Predicate Classes

Craig Chambers

Department of Computer Science and Engineering
University of Washington

Abstract. Predicate classes are a new linguistic construct designed to
complement normal classes in object-oriented languages. Like a normal
class, a predicaie class has a set of superclasses, methods, and instance
variables. However, unlike a normal class, an object is automatically an
instance of a predicate class whenever it satisfies a predicate expression
associated with the predicate class. The predicate expression can test the
value or state of the object, thus supporting a form of implicit property-based
classification that augments the explicit type-based classification provided
by normal classes. By associating methods with predicate classes, method
lookup can depend not only on the dynamic class of an argument but also on
its dynamic value or state. If an object is modified, the property-based
classification of an object can change over time, implementing shifts in major
behavior modes of the object. A version of predicate classes has been
designed and implemented in the context of the Cecil language.

1 Introduction

One of the chief strengths of object-oriented languages is the ability of methods to
describe the circumstances for which they are intended to be used. In singly-dispatched
(receiver-based) object-oriented languages, methods are placed within a class, and only
apply for objects that inherit from that class. In multiply-dispatched languages, a multi-
method’s argument specializers describe the kinds of arguments for which it should be
used. Method lookup uses the dynamic type of the actual arguments of a message to
select the right method to invoke. From another standpoint, this dynamic dispatching
mechanism is an important piece of infrastructure that supports the improved modelling
capabilities of object-oriented languages: classes represent entities in the application
domain, and methods attached to classes implement the operations on the entities.
Classes and inheritance help to model natural specialization hierarchies in the
application domain and support better factoring of the implementation of the
application-domain entities.

Traditional object-oriented languages can model and implement various sorts of
static type-based classifications of objects using classes and inheritance. However,
some kinds of classifications escape these linguistic constructs. For example, few
object-oriented languages can reify the concept of an empty collection in such a way
that whenever a collection is empty, any methods attached to the empty-collection
concept would apply, but when the collection is mutated to become non-empty, the
empty-collection behavior would no longer apply. Few object-oriented languages allow
methods to specialize on the identity or state of an argument, in addition to its dynamic
type.

269

Predicate classes extend the standard object-oriented modelling constructs by
reifying transient states or behavior modes of objects. A predicate class has all the
properties of a normal class, including a name, a set of superclasses, a set of methods,
and a set of instance variables. Additionally, a predicate class has an associated
predicate expression. A predicate class represents the subset of the instances of its
superclass(es) that also satisfy the predicate. Whenever an object is an instance of the
superclasses of the predicate class, and the predicate expression evaluates to true when
invoked on the object, the object will automatically be considered to inherit from the
predicate class as well. While the object inherits from a predicate class, it inherits all the
methods and instance variables of the predicate class. If the object’s state later changes
and the predicate expression no longer evaluates to true, the inheritance of the object
will be revised to exclude the predicate class. Predicate classes thus support a form of
automatic, dynamic classification of objects, based on their run-time value, state, or
other user-defined properties. To the extent that these transient states are important in
the application domain, predicate classes can help in modelling and implementing
them.

Predicate classes are a relatively language-independent idea. For concreteness,
however, we have been exploring them in the context of the Cecil language [Chambers
92b, Chambers 93]. The next section of this paper presents a brief overview of Cecil.
Section 3 then describes in more detail the semantics of predicate classes as included in
Cecil, and section 4 presents several examples of predicate objects at work. Section 5
discusses related work.

2 Cecil

Cecil is a purely object-oriented language based on multi-methods. Static type
declarations are optional in Cecil. Where present, types are checked statically;
otherwise, type checking is done dynamically as messages are sent to objects. For most
of this paper, we will concentrate on the dynamically-typed core of Cecil.

The following Cecil example (not using predicate classes) implements simple
linked lists:

objact list isa collection;

object nil isa list;
method length(n@nil) { 0 }
method do (n@nil, closure) {}

object cons isa list;
field head(c@cons);
field tail (c@cons) := nil;
method length(c@cons) { 1 + c.tail.length }
method do (clcons, closure) {
eval (closure, c.head); do(c.tail, closure); }

method prepend(x, 1l@list) {
object isa cons { head := x, tail :=1 } }

270

method print (c@collection) {
print (u [u) :
do(c, &{elem) {
print ("\t"); print(elem); print ("\n");

s

print ("1"}; }
The constructs in this example are explained briefly in the following subsections. More
information on the Cecil language is available in other papers [Chambers 92b,
Chambers 93].

2.1 Objects

Cecil is classless, associating methods directly with objects and allowing objects to
inherit directly from other objects. In general, new named objects (akin to classes or
one-of-a-kind global objects) are created using the general form:
object name isa parent;, ..., parent,;

where the parent; name the object’s parents. An object’s parents act roughly like
superclasses: the object inherits methods and fields (instance and class variables) from
its parents. Zero or more parents are allowed. New anonymous objects, such as those
created at run-time, use a similar syntax but omit the object name, as with the object
created in the prepend method.

2.2 Methods
Methods are defined using the general form:

method name (formal,Robj,, ..., formal,Qobj,) { statements }
Any of the Qobj; may be omitted. Where present, these argument specializers indicate
that the method is defined only for message arguments that are descendants! of the
object named obj;. Unspecialized formals are treated as specialized to a “top” object that
is implicitly an ancestor of all other objects, allowing unspecialized formals to accept
any argument. By specializing on exactly the first argument, traditional singly-
dispatched methods can be simulated. Specializing on no arguments allows normal
procedures or default routines to be implemented. Argument specializers are viewed as
attaching the multi-method to the specializing object(s), much as methods are defined
inside a class in a singly-dispatched language.

