation of
the usual code. The default assumption is that if no synchronization code is
given the usual code can always be invoked.

The approach taken in this paper is to consider the inheritance anomaly as a
problem caused by the very presence of synchronization code. The logical solu-
tion if we take this hypothesis seriously is to completely eliminate synchroniza-
tion code. This is done by adopting a declarative style of programming in which
the effects of messages on objects are described by logical axioms called rewrite
rules. Each rewrite rule characterizes circumstances under which a concurrent
change can take place in the system, as well as the appropriate change in such
circumstances. Since change can only take place by application of rewrite rules,
the appropriate conditions for the reception of messages are indeed implicit in
the rewrite rules themselves. Therefore, no explicit synchronization code is ever
needed, and the problem of how to inherit such code—which constitutes the
inheritance anomaly—disappears. In this way, no difficulty remains for having a
fully satisfactory integration of inheritance and concurrency in an object-oriented
language. Therefore, rather than talking about solving the inheritance anomaly
it would have been more accurate to speak of eliminating the anomaly.

Our proposed solution involves a distinction between two different ways in
which the inheritance anomaly can appear, namely:

222

1. the case in which the behavior of messages previously defined in superclasses
is not contradicted by their behavior in a subclass (adding a new message
get2—to get two elements at once—in a subclass of the bounded buffer class
is a typical example), and

2. the case in which the behavior of messages previously defined is in fact
modified (adding a gget message that acts just as a get message, except
that it cannot be accepted if the last message received was a put is a typical
example).

These two cases can be best distinguished by introducing a precise distinction
between two different notions of inheritance which, unfortunately, tend to be
conflated in the common use of this term:

1. a type-theoretic one, whose purpose is the taxonomic classification of objects
and in which the behavior of messages in a superclass is never contradicted by
their behavior in a subclass (although additional behavior can be exhibited
by subclasses, including the introduction of new rules, new messages, and
new attributes); we call this notion class inheritance, and restrict the notion
of subclass only to pairs of classes for which this relation holds;

2. a notion called module inheritance that supports reuse and modification of
code and in which the behavior of messages previously defined in a class
can indeed be modified. The key idea is to view the two modules in which
the relevant old and new classes were introduced as standing in a (module)
inheritance relation, not the classes themselves.

For each of the two cases in which the inheritance anomaly can manifest itself,
these two inheritance mechanisms plus the use of rewrite rules provide a respec-
tive declarative solution in which no explicit synchronization code is ever used.
The case solved by class inheritance is clearly the simplest. In the rewriting logic
abstract model of concurrent computation 25, 26], the code for a class is an un-
structured sef of rewrite rules, with each rule acting independently of the others.
For a subclass in our sense, this set of rules is typically enlarged by adding some
new rules, but this in no way alters the previously given rules which remain
exactly as before and are inherited from the superclass or superclasses.

The structure of the paper is as follows. In Section 2 the semantic framework
used throughout the paper, namely rewriting logic, is introduced informally by
means of examples (a precise definition of the rules of rewriting logic is given in
Appendix A). In Section 3 the syntax of Maude’s object-oriented modules [26]
used to present the examples discussed in the paper is first used; it is shown how
such modules are just sugared versions of theories in rewriting logic and their
de-sugared versions are presented. In Section 4 the semantics of class inkeritance
is presented in terms of the order-sorted type structure of rewriting logic and
shown to completely eliminate any anomalies that can be described in terms of
such a notion inheritance. Section 5 discusses module inheritance and examples
that fit within that category and shows how they can be solved in a way that
does not involve any synchronization code nor, more generally, any concurrency

223

considerations whatsoever. Section 6 recapitulates and summarizes the key char-
acteristics of the solution that we propose. Section 7 discusses implementation
issues, and Section 8 makes some concluding remarks.

2 Rewriting Logic as a Semantic Framework for
Concurrent Object-Oriented Programming

We informally introduce rewriting logic by means of a simple example and ex-
plain how it provides a language-independent semantic framework for concurrent
object-oriented programming and, more generally, for concurrent programming.
A precise definition of the rules of rewriting logic is given in Appendix A; a
detailed account of rewriting logic and its semantics, and of how it unifies many
existing models of concurrency can be found in [25].

Rewriting logic is a logic to reason correctly about the evolution in time of a
concurrent system. The distributed state of a concurrent system is represented
as a term whose subterms represent the different components of the concurrent
state. Typically, however, the structure of the concurrent state may have a variety
of equivalent term representations because it satisfies certain structural laws. For
example, in a concurrent object-oriented system the concurrent state, which is
usually called a configuration, has typically the structure of a multiset made up
of objects and messages. Therefore, we can view configurations as built up by a
binary multiset union operator which we can represent with empty syntax as

subsorts Object Msg < Configuration .
op __ : Configuration Configuration -> Configuration
[assoc comm id: nulll

where the multiset union operator __ is declared to satisfy the structural laws
of associativity and commutativity and to have identity null. The subtype
declaration®

subsorts Object Msg < Configuration .

states that objects and messages are singleton multiset configurations, so that
more complex configurations are generated out of them by multiset union.?

As a consequence, we can abstractly represent the configuration of a typical
concurrent object-oriented system as an equivalence class [t] modulo the struc-
tural laws of associativity, commutativity and identity obeyed by the multiset
union operator of a term expressing a union of objects and messages, i.e., as a
multiset of objects and messages.

2 For our treatment of the inheritance anomaly it is very important to use a typed
version of rewriting logic that supports subtypes; typing aspects are further explained
in Sections 3 and 4.

3 Of course, we do not want two different objects with the same name in any such
configuration, but this can be easily enforced (see [26, Section 4.4]).

224

An object in a given state is also represented as a term
(O:Clay:vi,...,an :vy)

where O is the object’s name or identifier, C is its class, the a;’s are the names
of the object’s attribute identifiers, and the v;’s are the corresponding values.
The set of all the attribute-value pairs of an object state is formed by repeated
application of the binary union operator .,_ which also obeys structural laws of
associativity, commutativity, and identity; i.e., the order of the attribute-value
pairs of an object is immaterial.

For example, a bounded buffer whose elements are numbers can be repre-
sented as an object with three attributes: a contents attribute that is a list of
numbers of length less than or equal to the bound, and attributes in and out
that are numbers counting how many elements have been put in the buffer or
got from it since the buffer’s creation. For example, a typical bounded buffer
state can be

< B : BdBuff | contents: 9 5 6 8, in: 7, out: 3 >

Concurrent interaction with the buffer can be achieved by means of put and get
messages, with an appropriate reply message from the buffer after a get. We
can for example assume the syntax

put_in_ : Nat 0Id -> Msg .
getfrom_replyto_ : 0Id OId -> Msg .
to_elt-in_is_ : 0Id OId Nat -> Msg .

for puts, gets, and replies, respectively, where Nat is the type of natural numbers,
and 0Id is the type of object identifiers, and where in each message’s syntactic
form each underbar must be filled with an element of the appropriate type as
indicated by the list of types after the “:” and with the entire message being of
course of type Msg.

In rewriting logic sentences are rewrite rules of the form

1] — [¢]
or, more generally, conditional rewrite rules of the form
ro[t] — [t] if [wil] — [va] A A [ur] — [w].