To select the method invoked by a message send, the system first finds all methods
that have the same name and number of arguments as the message and whose argument
specializers are (improper) ancestors of the corresponding actuals; these are the
applicable methods for the message. The system then orders the applicable methods
according to specificity: one method M is more specific than another method N exactly
when each of M’s argument specializers is an (improper) descendant N’s corresponding
argument specializer and at least one of M’s argument specializers is a proper
descendant of N’s corresponding argument specializer. Finally, the system selects the

1. The descendant relation is the reflexive, transitive closure of the child relation; an
object is considered a descendant of itself. The ancestor relation is the inverse of the
descendant relation. To reinforce the fact that the descendant and ancestor relations are
reflexive, we will sometimes describe the relation as “improper.”

271

single most specific method as the target of the message. If the system finds no
applicable methods, it reports a “message not understood” error. If the system finds
several applicable methods, but no single method is more specific than all other
applicable methods, then it reports a “message ambiguous” error. Otherwise, the system
has successfully located the single most applicable method for the message. The
method is invoked and the result of its last statement is returned as the result of the
message.

Unlike other languages with multi-methods, no ordering of parents or arguments is
used to automatically resolve ambiguities. Cecil includes a resend mechanism, inspired
by SELF’s resend mechanism and similar to Smalltalk’s super, CLOS’s call-
next-method, and C++’s qualified messages, that allows a method to invoke the
method it is overriding and to explicitly resolve ambiguities among several inherited
methods.

Argument specializers are not type declarations. Argument specializers are used to
determine the outcome of method lookup. After method lookup is resolved, any type
declarations attached to the formal parameters are checked (this checking is done
statically before the program is run). Type declarations do not influence method lookup.

Methods can be encapsulated within an object despite the presence of multi-
methods. If a method is prefixed with the private keyword, access to the method is
restricted to methods associated with its argument specializers. Details on
encapsulation and the intended programming model for Cecil may be found in an earlier
paper [Chambers 92b].

2.3 Fields

Instance variables and class variables are realized in Cecil using the field construct.
A field is defined using a notation similar to that used to define a method:

field field-name (formal@obj) := expr;
where obj names the object containing the new instance variable and expr, if present,
provides an initial value for the field. Objects inheriting from obj receive their own
copies of the field-name instance variable. If the field declaration is prefixed with the
shared keyword, all inheriting objects share a single memory location, much like a
class variable. Non-shared fields of newly-created objects may be provided an initial
value as part of the object creation operation, by suffixing the object creation expression
with initialization code of the following form:

{field-name; := expr;, .., field-name, := expr,}

A field may be restricted to be immutable. Fields prefixed with the read only
annotation are shared fields that cannot be modified. Fields prefixed with the
init_ only annotation are object-specific fields that cannot be modified after the
containing object is created.

Fields are accessed solely through message sends, enabling fields to be overridden
with methods and vice versa. To make accessing fields syntactically convenient, dot-
notation syntactic sugar exists for messages of the following forms:

* expr.name is sugar for name (expr)
* expr.name :=expr2 issugarfor set_name (expr, expr2)

272

Any message of either of the above forms may be sugared, irrespective of whether it
invokes a field accessor method or a normal method. Fields may be encapsulated within
an abstraction in the same way that methods are encapsulated.

2.4 Closures

Closure objects are analogous to blocks in Smalltalk and first-class functions in other
languages. Closures are heavily used in Cecil programs as arguments to user-defined
control structures and to handle exceptions. A closure object is created with an
expression of the following form:

& (formal;, ..., formal,) { statements }
Such an expression constructs a new object that inherits from the built-in closure

object (upon which operations such as 1oop and while are defined). The new closure
object also has an attached method named eval of the following form:

method eval (<anon>Q<the_closure>, formal;, ..., formal,) { statements }
The body of the eval method executes in a context that is nested within the closure’s
lexically-enclosing context. Thus, to “invoke” a closure, the eval message is sent to
the closure along with any additional arguments expected by the closure. Closures are
first-class and may be returned upwards out of their enclosing scope. An example of a
closure constructor expression appears in the print method defined earlier.

When invoked, a closure may either return normally to the sender of the eval
message or force a non-local return from the closure’s lexically-enclosing method.
Such a non-local return is analogous to a non-local return from a block in Smalitalk or
a return statement in a traditional language.

3 Predicate Objects

Because Cecil is object-based rather than class-based, the adaptation of the general idea
of predicate classes to Cecil’s object model is called predicate objects. The next several
subsections describe how predicate objects are declared in Cecil and how they interact
with normal objects, methods, and fields. Subsection 3.7 describes support for static
type checking of predicate objects, and subsection 3.8 sketches some implementation
strategies.

3.1 Predicate Objects

A predicate object is defined much like a normal object, except that a predicate object
is introduced with the keyword pred and may have an additional when clause:
pred name isa parent;, .., parent, when predicate-expr;

For normal objects, one object is a child of another object exactly when the relationship
is declared explicitly through isa declarations by the programmer. Predicate objects,
on the other hand, support a form of automatic property-based classification: an object
O is automatically considered a child of a predicate object P exactly when the following
two conditions are satisfied:

« the object O is an (improper) descendant of each of the parents of the predicate
object P, and

273

» the predicate expression of the predicate object P evaluates to true, when
evaluated in a scope where each of the parent; names is bound to the object O.