What those sentences axiomatize are the basic local fransitions that are possi-
ble in a concurrent system. For example, in a concurrent object-oriented system
including bounded buffers that communicate through messages the local transi-
tions of bounded buffers are axiomatized by rewrite rules of the form

(put E in B) < B : BdBuff | contents: Q, in: N, out: M > =>
< B : BdBuff | contents: EQ, in: N + 1, out: M >
if (N - M) < bound .

225

(getfrom B replyto I)
< B : BdBuff | contents: Q E, in: N, out: M > =>
< B : BdBuff | contents: Q, in: N, out: M + 1 >
(to I elt-in B is E) .

where E, N, M range over natural numbers and Q over lists. The first rule spec-
ifies the conditions under which a put message can be accepted (namely, that
N - Mis smaller than bound) and the corresponding effect; the second rule does
the same for get messages (note that the requirement that the buffer must not
be empty is implicit in the pattern Q E for the contents attribute).

What the rules of deduction of rewriting logic support is sound and complete
reasoning about the concurrent transitions that are possible in a concurrent
system whose basic local transitions are axiomatized by given rewrite rules.
That is, the sentence [t] — [t'] is provable in the logic using the rewrite rules
that axiomatize the system as axioms if and only if the concurrent transition
[t} — [t] is possible in the system. A precise account of the model theory
of rewriting logic fully consistent with the above system-oriented interpretation,
and proving soundness, completeness, and the existence of initial models is given
in [25].

The intuitive idea behind the rules of rewriting logic in Appendix A is that
proofs in rewriting logic exactly correspond to concurrent computations in the
concurrent system being axiomatized, and that such concurrent computation
can be understood as concurrent rewritings modulo the structural laws obeyed
by the concurrent system in question. In the case of a concurrent object-oriented
system such structural laws include the associativity, commutativity and identity
of the union operators __ and _,_, and this means that the rules can be applied
regardless of order or parentheses. For example, a configuration such as

(put 7 in B1) < B2 : BdBuff | contents: 2 3, in: 7, out: 5 >
< B1 : BdBuff | contents: nil, in: 2, out: 2 >
(getfrom B2 replyto C)

(where the buffers are assumed to have a large enough bound) can be rewritten
into the configuration

< B2 : BdBuff | contents: 2, in: 7, out: 6 >
< Bl : BdBuff | contents: 7, in: 3, out: 2 >
(to C elt-in B2 is 3)

by applying concurrently the two rewrite rules* for put and get modulo asso-
ciativity and commutativity.

Intuitively, we can think of messages as “traveling” to come into contact with
the objects to which they are sent and then causing “communication events” by
application of rewrite rules. In rewriting logic, this traveling is accounted for
in a very abstract way by the structural laws of associativity, commutativity
and identity. This abstract level supports both synchronous and asynchronous

4 Note that rewrite rules for natural number addition have also been applied.

226

communication [25, 26], and provides great freedom and flexibility to consider a
variety of alternative implementations at lower levels.

For the purposes of the present paper rewriting logic should be regarded as
a language-independent semantic framework which, by itself, does not make any
commitments to specific features or synchronization styles, and in which many
different concurrent object-oriented languages could be given a precise math-
ematical semantics. However, to ease the exposition and make our discussions
concrete, the examples used will be written in the syntax of the Maude language.
Since, as we shall see, Maude modules are nothing but sugared versions of theo-
ries in rewriting logic, this does not matter much. Nevertheless, for purposes of
efficient implementation Maude’s language design introduces specific syntactic
restrictions that are discussed in Section 7.

3 Maude’s Object-Oriented Modules and their
Translation into Rewrite Theories

We illustrate the syntax of object-oriented modules with a module for bounded
FIFO buffers; we then make explicit the rewrite theory of which the module is
a sugared version. We assume as previously defined a parameterized data type®
LIST that is instantiated to form lists of natural numbers. We assume bound to
be a natural number, but we do not care which one®

omod BD-BUFF is

protecting NAT .

protecting LIST[Nat]

class BdBuff | contents: List, in: Nat, out: Nat .

initially contents: nil, in: 0, out: O .

msg put_in_ : Nat OId -> Msg .

msg getfrom_replyto_ : 0Id 0Id -> Msg .

msg to_elt-in_is_ : OId OId Nat -> Msg .

vars B I : 0Id .

vars EN M : Nat .

var Q@ : List .

rl (put E in B) < B : BdBuff | contents: Q, in: N, out: M > =>
< B : BdBuff | contents: EQ, in: N + 1, out: M >
if (N - M) < bound .

rl (getfrom B replyto I)

® Algebraic data types are also regarded as rewrite theories; their equations are as-
sumed to be Church-Rosser and are used as rewrite rules. In Maude, such data types
are declared in functional modules [26] and belong to a functional sublanguage very
similar to OBJ3 [16]. By contrast, rules in object-oriented modules typically fail to
be Church-Rosser, and in some cases may never terminate.

® In Maude this module should be most naturally parameterized by two parameters,
namely the type of data elements and the size bound; however, to simplify the
example we avoid parameterization.

227

< B : BdBuff | contents: Q E, in: N, out: M > =>
< B : BdBuff | contents: Q, in: N, out: M + 1 >
(to I elt-in B is E) .

endom

After the keyword class, the name of the class—in this case BdBuff—is given,
followed by a “|” and by a list of pairs of the form a: S separated by commas,
where a is an attribute identifier and S is the type inside which the values of
such an attribute identifier must range in the given class. In this example, the
attributes are the contents, and the in and out counters. The initially clause
states that when buffers are created they are empty and have their two counters
set to 0. The messages and rewrite rules are identical to those in Section 2, but
the type of the variables in the rules has now been made explicit.

We give below the essential aspects’ of the translation of this module into a
rewrite theory. Since in Maude rewrite theories themselves correspond to what
are called system modules with keywords mod and endm, we express this trans-
lation in a system module notation.

mod BD-BUFF# is

extending CONFIGURATION .

protecting NAT .

protecting LIST[Nat]

sorts <BdBuff BdBuff .

subsort BdBuff < Object .

subsort <BdBuff < CId .

subsorts Nat List < Value .

op BdBuff : -> <BdBuff .

op put_in_ : Nat 0Id -> Msg .

op getfrom_replyto_ : 0Id OI4d -> Msg .

op to_elt-in_is_ : 0Id O0Id Nat —-> Msg .

var X : <BdBuff .

vars B I : 0Id .

vars E N M : Nat .

var Q : List .

var ATTS : Attributes .

sct < B : X | contents: Q, in: N, out: M, ATTS > : BdBuff .

rl (put E in B) < B : X | contents: Q, in: N, out: M, ATTS >
=>< B : X | contents: E, in: N + 1, out: M, ATTS >
if (N - M) < bound .

rl (getfrom B replyto I)
< B : X | contents: Q E, in: N, out: M, ATTS > =>
< B :X | contents: Q, in: N, out: M + 1, ATTS >
(to I elt-in B is E) .

endm

" We omit the rewrite rules for object initialization associated with the initially
clause; on the matter of object creation see [26, Section 4.4].

228

In the translation process, the most basic structure shared by all object-oriented
modules is made explicit by the CONFIGURATION system module which they all
import. The details of that module can be found in {26, Section 4] and need
not concern us here. It is enough to say that they make precise the essential
properties of configurations already discussed in Section 2, namely that they are
multisets of objects and messages, that objects have the special syntax already
discussed and each has a set of attribute-value pairs whose values are in a sort
Value, etc. In addition, appropriate messages and rewrite rules to query the
attributes of an object are also included in the CONFIGURATION module.