By evaluating the predicate expression in a context where the parent names refer to the
object being tested, the predicate expression can query the value or state of the object.

For example, the following predicate objects describe various important conditions
of collections:

pred empty collection isa collection
when collection.length = 0;

pred non_empty collection isa collection
when collection.length > 0;

pred singleton_collection isa non_empty collection
when non_empty collection.length = 1;

pred multiple collection isa non_empty collection
when non_empty collection.length > 1;

The object nil defined earlier in section 2 would be implicitly a child of the
empty_collection predicate object, since nil is also a descendant of
empty_collection’s parent (collection) and evaluating the expression
“collection.length = 0” in a context where the name collection is bound
to nil returns true. Similarly, a cons object would be considered a child of
non_empty collection. A particular cons object would also be a child of either
singleton_collectionormultiple collection,depending on the length
of the list at run-time. The following diagram illustrates the inheritance graph of the list
example extended with these predicate object classifications:

collection

/ 1 \

(empty_collectioﬂ @on_empty_collectiog

(singleton_collectioa Qnultiple_collectioa

list

nil cons or

a cons cell

[; normal object —— explicit inheritance
G Predicate object ~———> implicit inheritance

274

An object may inherit explicitly from a predicate object, with the implication that
the predicate expression will always evaluate to true for the child object; the system
verifies this assertion dynamically. In the above example,
singleton _collection is declared to inherit from the predicate object
non_empty_collection. This implies that any object that is a
singleton_collection is also a non_empty collection. For this simple
case, one might expect the Cecil system to deduce automatically that the predicate
“non_empty collection.length = 1 implies the predicate
“collection.length > 0,” and so infer the inheritance link from
singleton collection to non_empty collection automatically.
However, in Cecil, nearly all operations, including basic operations such as
comparisons, are user-defined, and the system cannot reason about the semantics of
these operations in general. Consequently, the programmer must explicitly declare any
such implications among predicate classes. Section 5 describes some other systems that
restrict predicates to using only built-in operations in order to infer these inheritance
relations automatically.

3.2 Predicate Objects and Methods

Predicate objects become more useful once methods and fields are associated with
them. Predicate objects can be argument specializers just like normal objects. The
method lookup rules remain the same: a method is applicable for a message when each
actual argument object is a descendant of the corresponding argument specializer
(independent of whether the specializer is a normal object or a predicate object), and
one method is considered more specific than another when its argument specializers are
descendants of the corresponding specializers of the other method, whether or not those
specializers are normal or predicate objects.

For example, the following code implements a bounded buffer object with state-
dependent behavior modes:

object buffer isa collection;

field elements (b@buffer); --a queue of elements
field max_size(b@buffer); --aninteger

method length(b@buffer) { b.elements.length }
mathod is_empty (b@buffer) { b.length = 0 }
method is_full (b@buffer) { b.length = b.max size }

pred empty buffer isa buffer when buffer.is empty;
method get (blempty buffer) { ... } --raiseerror or block caller

pred non_empty_buffer isa buffer when not (buffer.is empty);
method get (b@non_empty buffer) {
remove_from front (b.elements) }

pred full buffer isa buffer when buffer.is_full;
method put (b@full buffer, x) (... } --raiseerroror block caller

pred non_full buffer isa buffer when not (buffer.is_full);
method put (b@non_full buffer, x) {
add_to_back (b.elements, x); }

pred partially full buffer isa
non_empty_buffer, non full buffer;

275

The following diagram illustrates the inheritance hierarchy created by this example (the
explicit inheritance link from the buffer object to buf fer is omitted):

empty_buffer

/
@on_empty_buﬁeb @on_full_buﬂeb

partially_full_buffer

a buffer object I

Predicate objects increase expressiveness for this example in two ways. First, important
states of bounded buffers, e.g., empty and full states, are explicitly identified in the
program and named. Besides documenting the important conditions of a bounded
buffer, the predicate objects remind the programmer of the special situations that code
must handle. This can be particularly useful during maintenance phases as code is later
extended with new functionality. Second, attaching methods directly to states supports
better factoring of code and eliminates if and case statements, much as does
distributing methods among classes in a traditional object-oriented language. In the
absence of predicate objects, a method whose behavior depended on the state of an
argument object would include an if or case statement to identify and branch to the
appropriate case; predicate objects eliminate the clutter of these tests and clearly
separate the code for each case. In a more complete example, several methods might be
associated with each special state of the buffer. By factoring the code, separating out all
the code associated with a particular state or behavior mode, we hope to improve the
readability and maintainability of the code.

The partially_full_buffer predicate object defined above illustrates that
a predicate object declaration need not specify its own predicate expression. Such a
predicate object may still depend on a condition if at least one of its ancestors is a
predicate object. In the above example, the partially full buffer predicate
object has no explicit predicate expression, yet since an object only inherits from
partially full buffer whenever it already inherits from both
nen_empty buffer and non_full buffer, the part ially full -
buffer predicate object effectively repeats the conjunction of the predicate
expressions of its parents, in this case that the buffer be neither empty nor full.