We assume that rewrite theories have an order-sorted type structure [14];
this means that they are typed (we call their types sorts), that types can have
subtypes (which can be declared by subsort declarations) and that operation
symbols (which are declared with the types of their arguments and the type
of their result) can be overloaded. In addition to the order-sorted syntax, a
rewrite theory declares the relevant structural laws so that rewriting can take
place modulo those axioms, and of course the rewrite rules of the theory. In the
CONFIGURATION module the operators __ and _, - for forming unions of configu-
rations and of attribute-value pairs respectively have both been declared with
structural laws of associativity, commutativity, and identity.

The translation of a given object-oriented module extends the basic structure
of configurations with the classes, data sorts, messages and rules introduced
by the module. In particular, this extension gives rise to a series of subsort
declarations. All sorts originally declared as values of attributes are now included
as subsorts of the Value sort. Similarly, all classes, in this case BdBuff, are
declared as subsorts of the Object sort. Note that, in addition, a subsort <BdBuf#
of the sort CId of class identifiers has been introduced. The purpose of this
subsort is to range over the class identifiers of the subclasses of BdBuff. For
the moment, no such subclasses have been introduced; therefore, at present the
only constant of sort <BdBuff is the class identifier BdBuff. Notice the slight
ambiguity introduced by this notation, since now BdBuff denotes two different
things: a sort name in the sort structure of a module, and a data element in a
subsort of a data type of class identifiers. However, this ambiguity is harmless—
the context will always make explicit the intended sense—and could in any
case be easily avoided by an appropriate notational convention; for example,
by adopting quotes for the identifier use.

Objects of sort BdBuff are defined by a predicate called a sori constraint
and introduced by the keyword sct which they must satisfy. In this case the
sort constraint requires that the class identifier must have sort <BdBuff and
that it must have among its attributes an attribute called contents whose value
must be a list of natural numbers, and attributes called in and out whose values
must be natural numbers. For more on sort constraints see [27, 26].

A trivial observation that is however key to our solution of the inheritance
anomaly is that

If a variable z is declared to have a sort s, then it can range over elements
of that sort or of any of its subsorts.

229

This observation is used crucially in the above translation of the rewrite rules,
so that the translated rules become fully general in the sense that they can apply
not only to objects in the original class where they were defined, but also—as
further explained in Section 4—to objects in its subclasses. For example, the
rewrite rules originally introduced in the BD-BUFF module have been modified
to make them applicable not only to objects whose class identifier is exactly
BdBuff, but also to other objects with class identifiers for subclasses of BdBuff,
which may in addition have other attributes, i.e., indeed to all the objects of the
class BABuff.

Specifically, whenever a class identifier C appears in the lefthand side of a
rule declared in an object-oriented module, in its translation we understand
that a variable ranging over <C—which can match the constant C and any other
constants €’ that could be introduced later in subsorts <C? of <C for subclasses C’
of C—is meant instead.® In addition, in the translated form of the rules variables
of the form ATTS, which match a set of additional attribute-value pairs, have
been added to the patterns of objects. In this way the translated rules will also
apply in subclasses where more attributes have been declared.

4 Class Inheritance

Our generalization of rewrite rules in the previous translation so that they can
apply not only to objects in the original class but also to objects in any of its
subclasses is motivated by a sharp distinction between two different notions of
inheritance: class inheritance and module inheritance. At a type-theoretic level
of data sorts and object classes, sort and class inheritance provides a means of
classifying data and objects into taxonomic hierarchies. At the level of mod-
ules, module inheritance supports modularity, reuse, and ease of evolution by
arranging modules into hierarchies and by providing a rich algebra of module
compositionality operations.

Class inheritance is directly supported by the order-sorted type structure of
rewriting logic. As we shall see in this section, a subclass declaration ¢ < €’ in
an object-oriented module is just a particular case of a subsort declaration € <
C’. As a consequence of the order-sorted type structure, the effect of a subclass
declaration is that the attributes, messages and rules of all the superclasses as
well as the newly defined attributes, messages and rules of the subclass char-
acterize the structure and behavior of the objects in the subclass. An object in
the subclass behaves exactly as any object in any of the superclasses, but it may
exhibit additional behavior due to the introduction of new attributes, messages
and rules in the subclass.

This notion of class inheritance is considerably more restrictive than, and
should be sharply distinguished from, the notion of inheritance adopted in prac-

8 This way of generalizing rules so that they can be inherited was pointed out in
Section 4.4 of [24]; I am indebted to Timothy Winkler for later suggesting to me the
elegant sort structure of the sorts <C as a better alternative to a more cumbersome
identifier data type definition.

230

tice by most object-oriented languages, where the behavior of a message (some-
times also called a method) in a subclass may be different form its behavior in a
superclass and where mechanisms to change message behavior by what is called
message (or method) “specialization” or “derivation” are typically provided.

The need for such message specializations often appears in practice. However,
in our approach the mechanisms for message specialization that change the pre-
vious behavior in a superclass belong to module inheritance and are cleanly
separated for the more restrictive notion of class inheritance that we propose.
The advantages of this separation are many; some will become apparent in this
paper, others are discussed in [26], and still others will be the subject of a future
paper.

For the moment we can point out that in this way we avoid doing violence to
class inheritance by forcing upon it the job of modifying code. As a consequence,
we d&n have great flexibility of code reuse and a precise and satisfactory order-
sorted semantics for subclasses that respects the intuitions of what it means
to classify objects. By contrast, in approaches that conflate these two equally
laudable goals, flexibility of code reuse is achieved at the heavy price of emptying
the notion of class of most of its conceptual value.

One important advantage of our notion of class inheritance is that rewrite
rules are always inherited downwards in the class hierarchy. We can illustrate
this point by defining a subclass of BdBuff with a new message get2 to get two
elements of the buffer at once. We can introduce such a subclass in the module

omod BD-BUFF2 is
extending BD-BUFF .
class BdBuff2 .
subclass BdBuff2 < BdBuff .
msg get2from_replyto_ : 0Id 0Id -> Msg .
msg to_2elts-in_are_ : 0Id 0Id List -> Msg .
vars B I : OId .
vars EE’ N M : Nat .
var Q : List .
rl (get2from B replyto I)
< B : BdBuff2 | contents: Q E’ E, in: N, out: M > =>
< B : BdBuff2 | contents: Q, in: N, out: M + 2 >
(to I 2elts-in B are E E’) .
***the requirement of having at least two elements
***in the buffer is implicit in the pattern Q E’ E
endom

The translation into a rewrite theory is given by the system module

mod BD-BUFF2# is
extending BD-BUFF# .
sorts <BdBuff2 BdBuff2 .
subsort BdBuff2 < BdBuff .
subsort <BdBuff2 < <BdBuff .

231

op BdBuff2 : -> <BdBuff2 .

op get2from_replyto_ : 0Id OId -> Msg .

op to_2elts-in_are_ : OId OId List -> Msg .

var Y : <BdBuff2 .

vars B I : QId .

vars E E> N M : Nat .

var Q : List .

var ATTS : Attributes .

sct <B : Y | contents: Q, in: N, out: M, ATTS > : BdBuff2 .

rl (get2from B replyto I)
<B : Y| contents: Q E’ E, in: N, out: M, ATTS > =>
<B : Y| contents: Q, in: N, out: M + 2, ATTS >
(to I 2elts-in B are E E’) .

endm

The consequence of this definition is that buffers in BdBuf£2 will react to put
and get messages exactly like buffers in BdBuf£. This is because the rewrite rules
in BD-BUFF# have a variable X ranging over class identifiers in <BdBuf#f, and in
the module BD-BUFF2# there is a subsort declaration

subsort <BdBuff2 < <BdBuff .

Therefore, the variable X can match the constant BdBuf£2 of sort <BdBuff2, so
that the rules in BD-BUFF# also apply to objects in BdBuff2.

The only difference between both classes is that, unlike buffers in BdBuff,
buffers in BdBuff2 can react to get2 messages by sending the two rightmost
elements if they exist. Note that, due to the fact that Y has sort <BdBuff2, the
above rule will nof match bounded buffers in BdBuff that are not in BABuff2.

In the same vein, we could have defined additional messages, such as for
example a message empty? that checks whether the buffer is empty or not, and
could have introduced additional attributes, which could appear in the rules for
those new messages without any problem.

An interesting example involving multiple class inheritance is that of a lock-
able bounded buffer. The idea is to have a class of lockable objects in general,
and then define lockable bounded buffers by multiple inheritance from bounded
buffers and from lockable objects. When the object is locked no messages except
unlock should have any effect. Unlike the standard solution, which would add a
Boolean-valued attribute to ascertain the locked or unlocked state of an object
and would violate class inheritance in our sense, our solution is simpler and fully
respects our notion of class inheritance. The standard solution could be achieved
by means of module inheritance mechanisms to be discussed in Section 5.

The basic idea is to view the locking of an object as a kind of metamorphosis
that changes the nature of the object. This suggests that the class of the object
in fact changes when being locked. This can be easily accomplished by assuming
that the sort CId of class identifiers has subsorts UCId, and QCId of unquoted
and quoted identifiers together with quote and unquote operators

232

'. + UCId -> QCId

unquote: QCId -> UCId

each inverse of the other, and by adopting the syntactic convention that the
class identifiers introduced by users are always unquoted.® We can then define a
module

omod LOCKABLE is
class Lockable .
msgs lock, unlock : 0Id 0Id -> Msg .
var 0 : OI4d .
var ATTS : Attributes .
rl lock(0)
< 0 : Lockable | ATTS > => < 0 : ’Lockable | ATTS > .
***the class changes from Lockable to ’Lockable
rl unlock(0)
< 0 : ’Lockable | ATTS > => < 0 : Lockable | ATTS > .
***the class changes from ’Lockable to Lockable
endom

whose corresponding translation into a rewrite theory is

mod LOCKABLE# is

extending CONFIGURATION .

sorts <Lockable Lockable .

subsort Lockable < Object .

subsort <Lockable < UCI4 .

op Lockable : -> <Lockable .

ops lock, unlock : 0Id -> Msg .

var Z : <Lockable .

vars 0 : 0Id .

var ATTS : Attributes .

sct <0 : Z | ATTS > : Lockable .

rl lock(0) <0 : Z | ATTS > => < 0 : ’Z | ATTS >

rl unlock(0) < 0 : ’Z | ATTS > => <0 : Z | ATTS > .
endm

Now we can define lockable bounded buffers by multiple inheritance as follows

omod LOCKABLE-BD-BUFF is

extending LOCKABLE .

extending BD-BUFF .

c¢lass LckblBdBuff .

subclasses LckblBdBuff < Lockable BdBuff .
endom

® Therefore, if this convention were to be followed, all the previous occurrences of the
sort CId should be replaced by UCId.

233

We can pause for a moment and ask how rewriting logic and the notion of
class inheritance that we have proposed contribute to solving the inheritance
anomaly in the case where the behavior of messages in superclasses is not mod-
ified. An answer to this question can be summarized as follows:

1. Programming a class with rewrite rules completely eliminates any need for
special code to enforce synchronization constraints. We only need to give
rewrite rules specifying the desired behavior. The effect of synchronization
is obtained automatically and implicitly by the very definition of deduction
in the logic.

2. If a class C is a subclass of other previously defined classes in the precise
sense that we have given to class inheritance in our framework, then all the
rewrite rules defining messages in the superclasses are automatically inher-
ited without any change whatsoever. Therefore, for cases of inheritance that
fall within our precise technical notion of class inheritance, the inheritance
anomaly compleiely vanishes.

We now need to consider cases where the inheritance anomaly appears in
the context of message (or method) “specializations” that change the original
behavior. In our framework those cases fall outside class inheritance and are
dealt with by different mechanisms of module inheritance.

5 Module Inheritance and Message Specialization

In programming practice one often wants to modify the original code of an
application to adapt it to a different situation. The class inheritance mechanism
as we have defined it will not help in such cases: it is not its purpose, and forcing it
to modify code would only muddle everything and destroy its semantics. Instead,
what we propose is to provide different module inheritance mechanisms to do the
Jjob of code modification. This distinction between a type-theoretic level of classes
(more generally sorts) and a level of modules which, in our case, are theories in
rewriting logic was already clearly made in the FOOPS language (besides the
original paper [12], see also [17] for a very good discussion of inheritance issues
and of the class-module distinction in the context of FOOPS), and indeed goes
back to the distinction between sorts and modules in OBJ [16].

In Maude, code in modules can be modified or adapted for new purposes
by means of a variety of module operations—and combinations of several such
operations in module expressions—whose overall effect is to provide a very flex-
ible style of software reuse that can be summarized under the name of module
inheritance. Module operations of this kind include:

importing a module in a protecting, extending, or using mode;
adding new rewrite rules to an imported module;

renaming some of the sorts or operations of a module;
instantiating a parameterized module;

adding modules to form their union;

Al e

234

6. redefining an operator—for example a message—so that its syntax and sort
requirements are kept intact, but its semantics can be changed by discarding
previously given rules involving the operator so that new rules or equations
can then be given in their place;

7. removing a rule or an equational axiom, or removing an operator or a sort
altogether along with the rules or axioms that depend on it so that it can
be either discarded or replaced by another operator or sort with different
syntax and semantics.

The operations 1-5 are all exactly as in OBJ3 [16]. The operations 6-7 are
new and give a simple solution to the thorny problem of message (or method)
specialization without complicating the class inheritance relation, which remains
based on an order-sorted semantics. The need for message specialization, i.e.,
for providing a different behavior for a message, arises frequently in practice.
Consider for example a message gget which behaves just as get, except that it
cannot be accepted if the last message received was a put. This means that now
bounded buffers must be history sensitive, that is, they must remember more
about their past than was previously necessary. Specifically, for gget to behave
correctly, not only must put leave somehow a trace of being the last message
received, but any message other than put must, when accepted, erase such a
trace. This of course requires redefining the messages in question.