3.3 Predicate Objects and Inheritance

Predicate objects are intended to interact well with normal inheritance. If an abstraction
is implemented by inheriting from some other implementation, any predicate objects
that specialize the parent implementation will automatically specialize the child
implementation whenever it is in the appropriate state. For example, a new

276

implementation of bounded buffers could be built that used a fixed-length array with
insert and remove positions that cycle around the array:

object circular buffer isa buffer;
field array(b@circular buffer); --afixed-length array of elements
field insert_pos(b@circular buffer); --anindexinto the array
field remove_pos(b@circular buffer); --another integer index
method max_size(b@circular_buffer) { b.array.length }
method length (b@circular buffer) ({

-- % is modulus operator -

(b.insert _pos - b.remove pos) % b.array.length }

pred non_empty circular buffer isa
circular_buffer, non_empty buffer;
method get (b@non_empty_circular_buffer) {

var x := fetch(b.af}ay, b.remove_pos);
b.remove_pos := (b.remove pos + 1) % b.array.length;
%}

pred non_full circular_buffer isa
circular_buffer, non_full buffer;
method put (b@non_full circular_buffer, x) {
store(b.array, b.insert_pos, x);
b.insert_pos := (b.insert_pos + 1) % b.array.length; }
The following diagram illustrates the extended inheritance graph for bounded and

circular buffers (the partially full buffer predicate object is omitted):

full_buffer

@on_full_buffe§

circular_buffer

Cempty_buﬁer) @on_empty_buffeD

@on_empty_circular_buﬁebT @on_full_circular_buﬂeD

a circular buffer object

Since the circular buffer implementation inherits from the original buffer
object, a circular buffer object will automatically inherit from the
empty buffer or full buffer predicate object whenever the
circular_buffer happens to be in one of those states. No
empty_circular_buffer or full circular buffer objects need to be
implemented if specialized behavior is not needed. The
non_empty_circular buffer and non full circular buffer

277

predicate objects are needed to override the default get and put methods in the non-
blocking states. Any object that inherits from circular buffer and that also
satisfies the predicate associated with non_empty buffer will automatically be
classified as a non_empty circular_buffer.

The specification of when an object inherits from a predicate object implicitly
places a predicate object just below its immediate parents and after all other normal
children of the parents. For example, consider an empty circular buffer object. Both the
buffer object and its parent, the circular buffer object, will be considered to
inherit from the empty buffer predicate object. Because circular bufferis
considered to inherit from empty buffer, any methods attached to
circular_buffer will override methods attached to empty buffer. Often this
is the desired behavior, but at other times it might be preferable for methods attached to
predicate objects to override methods attached to “cousin” normal objects.! If this were
the case, then the buffer code could be simplified somewhat, as follows:

object buffer isa collection;
. --elements, length, etc.

method get (b@buffer) { remove_from front (b.elements) }
method put (b@buffer, x) { add_to_back(b.elements, x); }

pred empty buffer isa buffer when buffer.is_empty;
method get (b@empty buffer) { ... } --raiseerror or block caller

pred full buffer isa buffer when buffer.is_ full;
method put (b@full buffer, x) (... } --raiseerror or block caller

object circular_buffer isa buffer;
. --array, insert_pos, length, etc.
mathod get (b@circular_buffer) {

var x := fetch(b.array, b.remove pos):
b.remove_pos := (b.remove pos + 1) % b.array.length;
x }

method put (b@circular buffer, x) {
store(b.array, b.insert_pos, x);
b.insert_pos := (b.insert_pos + 1) % b.array.length; }

The non-blocking versions of get and put would be associated with the buffer
object directly, and the non empty buffer, non_full buffer, and
partially full buffer predicate objects could be removed (if desired). The
non-blocking get and put routines for circular buffers would similarly be moved up
to the circular buffer object itself, with the non_empty circular-
_buffer and non_full circular_buffer predicate objects being removed
also. If the methods attached to the empty buffer object were considered to
override those of the circular buffer object, then sending get to a circular
buffer that was empty would (correctly) invoke the empty buffer implementation.
In the current semantics of predicate objects in Cecil, however, the
circular buffer’simplementation of get would be invoked, leading to an error.

1. One object is a cousin of another if they share a common ancestor but are otherwise
unrelated.

278

A third potential semantics would be to consider the predicate object to be unordered
with respect to “cousin” objects, and methods defined on two cousins to be mutually
ambiguous. An important area of continuing work is determining whether one
semantics is most helpful or if the programmer needs to use different rules in different
circumstances.

3.4 Dynamic Reclassification of Objects

Since the state of an object can change over time (fields can be mutable), the results of
predicate expressions evaluated on the object can change. If this happens, the system
will automatically reclassify the object, recomputing its implicit inheritance links. For
example, when a buffer object becomes full, the predicates associated with the
non_full buffer and full buffer predicate objects both change, and the
inheritance graph of the buffer object is updated. As a result, different methods may be
used to respond to messages, such as the put message in the filled buffer example.

Semantically, predicate expressions are evaluated lazily as part of method lookup,
rather than eagerly as the state of an object changes. Only when the value of some
predicate expression is needed to determine the outcome of method lookup is the
predicate evaluated. Since predicate expressions are expected to be pure functions, the
exact time of evaluation of predicate expressions can usually be ignored. In any case,
implementations are free to evaluate predicate expressions at other times, as described
in section 3.8, as long as the externally-visible semantics is unchanged.

3.5 Predicate Objects and Fields

Fields may be associated with a predicate object. The semantics of accessing a field
attached to a predicate object has already been specified: fields are accessed solely
through message sends, and method lookup in the presence of predicate objects has
been defined. However, the contents of a field inherited from a predicate object is less
obvious. Several questions arise: does the field exist only when the controlling
predicate evaluates to true? Does its value persist while the predicate evaluates to false?
How does such a field get initialized?