Therefore, our solution is to understand this as a module inheritance prob-
lem, and to carefully distinguish it from class inheritance. In this case, it is the
modules in which the classes are defined that stand in an inheritance relation,
not the classes themselves. The redefine operation, with keyword rdfn, provides
the appropriate way of modifying and inheriting the BD-BUFF module as shown
below. To illustrate the differences between class and module inheritance, we
define a module BD-BUFF+HS-BD-BUFF in which the old class of bounded buffers
and the new, history-sensitive, class both coexist.

omod BD-BUFF+HS-BD-BUFF is
protecting BOOL .
extending BD-BUFF .
using BD-BUFF*(class BdBuff to HSBdBuff, rdfn(msg put_in_,
msg getfrom_replyto.)) .
att after-put: Bool in HSBdBuff .
initially contents: nil, in: O, out: 0, after-put: false .
msg ggetfrom_replyto_ : 0Id 0Id -> Msg .
vars B I : 0Id .
vars EN M : Nat .
var Q : List .
var Y : Bool .
rl (put E in B)
< B : HSBdBuff | contents: Q, in: N, out: M, after-put: Y >
=> < B : HSBdBuff | contents: E Q, in: N + 1, out: M,
after-put: true > if (N - M) < bound .
***%put acts as before, but after-put is set to true

235

rl (getfrom B replyto I)
< B : HSBdBuff | contents: Q E, in: N, out: M,
after-put: Y > =>
< B : HSBdBuff | contents: Q, in: N, out: M + 1,
after-put: false > (to I elt-in B is E) .
***get acts as before, but after-put is set to false
rl (ggetfrom B reply to I)
< B : HSBdBuff | contents: Q E, in: N, out: M,
after-put: false > =>
< B : HSBdBuff | contents: Q, in: N, out: M + 1,
after-put: false > (to I elt-in B is E)
**kgget acts like get, but only if after-put is false
endom

The module expression

using BD-BUFF*(class BdBuff to HSBdBuff, rdfn(msg put_in_,
msg getfrom_replyto_)) .

declares that a new copy of the BD-BUFF module is created!® and imported in
such a way that the class BdBu££ is renamed to HSBdBuff and the messages (msg
put-in_) and (msg getfromreplyto.) are both redefined, i.e., their syntax and
sort information are maintained, but, within this new copy of the BD~BUFF mod-
ule, the original rules defining their behavior are discarded. Their new behavior
is then defined by the new rules for put and get given later in the module.
In addition, the gget message is introduced and a rule defining its behavior is
given. Notice that all the rules for objects in HSBdBuff use the newly defined
attribute after-put, introduced by the statement

att after—-put: Bool in HSBABuff .

Space limitations preclude giving a detailed account of the rdfn and rmv (re-
move) commands; this will be done elsewhere.

The essential point to bear in mind about the module BD-BUFF+HES-BD-BUFF
is that, although the classes BdBuff and HSBdBuff are both subsorts of Object,
the class HSBABuff is not a subclass of BdBuff. Therefore, in the context of
the new module, the old rules for put and get messages and the new rules for
put, get, and gget coezist without interference, because they apply to different
objects in two different classes that are incomparable in the class hierarchy.

The distinction between class inheritance and module inheritance can be
illustrated in this example by means of the diagrams in Figure 1, where the
diagram on the left expresses the class inheritance relation between the three
classes involved, and the diagram on the right expresses the module inheritance
relation between the modules used to define those classes. Note that the ar-
rows in the subclass relation have a very specific meaning, namely that of a

'° However, submodules below BD-BUFF, such as the implicitly given CONFIGURATION
module, are not copied: they are shared.

236

Object CONFIGURATION
BdBuff HSBdBuff BD-BUFF _ _ __,. BD-BUFF+HS-BD-BUFF

Fig. 1. Class inheritance vs. module inheritance for bounded buffers.

subsort relation, whereas the inheritance arrows between modules can have a
much more flexible—yet precise—variety of meanings, because of the variety
of module operations that can be involved. In this case, the solid arrows cor-
respond to inheritance by extending importation, whereas the dotted arrow
involves sort renaming, message redefinition, and a using importation; note
also that the module BD-BUFF is inherited in fwo different ways by the module
BD~BUFF+HS~-BD-BUFF.

6 The Cheshire Cat

We can now attempt to summarize our discussions in previous sections and try to
explain the nature and specific characteristics of the solution to the inheritance
anomaly that we have proposed, and why it provides in our view a satisfactory
solution to the problem.

The main goal, as already mentioned in the Introduction, is to solve the
problem by making it disappear completely. In this sense, we should hope that
the inheritance anomaly becomes like the Cheshire cat in Alice in Wonderland,
which first disappears leaving its grin behind, and then the grin also disappears
with the cat never coming back again.

In order to gain some feeling for how close we have been able to get to
reaching such a goal, we should first point out that our treatment of the problem
has in any case eliminated completely any need for special code for enforcing
synchronization constraints. In fact, it seems to us that it is precisely the low level
of abstraction involved in such synchronization constraints and the associated
and necessary involvement of a language user under those circumstances into
implementation decisions of which he should have been spared by a compiler
and a higher level language that give rise to the “anomaly” in the first place.
This does not imply in any way a lack of awareness of how useful and important
it may be to give the advanced user of a concurrent language adequate ways
of controlling and modifying the concurrent execution of his or her programs.
However, there are disciplined ways of achieving such control by methods such
as metaobject protocols [21] and other reflective methods [34].

237

Secondly, we should point out that—by introducing a clear distinction be-
tween class and module inheritance—our analysis has revealed that what is usu-
ally grouped together as a single problem can be fruitfully decomposed into two
problems: '

1. the case in which, as in the get2 and the lockable bounded buffer exam-
ples discussed in Section 4, the behavior of messages previously defined in
superclasses is not contradicted by their behavior in a subclass, and

2. the case in which, as in the gget example, the behavior of messages previ-
ously defined is in fact modified.

Regarding case 1, the semantics of class inheritance that we have proposed makes
the inheritance anomaly problem disappear completely without having to do
anything. Besides, the notion of class inheritance sheds light on when solutions
based on the notion of a guard [23, 9], which have some similarities with rewrite
rules, are likely to be most successful.

Case 2 involves an ineliminable need to modify the original behavior of some
messages in ways that, in principle, would be hard if not impossible to foresee in
advance. Therefore, something must necessarily be done. Qur proposed solution
is based on using module inheritance mechanisms that redefine the appropriate
messages or remove some rules, and that create new classes with different be-
havior that are unrelated in the class inheritance hierarchy to the old classes
that exhibited the original behavior. This solution has in our view the following
advantages:

— it is fully general and gives complete flexibility for redefining the behavior
of messages;

— it is achieved in a disciplined way by means of well-structured module op-
erations which can be given a precise semantics as operations on logical
theories;

— leaves intact the order-sorted semantics of class inheritance, and in fact op-
erates outside the framework of class inheritance in our sense;

— has nothing to do with concurrency, and as before does not involve nor
requires any special code for enforcing synchronization constraints.

In summary, the alleged incompatibility between inheritance and concur-
rency, the feeling that, somehow, it is problematic or very difficult to have both
concurrency and inheritance coexisting in a satisfactory way within the same
language, seems in ultimate analysis a mirage.

An area where fruitful research could be done is in devising more refined mod-
ule inheritance mechanisms that reduce even more the work needed to modify
the code in modules. As already pointed out, such techniques have nothing to do
with concurrency and would in any case be very useful for many other languages,
not necessarily object-oriented, and not necessarily concurrent.

A worthwhile research topic is transferring the ideas that have been developed
here by means of rewriting logic techniques to other concurrent languages. This
might cast new light on the strengths and limitations of existing inheritance
techniques, and might suggest new language design solutions.

238

Yet another area where very useful research could be done is in devising
efficient language implementation techniques that—when applied to languages
supporting a high enough level of abstraction—avoid altogether the inheritance
anomaly. Section 7 below further discusses this last topic.

7 Implementation Issues

It could perhaps be objected that, although rewriting logic and its order-sorted
type structure together with the module inheritance mechanisms seem to make
the inheritance anomaly go away, this has only been accomplished at the spec-
tfication level, and that therefore we are after all somehow still left with the
problem at the implementation level

To answer this objection, we must clarify an implicit ambiguity between
our use of rewriting logic as a language-independent semantic framework, and
as a programming language with the Maude syntactic conventions. Indeed, in
this paper rewriting logic has actually been used for both purposes. However, it
would not be reasonable to implement rewriting logic in its fullest generality for
programming purposes. This is because, in its most general form, rewriting can
take place modulo an arbitrary equational theory F that could be undecidable.
Therefore, for programming purposes rewriting logic must be carefully restricted
in order to allow reasonably efficient implementations. We discuss below specific
restrictions under which parallel implementations could be developed. Therefore,
although our ideas are still preliminary, we intend our solution of the inheritance
anomaly to work at both the specification and the implementation levels.

We consider two subsets of rewriting logic. The first subset allows rewrit-
ing modulo any combination of a few commonly occurring structural axioms
such as associativity, commutativity and identity for which matching algorithms
exist. This subset gives rise to Maude—in the sense that Maude modules are
executable rewriting logic theories in it—and, although it can in some cases be
inefficient, can be supported by an interpreter implementation adequate for rapid
prototyping, debugging, and executable specification. The second, smaller sub-
set gives rise to Simple Maude, a sublanguage meant to be used for concurrent
programming purposes for which a wide variety of machine implementations can
be developed. Figure 2 summarizes the three levels involved.

7.1 Simple Maude as a Machine-Independent Parallel Language

Simple Maude represents our present design decisions about the subset of rewrit-
ing logic that could be implemented efficiently in a wide variety of machine ar-
chitectures. In fact, we regard Simple Maude as a machine-independent parallel
programming language, which could be executed with reasonable efficiency on
many parallel architectures.

Communication in Simple Maude is performed by asynchronous message
passing. The restriction from Maude to Simple Maude is obtained by restricting
the form of the rewrite rules that are allowed. We refer the reader to [30] for more

239

Rewriting Logic: Specification

Maude:
Prototyping and
Executable Specification, Debugging

Simple Maude:
Parallel Programming

Fig. 2. Maude and Simple Maude as subsets of Rewriting Logic.

details about Simple Maude and concentrate only on the case of object-oriented
modules, where we only allow conditional rules of the form

(1) (M) (O:F| atts)
— ({O : F' | atts’})
(Q1: Dy | attsy) .. . (Qp : Dy | attsy))
Mj... M
if C

involving only one object and one message in their lefthand side, where p,q > 0,
and where the notation (M) means that the message M is only an optional
part of the lefthand side, that is, that we also allow autonomous objects that
can act on their own without receiving any messages. Similarly, the notation
({O : F' | atis')) means that the object O—in a possibly different state—is only
an optional part of the righthand side, i.e., that it can be omitted in some rules.

Specifically, the lefthand sides in rules of the form (}) should fit the general
pattern

M(O) {0 : C| atts)

where O could be a variable, a constant, or more generally—in case object identi-
fiers are endowed with additional structure—a term. Under such circumstances,
an efficient way of realizing rewriting modulo associativity and commutativity
by communication is available to us for rules of the form (), namely we can
associate object identifiers with specific addresses in the machine where the ob-
Jject is located and send messages addressed to the object to the corresponding
address.

A declarative version of the Actor model [2, 1] can be obtained by only allow-
ing rules of the form (}) with the additional restrictions of necessarily involving
a message in the lefthand side and of being unconditional (see Section 4.6 of [26]

240

for a discussion of the actor model and its rewriting logic semantics). Therefore,
in spite of the restrictions imposed on it, Simple Maude is still quite expressive
and is in particular more expressive than actors.

7.2 MIMD, SIMD, and MIMD/SIMD Implementations

Although we are still in the planning stages of language implementation, the
ample experience that already exists on efficient compilation of rewriting for
functional languages, and our past experience on parallel compilation of rewrite
rules for the Rewrite Rule Machine [4] lead us to believe that Simple Maude can
be implemented with reasonable efficiency on a wide variety of parallel architec-
tures, including MIMD, SIMD, and MIMD/SIMD architectures.

Each of these architectures is naturally suited for a different way of perform-
ing rewriting computations. Simple Maude has been chosen so that concurrent
rewriting with rules in this sublanguage should be relatively easy to implement
in any of these three classes of machines. The paper [30] discusses this matter
in greater detail; here we limit ourselves to a brief sketch.

In the MIMD (multiple instruction stream, multiple data) case many different
rewrite rules can be applied at many different places at once, but only one rule
is applied at one place in each processor. The implementation of object-oriented
rules of the form (1), involving a message and an object, can be achieved by
interprocessor commaunication, sending the message to the processor in which the
addressee object is located, so that when the message arrives the corresponding
rules can be applied.

The SIMD (single instruction stream, multiple data) case corresponds to ap-
plying rewrite rules one at a time, possibly to many places in the data. The
implementation of rules of the form () will require special SIMD code for mes-
sage passing in addition to the SIMD code for performing the rewriting.

The MIMD/SIMD case is at present more exotic; the Rewrite Rule Machine
(RRM) [15, 5, 4, 3] is an architecture in this class in which the processing nodes
are two-dimensional SIMD arrays realized on a chip and the higher level structure
is a network operating in MIMD mode. This case corresponds to applying many
rules to many different places in the data, but here a single rule may be applied
at many places simultaneously within a single processing node. The message
passing required for rules of the form (i) can be performed in a way entirely
similar to the MIMD case. From the point of view of maximizing the amount
and flexibility of the rewriting that can happen in parallel, the MIMD/SIMD
case provides the most general solution and offers the best prospects for reaching
extremely high performance in many applications.

8 Concluding Remarks

This paper has presented a solution to the inheritance anomaly based on rewrit-
ing logic that eliminates the need for explicit synchronization code and removes
any obstacles to the full integration of concurrency and inheritance within a

241

concurrent object-oriented language. This work suggests further work ahead on
language design for concurrent object-oriented languages and on efficient imple-
mentation techniques supporting the level of abstraction desirable for concurrent
languages that aim at avoiding altogether the inheritance anomaly.

In particular, it might be fruitful to investigate how the ideas presented here
could be used in other languages whose syntax may be quite different from that
of rewrite rules. The semantic framework of rewriting logic is very general, can
support both synchronous and asynchronous communication, and could proba-
bly be usefully applied to many of those languages precisely for this purpose.
The work presented here offers a solution from a particular perspective, namely
one that views programs as collections of rewrite rules. In order to exploit the
techniques available from this perspective in the context of other concurrent
object-oriented languages more research clearly needs to be done.