In our version of predicate objects in Cecil, objects reserve space for any fields that
might be inherited from a predicate object, i.e., those fields inherited by an object
assuming all predicate expressions evaluate to true. The value stored in a field of an
object persists even when the controlling predicate evaluates to false and the field is
inaccessible. When the field becomes accessible again, its value will be the same as
when it was last visible. At object-creation time, an initial value may be provided for
fields inherited from predicate objects, even if those fields may not be visible in the
newly-created object.

The following example exploits this semantics to implement a graphical window
object that can be either expanded or iconified. Each of the two important states of the
window remembers its own screen location (using a field named position in both
cases), plus some other mode-specific information such as the text in the window and
the bitmap of the icon, and this data persists across openings and closings of the
window:

279

object window isa interactive_graphical_object:
field iconified(@window) := false;
method display (w@window) {
-- draw window using w.position
}
method erase (w@window) {
-- clear space where window is
}
method move (w@window, new_position) {
-- works for both expanded and iconified windows!
w.erase; w.position := new_position; w.display; }

pred expanded_window isa window when not (window.iconified);
field position (Rexpanded_window) := upper_ left;
field text (Rexpanded_window) ;
method iconify(w@expanded window) {
w.erase; w.iconified := true; w.display; }

pred iconified window isa window when window.iconified;
field position(@iconfied window) := lower_ right;
field icon(Qiconified window);
method open (w@iconified window) {
w.erase; w.iconified := false; w.display; }

method create window(open_position, iconified position,
text, icon) {

object isa window { iconified := false,
position@open_window := open_ position,
position@iconified window := iconified_position,
text := text, icon := icon } }

A window object has two position fields, but only one is visible at a time. This
allows the display, erase, and move routines to send the message position as
part of their implementation, without needing to know whether the window is open or
closed. The create window method initializes both position fields when the
window is created, even though the position of the icon is not visible initially. The
positionQ@object notation used in the field initialization resolves the ambiguity
between the two position fields.

3.6 Predicates on Methods

A predicate object characterizes the value or state of a single object. By using a
predicate object as an argument specializer, a method can restrict its applicability to
arguments in a particular state. In some cases, however, a method’s applicability might
be conditional on some predicate defined over all of its arguments as a group. For
example, one early motivation for predicates in Cecil was to be able to write code like
the following, which implements iterating through two lists in parallel:
method pair do(ll@cons, 1l2@cons, closure) {
eval (closure, ll.head, 12.head):;
pair_do(ll.tail, 12.tail, closure); }

method pair do(11@list, 12@list, closure)
when 11@nil | 12@nil {}

280

The predicate restricts the second pair_do method to those cases where either or both
of the list arguments are nil. Without the predicate expression, the code would be less
robust to future programming extensions. If a new implementation of lists were added
later, such as a special representation for singleton lists, but appropriate pair_do
methods for singleton lists were accidentally omitted, the system would silently use the
second “default” pair do method when iterating through a singleton list, rather than
signalling a “message not understood” error. To achieve this level of robustness without
using a method predicate expression, the second pair do method would need to be
written using three separate methods:
method pair_do(l11l@nil, 12@1ist, closure) {}

method pair do(11@list, 12@nil, closure) {}
method pair_do(l1l@nil, 12@nil, closure) ({}

The third method is needed to resolve the ambiguity between the first two methods
when iterating through two nil objects; method lookup in Cecil does not prioritize
arguments based on position.

One open issue with method predicate expressions is how to order predicated
methods according to specificity. Method lookup depends on being able to order the
applicable methods by specificity, raising an “ambiguous message” error if a single
most specific method cannot be identified. For predicate objects, explicit inheritance
declarations between two predicate objects can reflect when one predicate expression
implies another, but methods cannot be named so easily in order to express an ordering.

At present, our extension of Cecil does not include predicated methods. Predicate
objects already handle many practical cases simply and clearly. We prefer to gain
experience with predicate objects before considering extensions such as predicated
methods.

3.7 Static Type Checking

Cecil supports a static type system that can guarantee at program definition time that no
“message not understood,” “message ambiguous,” “private method accessed,” or
“uninitialized field accessed” error messages can occur at run-time. When extended
with predicate objects, these same guarantees should be preserved. The central type-
checking problem introduced by predicate objects is that an object’s inheritance graph,
and consequently the set of methods inherited by an object, can change at run-time. To
guarantee type safety, the type checker must verify that for each message declared in
the interface of some object O:

« at all times there is an implementation of the message inherited by the object O,
and

« at no time are there several mutually ambiguous implementations of the message
inherited by the object O.

The set of methods inherited by the object O from normal objects is fixed at program-
definition time and can be type-checked in the standard way. Methods inherited from
predicate objects pose more of a problem. If two predicate objects might be inherited
simultaneously by an object, either one predicate object must be known to override the
other or they must have disjoint method names. For example, in the bounded buffer
implementation, since an object can inherit from both the non_empty buffer and

281

the non_full buffer predicate objects, they cannot implement methods with the
same name. Similarly, if the only implementations of some message are in some set of
predicate objects, then one of the predicate objects must always be inherited for the
message to be guaranteed to be understood. In other words, the checker needs to know
when one predicate object implies another, when two predicate objects are mutually
exclusive, and when a group of predicate objects is exhaustive. Once these relationships
among predicate objects are determined, the rest of type-checking becomes
straightforward.