Of the previous proposals in the literature, the closest in spirit to the present
one are those by Matsuoka and Yonezawa [23] and by Frolund [9]. We comment
briefly on their relationships to the present work. Both Matsuoka and Yonezawa
and Frolund advocate guards as a useful and fairly reusable way of writing
synchronization code. Although, as already pointed out, our approach completely
eliminates the need for any special synchronization code, the implicit effect of
guards is obtained by the patterns in rewrite rules and by the conditions in
conditional rewrite rules and therefore there is some similarity between those two
approaches and ours. Roughly speaking, our notion of class inheritance identifies
a type of inheritance situation where guards can work very well.

The relationship with the work of Frolund [9] could be summarized by saying
that, although Frolund allows more general cases of (class) inheritance than we
do—so that some of his examples would in our case be treated by means of mod-
ule inheritance techniques—however, his approach is somewhat more restrictive
in the sense that, for safety reasons, he adopts the position that a method’s
synchronization constraints should increase monotonically as we go down in the
inheritance hierarchy. By contrast, when defining a subclass with our treatment
of class inheritance, we can not only add new rules for new messages, but we
can also add new rules for messages previously defined in some superclasses, and
this can have the effect of extending the behavior of those previously defined
messages. In terms of guards, this would correspond to relaxing for a subclass
the conditions under which a message can be invoked, whereas in Frolund’s
treatment those conditions should become more restrictive.

Yet another point of similarity is Matsuoka’s and Yonezawa’s [23] goal of
reducing synchronization code to the minimum, a goal fully consistent with the
complete elimination of such code that we advocate. Finally, a different solution
proposed by Matsuoka and Yonezawa [23] based on the use of reflection bears
some resemblance to our use of module inheritance for cases where the behavior
of messages has to be modified. The point is that, very roughly speaking, one
could regard the module inheritance techniques that we have proposed as a very

well structured form of static reflection where the code is modified at compile
time.

242

Acknowledgements

I thank Akinori Yonezawa and Satoshi Matsuoka for kindly explaining to me the
difficulties involved in the “inheritance anomaly” and their solutions to those
difficulties along several very fruitful and illuminating conversations that, along
with the reading of their clear and insightful paper [23], have stimulated my
work on this topic. I also thank Satoshi Matsuoka and Svend Frolund for their
very helpful comments to a previous version that have suggested improvements
and clarifications in the exposition.

I thank my fellow members of the Declarative Languages and Architecture
Group at SRI International, especially Timothy Winkler, Narciso Marti-Oliet
and Patrick Lincoln, for the many discussions with them on object-oriented
matters, and for their technical contributions to Maude that have benefited this
work. In addition, Narciso Marti-Oliet deserves special thanks for his very helpful
suggestions after carefully reading the manuscript.

I thank Joseph Goguen for our long term collaboration on the OBJ, Eqlog and
FOOPS languages [16, 11, 12], concurrent rewriting [10] and its implementation
on the RRM architecture [13, 4], all of which have influenced this work, and Ugo
Montanari for our joint work on the semantics of Petri nets [28, 29] that was an
important early influence on rewriting logic.

References

[

. G. Agha. Actors. MIT Press, 1986.

. G. Agha and C. Hewitt. Concurrent programming using actors. In A. Yonezawa
and M. Tokoro, editors, Object-Oriented Concurrent Programming, pages 37-53.
MIT Press, 1988.

3. H. Aida, J. Goguen, S. Leinwand, P. Lincoln, J. Meseguer, B. Taheri, and
T. Winkler. Simulation and performance estimation for the rewrite rule machine.
In Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Com-
putation, pages 336-344. IEEE, 1992.

4. Hitoshi Aida, Joseph Goguen, and José Meseguer. Compiling concurrent rewriting
onto the rewrite rule machine. In S. Kaplan and M. Okada, editors, Conditional and
Typed Rewriting Systems, Montreal, Canada, June 1990, pages 320-332. Springer
LNGCS 516, 1991.

5. Hitoshi Aida, Sany Leinwand, and José Meseguer. Architectural design of the
rewrite rule machine ensemble. In J. Delgado-Frias and W.R. Moore, editors, VLSI
for Artificial Intelligence and Neural Networks, pages 11-22. Plenum Publ. Co.,
1991. Proceedings of an International Workshop held in Oxford, England, Septem-
ber 1990.

6. Pierre America. Synchronizing actions. In Proc. ECOOP’87, pages 234-242.
Springer LNCS 276, 1987.

7. Denis Caromel. Concurrency and reusability: from sequential to parallel. Journal
of Object-Oriented Programming, pages 34-42, September/October 1990.

8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, Vol. B, pages 243-320. North-Holland,

1990.

no

243

9. Sven Frolund. Inheritance of synchronization constraints in concurrent object-
oriented programming languages. In O. Lehrmann Madsen, editor, Proc.
ECOOP’92, pages 185-196. Springer LNCS 615, 1992.

10. Joseph Goguen, Claude Kirchner, and José Meseguer. Concurrent term rewriting
as a model of computation. In R. Keller and J. Fasel, editors, Proc. Workshop on
Graph Reduction, Santa Fe, New Mezico, pages 53-93. Springer LNCS 279, 1987.

11. Joseph Goguen and José Meseguer. Eqlog: Equality, types, and generic modules for
logic programming. In Douglas DeGroot and Gary Lindstrom, editors, Logic Pro-
gramming: Functions, Relations and Equations, pages 295-363. Prentice-Hall, 1986.
An earlier version appears in Journal of Logic Programming, Volume 1, Number 2,
pages 179-210, September 1984.

12. Joseph Goguen and José Meseguer. Unifying functional, object-oriented and re-
lational programming with logical semantics. In Bruce Shriver and Peter Wegner,
editors, Research Directions in Object-Oriented Programming, pages 417-477. MIT
Press, 1987. Preliminary version in SIGPLAN Notices, Volume 21, Number 10,
pages 153-162, October 1986.

13. Joseph Goguen and José Meseguer. Software for the rewrite rule machine. In
Proceedings of the International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, pages 628-637. ICOT, 1988.

14. Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217-273, 1992.

15. Joseph Goguen, José Meseguer, Sany Leinwand, Timothy Winkler, and Hitoshi
Aida. The rewrite rule machine. Technical Report SRI-CSL-89-6, SRI International,
Computer Science Laboratory, March 1989.

16. Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. Technical Report SRI-CSL-92-03, SRI Inter-
national, Computer Science Laboratory, 1992. To appear in J.A. Goguen, editor,
Applications of Algebraic Specification Using OBJ, Cambridge University Press.

17. Joseph Goguen and David Wolfram. On types and FOOPS. To appear in Proc.
IFIP Working Group 2.6 Working Conference on Database Semantics: Object-
Oriented Databases: Analysis, Design and Construction, 1990.

18. Gerard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the Association for Computing Machinery, 27:797-
821, 1980.

19. Yutaka Ishikawa. Communication mechanism on autonomous objects. In OOP-
SLA’92 Conference on Object-Oriented Programming, pages 303-314. ACM, 1992.

20. Dennis Kafura and Keung Lee. Inheritance in actor based concurrent object ori-
ented languages. In Proc. ECOOP’89, pages 131-145. Cambridge University Press,
1989.

21. Gregor Kiczales, Jim des Riviers, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

22. Henry Liebermann. Concurrent object-oriented programming in Act 1. In
A. Yonezawa and M. Tokoro, editors, Objeci-Oriented Concurrent Programming,
pages 9-36. MIT Press, 1988.

23. Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. Dept. of Information Science,
University of Tokyo, January 1991; to appear in G. Agha, P. Wegner, and A.
Yonezawa, editors, Research Directions in Object-Based Concurrency, MIT Press,
1993.