Ideally, the system would be able to determine all these relationships automatically
by examining the predicate expressions attached to the various predicate objects.
However, as described earlier in section 3.1, predicate expressions in Cecil can run
arbitrary user-defined code, and consequently the system would have a hard time
automatically inferring implication, mutual exclusion, and exhaustiveness.
Consequently, we rely on explicit user declarations to determine the relationships
among predicate objects; the system can verify dynamically that these declarations are
correct. Section 5 describes some other systems that can infer some of the relationships
automatically by restricting the form of the predicate expressions.

A declaration already exists to describe when one predicate object implies another:
the isa declaration. If one predicate object explicitly inherits from another, then the
first object’s predicate is assumed to imply the second object’s predicate. Any methods
in the child predicate object override those in the ancestor, resolving any ambiguities
between them. For example, a method associated with
non_empty circular buffer overrides a method associated with
non_empty buffer,since non empty circular_buffer inherits explicitly
from non_empty buffer.

Mutual exclusion among a group of predicate objects is declared using the
following notation:

disjoint object;, .., object,;
The predicate objects named by each of the object; are assumed by the static type
checker to never be inherited simultaneously, i.e., that at most one of their predicate
expressions will evaluate to true at any given time. Mutual exclusion of two predicate
objects implies that the type checker should not be concerned if both predicate objects
define methods with the same name, since they cannot both be inherited by an object.
To illustrate, the following declarations extend earlier predicate objects with mutual
exclusion information:

disjoint empty collection, non_empty_collection;

disjoint singleton_ collection, multiple_collection;

disjoint empty_bufger, non_empty buffer;

disjoint full buffer, non_full buffer;
The system can infer that empty collection is mutually exclusive with
singleton collection and multiple collection, since
singleton collection and multiple_collection both inherit from
non_empty collection. A similar inference determines that empty buffer
and full buffer are mutually exclusive withpartially full buffer. Note
that empty buffer and full buffer are not necessarily exclusive.

282

A final declaration asserts that a group of predicate objects exhaustively cover the
possible states of some other object, using the following notation:

cover object by object;, .., object,;
This declaration implies that whenever an object O descends from object, the object O
will also descend from at least one of the object; predicate objects; each of the object
are expected to descend from object already. Exhaustiveness implies that if all of the
object; implement some message, then any object inheriting from object will understand
the message. For example, the following coverage declarations extend the earlier
predicate objects:

cover collection by empty collection, non_empty collection;

cover non_empty_collection by singleton_collection,

multiple_collection;
cover buffer by empty buffer,

partially full buffer,
full buffer;

Often a group of predicate objects divide an abstraction into a set of exhaustive,

mutually-exclusive subcases. To make specifying such situations easier, the following

declaration is syntactic sugar for a cover declaration and a disjoint declaration:
divide object into object;, ..., object,;

Using this declaration, we can compress the above disjoint and cover

declarations as follows:

divide collection into empty collection,

non_empty collection;

divide non_empty_collection inteo singleton collection,

multiple collection;

divide buffer into empty buffer,

partially full buffer,
full buffer;

disjoint empty buffer, non_empty buffer;

disjoint full buffer, non_full buffer;

We believe that adding the extra disjoint, cover, and divide declarations will
not be too burdensome for the programmer. In addition to supporting static type
checking of predicate objects with arbitrary predicate expressions, the declarations help
to document the code. Furthermore, type declarations and type checking are optional in
Cecil, helping to support both exploratory and production programming within the
same language, and disjoint, cover, and divide declarations may similarly be
omitted during exploratory programming.

Since fields are accessed solely through accessor methods, checking accesses to
fields in predicate objects reduces to checking legality of messages in the presence of
predicate objects, as described above. To ensure that fields are always initialized before
being accessed, the type checker simply checks that the values of all fields potentially
inherited by an object are initialized either at the declaration of the field or at the
creation of the object. While this check is overly conservative (it does not take into
account assignments to a field immediately after it comes into scope), it is sufficient,
simple, and, we hope, not too restrictive.

Static type checking as described above ensures that a uniform interface is provided
by an object, no matter what its state happens to be at run-time. An interesting, less

283

restrictive approach to type checking would allow different states of an object to have
different interfaces. For example, a stack object might be subdivided into
empty stack and non_empty_stack predicate objects, but only the
non_empty_stack predicate object would support a pop operation. Type checking
with such state-dependent interfaces might require some more interesting analysis akin
to typestate checking in the Hermes language [Strom & Yemini 86, Strom et al. 91] or
would fall back on run-time checking for state-dependent operations. Lea is exploring
a similar idea which he calls fine-grained types [Lea 92].

3.8 Implementation Strategies

A straightforward implementation of predicate objects is not difficult. Each object
allocates enough space for any field it might inherit from a predicate object, and method
lookup is augmented with additional evaluations of predicate expressions for methods
attached to predicate objects. This approach has comparable performance to what the
programmer would likely have implemented in the absence of predicate objects:
methods would have extra tests and case statements in them to evaluate the requisite
predicate expressions, and objects would include all instance variables that might end
up being needed. We followed this strategy in our initial implementation of predicate
objects in our Cecil interpreter. As of this writing, the dynamically-typed portion of
predicate objects has been running for several months, but the extensions to the static
type system have not yet been implemented.