244

24. José Meseguer. A logical theory of concurrent objects. In ECOOP-OOPSLA’90
Conference on Object-Oriented Programming, Ottawa, Canada, October 1990, pages
101-115. ACM, 1990.

25. José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

26. José Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. To appear in G. Agha, P. Wegner, and A. Yonezawa, editors,
Research Directions in Object-Based Concurrency, MIT Press, 1993.

27. José Meseguer and Joseph Goguen. Order-sorted algebra solves the constructor-
selector, multiple representation and coercion problems. Information and Compu-
tation, 103(1):114-158, 1993.

28. José Meseguer and Ugo Montanari. Petri nets are monoids: A new algebraic foun-
dation for net theory. In Proc. LICS’88, pages 155-164. IEEE, 1988.

29. José Meseguer and Ugo Montanari. Petri nets are monoids. Information and
Computation, 88:105-155, 1990.

30. José Meseguer and Timothy Winkler. Parallel Programming in Maude. In J.-
P. Banatre and D. Le Métayer, editors, Research Directions in High-level Parallel
Programming Languages, pages 253-293. Springer LNCS 574, 1992.

31. Christian Neusius. Synchronizing actions. In Pierre America, editor, Proc.
ECOOP’91, pages 118-132. Springer LNCS 512, 1991.

32. M. Papathomas. Concurrency issues in object-oriented programming languages.
In D. Tsichritzis, editor, Object Oriented Development, pages 207-246. Université
de Geneve, 1989.

33. Etsuya Shibayama. Reuse of concurrent object descriptions. In Proc. TOOLS 3,
Sydney, pages 254-266, 1990.

34. Brian Smith and Akinori Yonezawa, editors. Proc. of the IMSA’92 Workshop on
Reflection and Meta-Level Architecture, Tama-city, Tokyo. Research Institute of
Software Engineering, 1992.

35. Chris Tomlinson and Vineet Singh. Inheritance and synchronization with enabled
sets. In OOPSLA’89 Conference on Object-Oriented Programming, pages 103-112.
ACM, 1989.

36. Ken Wakita and Akinori Yonezawa. Linguistic support for development of dis-
tributed organizational information systems. In Proc. ACM COCS. ACM, 1991.
37. A. Yonezawa, J.-P. Briot, and Etsuya Shibayama. Object-oriented concurrent pro-
gramming in ABCL/1. In OOPSLA’86 Conference on Object-Oriented Program-

ming, Portland, Oregon, September-October 1986, pages 258-268. ACM, 1986.

A Rewriting Logic

This appendix gives the rules of deduction of rewriting logic.

A.1 Basic Universal Algebra

For the sake of simplifying the exposition, we treat the unsorted case; the many-
sorted and order-sorted cases can be given a similar treatment. Therefore, a set
X of function symbols is a ranked alphabet £ = {Z, | » € IN}. A Z-algebra is
then a set A together with an assignment of a function f4 : A®™ — A for each
f € X, with n € IN. We denote by Ts the Z-algebra of ground X-terms, and

245

by Tx(X) the X-algebra of X-terms with variables in a set X. Similarly, given
a set E of X-equations, Tz g denotes the Z-algebra of equivalence classes of
ground X-terms modulo the equations E (i.e., modulo provable equality using
the equations E); in the same way, Ty g(X) denotes the X-algebra of equivalence
classes of Z-terms with variables in X modulo the equations E. Let [t]g or just
[t] denote the E-equivalence class of t.

Givenatermt € Tx({z1,...,2n}), and terms uy, ..., upn, t(u1/21, ..., un/2s)
denotes the term obtained from ¢ by simultaneously substituting u; for z;, i =
1,...,n. To simplify notation, we denote a sequence of objects ay,...,a, by @.

With this notation, ¢(u; /21, ..., us/2,) can be abbreviated to t(%/%).

A.2 The Rules of Rewriting Logic

A signature in rewriting logic is a pair (X, F) with X a ranked alphabet of func-
tion symbols and E a set of Y-equations. Rewriting will operate on equivalence
classes of terms modulo the set of equations E. In this way, we free rewriting
from the syntactic constraints of a term representation and gain a much greater
flexibility in deciding what counts as a data structure; for example, string rewrit-
ing is obtained by imposing an associativity axiom, and multiset rewriting by
imposing associativity and commutativity. Of course, standard term rewriting
is obtained as the particular case in which the set E of equations is empty. The
idea of rewriting in equivalence classes is well known [18, §].

Given a signature (X, E), sentences of the logic are sequents of the form
[t]Jg — [t']g with t,t' X-terms, where ¢ and ¢’ may possibly involve some vari-
ables from the countably infinite set X = {z1,...,2Zn,...}. A theory in this
logic, called a rewrite theory, is a slight generalization of the usual notion of
theory—which is typically defined as a pair consisting of a signature and a set of
sentences for it—in that, in addition, we allow rules to be labelled. This is very
natural for many applications, and customary for automata—viewed as labelled
transition systems—and for Petri nets, which are both particular instances of
our definition.

Definition1. A (labelled) rewrite theory R is a 4-tuple R = (I, E, L, R) where
XY is a ranked alphabet of function symbols, E is a set of Y-equations, L is a
set of labels, and R is a set of pairs R C L x (T, g(X)?) whose first component
is a label and whose second component is a pair of F-equivalence classes of
terms, with X = {z,,...,z,,...} a countably infinite set of variables. Elements
of R are called rewrite rules.!* We understand a rule (r, ([t], [t'])) as a labelled

11 To simplify the exposition the rules of the logic are given for the case of unconditional
rewrite rules. However, all the ideas and results presented here have been extended
to conditional rules in [25] with very general rules of the form

r:[t] — [t'] if [w1] — [va] AL A [us] — [vr].

This of course increases considerably the expressive power of rewrite theories, as
illustrated by several of the examples presented in this paper.

246

sequent and use for it the notation r : [t] — [¢/]. To indicate that {z;,...,2,}
1s the set of variables occurring in either ¢ or t', we write r : [t(z1,...,2,)] —
[t'(21,...,24)], or in abbreviated notation r : [t(Z)] — [t/(Z)].

Given a rewrite theory R, we say that R entails a sequent [¢{] — [t'} and
write R F [t] — [¢/] if and only if [{] — [t'] can be obtained by finite
application of the following rules of deduction:

1. Reflexivity. For each [t] € T g(X),

[t] — [¢]

2. Congruence. For each f € I,, n € N,

] —[#1] ... [ta] — [tr)]
[f(tly'“)tﬂ)] — [f(tII) . "’t:t)]
3. Replacement. For each rewrite rule r : [t(z1,...,2,)] — [t/(21,...,2,)]
in R,
[wi] — [wi] ... [wa] — [wy]

[t(@/2)] — [t'(w'/7)]
4. Transitivity.
(1] — [ta] [ts] — [t5]
[t] — [ts]
A nice consequence of having defined rewriting logic is that concurrent rewrit-

ing, rather than emerging as an operational notion, actually coincides with de-
duction in such a logic.

Definition2. Given a rewrite theory R = (I, E, L, R), a (X, E)-sequent [t] —
[t'] is called a concurrent R-rewrite (or just a rewrite) iff it can be derived from
R by finite application of the rules 1-4.