Several techniques can be used to improve the performance of predicate objects:

« The system can attempt to evaluate predicate expressions eagerly and to cache the
results of these evaluations. For most simple predicates, the system can determine
that they have no side-effects and therefore will not need to be reevaluated upon each
method lookup. Instead, the result of the predicate can be stored with the object. A
straightforward way of caching the result of a predlcate is in a hidden instance vari-
able, but a more efficient way is by replacing the class! of the object with a special
internal subclass that represents the outcome of evaluating the predicate. Method
lookup for one of these internal subclasses would bypass evaluation of the predicate,
consequently running just as fast as normal method lookup. To record the outcomes
of multiple independent predicates, internal combination subclasses can be con-
structed lazily as needed. For attributes that may vary during the lifetime of an ob-
ject, assignments to the attribute would change the object’s class to a generic class.
Method lookup on the generic class would first evaluate all necessary predicate ex-
pressions, change the class of the object to record the predicates’ results, and then
resend the message to the new class to invoke the proper method. Newly-created ob-
jects would start out as instances of the generic class.

In the absence of predicate objects, programmers sometimes generate state-specific
subclasses by hand. However, hand-written simulations become difficult to maintain
with multiple independent predicates, and time-varying predicates are not amenable

1. In a classless language like Cecil, the implementation can maintain internal data
structures that act like classes, as is done in the SELF implementation [Chambers et al.
89, Chambers 92a].

284

to this approach (since programmers normally cannot change the class of an object
at run-time).

* Space for fields used solely as boolean or enumerated values governing selection of
one of several possible predicate classes, such as the 1conified attribute defined
for window objects, can be reclaimed if the value of the attribute is encoded in the
internal class of the object as described above. Similarly, if a predicate expression is
constant for a particular object, space for fields associated with mutually exclusive
(and so unreachable) predicates can be reclaimed.

These optimizations could make predicate classes more efficient than hand-written
code not using predicate classes, since the system can perform optimizations, such as
changing the class of an object dynamically, that the programmer could not emulate in
most object-oriented languages.

4 Additional Examples

This section contains additional examples illustrating the usefulness of predicate
objects in Cecil. Each example highlights some strengths andfor weaknesses of
predicate objects not previously addressed.

4.1 Pattern Matching-Style Functions

Predicate objects can be used to emulate some of the functionality of pattern matching-
based function definitions, as found in functional languages such as Standard ML
[Milner er al. 90] and Haskell {Hudak ez al. 92]. With pattern maiching, a programmer
can write multiple versions of a function, with the system automatically selecting the
proper version of the function to call based on the dynamic value of the function
arguments. Patterns can range from constants through partial descriptions of structured
types through variable names which match any actual. For example, the following
Haskell examples define some standard operations on numbers and lists:

-- return the sign of the argument

sign x | x < 0 = -1
| x ==0= 0
| x> 0= 1

-- map the unary function £ over the argument list, returning a list of results

map £ [] (]
map £ (x:xs) f x : map £ xs

-~ take a pair of lists of equal length and return a list of pairs

zip [] [] =[]
zip (x:xs) (y:ys) = (X,y) : zip x5 ys
zip xs ys = error "cannot zip lists of unequal length"

-- reduce the non-empty argument list using the binary function £
reduce f (]
reduce f [x]
reduce f (x:y:zs)

error "cannot reduce an empty list"
x
f x (reduce f (y:zs))

nn

285

The ability of pattern matching to select the function to call based on the dynamic value
or state of the argument is absent from most object-oriented languages. Using predicate
objects, however, we are able to capture this finer sort of dispatching:

pred negative isa number when number < 0;'

pred zero isa number when number = 0;

pred positive isa number when number > 0;

method sign (n@negative) { -1 }

method sign (n@zero) { 0}

method sign(n@positive) { 1 }

method map (f, c@empty collection) { nil }
method map (f, c@non_empty collection) {
prepend{eval (f, c.first), map(f, c.rest)) }

method zip(cl@empty collection, c2@empty _collection) { nil }
method zip(cl@non empty collection,
c2@non_empty_collection) {
prepend({cl.first, c2.first], --anarrayconstructor
zip(cl.rest, c2.rest)) }
method zip(cl@collection, c2@collection) {
error ("cannot zip lists of unequal length"); }

method reduce (f, clempty collection) {

error (Ycannot reduce an empty list"); }
method reduce (f, c@singleton collection) { c.first }
method reduce (f, c@multiple collection) {

eval (£, c.first, reduce(f, c.rest)) 1}

Pattern matching provides additional facilities not supported by predicate objects. For
example, pattern matching allows names to be bound to subcomponents of an object,
such as in the pattern (x :xs), which binds x to the head of the list and x s to the tail
of the list. Also, patterns are very concise and readable syntactically, while predicate
objects are somewhat more verbose.

Predicate objects have several advantages over pattern matching, however:

«+ The methods written using predicate objects are more general than those written us-
ing concrete patterns. Any representation of collections satisfying the predicate as-
sociated with empty collection can invoke the corresponding map method,
for instance, not just the one empty list object. Similarly, patterns can only range
over concrete data types, not abstract data types, although Wadler has proposed an
extension of pattern matching to support abstract data types [Wadler 87].

« Predicate objects can be ordered in terms of specificity, and the system with use this
information to determine the most appropriate implementation of a method to call.
Functional languages typically try functions in the order they were defined, invoking
the first version whose patterns match.

+ Predicate objects give a name to the interesting condition and can be used to group
functions that operate on the same condition, potentially increasing the readability of
the resulting code.

1. Recall that in the predicate “number < 0", the name number is bound to the de-
scendant of number being considered, i.e., the number itself.

286

* With predicate objects, dispatching based on value or state is integrated with dis-
patching based on dynamic type. Pattern matching cannot select the version of the
function based on the dynamic type of the argument.

* Predicate objects can be extended with new specialized cases as the system evolves.
The versions of a function defined by pattern matching often must be defined as a
group, and they cannot be extended later with new alternatives without editing the
original function definition. Pattern matching in dynamically-typed logic languages
usually does not suffer from this limitation.

In part, these examples are easy to write because Cecil provides the ability to add
methods to an object without needing to modify the object’s definition. Traditional
singly-dispatched languages cannot achieve this kind of easy extension because the
methods of a class are part of the class definition, which would need to be edited to add
new methods to the class. To compensate for the extra separation between objects and
methods, Cecil relies on the programming environment to show a view of the program
in which methods are directly associated with their specializing objects [Chambers
92b].

4.2 Attributes of People

Predicate objects can help organize code for an abstraction that can be considered to
have multiple independent attributes and behavior that depends on the state of the
attributes. For example, a person object might have several independent fields such
as sex and age, and some of the methods on person might depend on the values of
the fields:

object person;

field sex (@person);

field age(@person);

method bedtime (@person) { "10pm" }

method long lived(p@person) { p.age > p-expected lifespan }
method have birthday (p@person) { p.age := p.age + 1; }

pred male isa person when person.sex = "male";
method expected_lifespan(@male) { 70 }

pred female isa person when person.sex = "female";
method expected lifespan(@female) { 74

——

pred child isa person when person.age <= 12;
method bedtime (@child) { "8pm" }

pred teenager isa person
when person.age >= 13 & person.age <= 19;
maethod bedtime (@teenager) { "l2am" }

pred boy isa male, child;
pred girl isa female, child;

method make person(sex, age) {
object isa person { sex := sex, age := age } }

287

Predicate objects provide a direct way of associating behavior with particular values of
the object’s attributes. In a traditional language without predicate objects, the
programmer must choose between two different ways of implementing an attribute and
its connected behavior:

« If the attribute is constant, it can be represented by instantiating a specialized sub-
class of the person class. For example, the sex attribute could be replaced with
male and female subclasses. The programmer then could factor state-specific
methods into the appropriate subclass. Unfortunately, in the presence of multiple in-
dependent attributes, this strategy suffers from a combinatorial explosion of combin-
ing subclasses. Also, object creations must name the appropriate subclass statically,
which can be awkward if the corresponding attribute is a computed expression rather
than a constant.

«+ The attribute could be represented as an instance variable. Behavior dependent on
the attribute must be written in one place and be sprinkled with tests of the attribute
value. Programmers usually have no choice but to implement time-varying attributes
this way.

With predicate objects, attributes can be implemented using the first approach without
fear of combinatorial explosions and without excluding time-varying attributes.
Attributes still can be manipulated like instance variables when convenient: new people
are created as children of the generic person object irrespective of their sex or age,
and attributes can be queried and modified directly.

A similar example is found in several papers on mixins and object-oriented
programming: windows that may have titles and/or borders. Conventional approaches
implement titled-window and bordered-window subclasses, plus their combination
class. In Cecil with predicate objects, a single window object would be defined with
has_titleandhas_border fields. Predicate objects inheriting from window and
conditional on the presence or absence of titles and/or borders would contain the code
responsible for the two independent extensions. One complexity with this design is that
in Cecil there is no automatic method combination: if a window has both a title and a
border, and both predicate objects define a method such as display, the programmer
must explicitly provide a titled bordered_window predicate object that
overrides the two others and resolves the ambiguity, perhaps by calling both display
methods sequentially. The difficulty arises because the titled and bordered attributes are
not truly independent; they interact for displaying behavior.

4.3 Squares, Rectangles, and Polygons

A classic example of object-oriented programming is a hierarchy of geometric shapes,
such as would appear in a drawing editor. For example, the following code implements
a fragment of a standard hierarchy of graphical shapes:

288

objact polygon isa shape;

field vertices (@polygon) ;

method draw(p@polygon) { ... }

method add vertex (p@polygon, vertex) { ... }

object rectangle isa polygon;

method length(r@rectangle) { ... } --computefrom vertices
method set length(r@rectangle, new_length) { ... }
method draw(r@rectangle) { ... }
method widen(r@rectarigle, factor) {

r.length := r.length * factor; }

object square isa rectangle;

method draw(s@square) { ... }
According to mathematical definitions, all squares are rectangles, and all rectangles are
polygons, so this inheritance hierarchy is desirable from a modelling viewpoint.
However, if the user invokes the add_vertex method (which modifies the polygon
in place) on a rectangle, the object will no longer be a rectangle. Similarly, invoking the
widen operation on a square will violate the specification of the square.

In the Eiffel community, the recommended solution is to undefine the
add_vertex operation in the rectangle class and to undefine the widen
operation in the square class, thus disallowing illegal modifications [Meyer 91].
However, this has two undesirable consequences. First, static type checking of
operations in the presence of the undefine construct is quite difficult [Cook 89], leading
to a complex, two-phase typing algorithm [Meyer 92]. Second, the drawing editor
application either must realize that certain kinds of polygons cannot have vertices added
to them (as must users of the application), or the editor must construct only polygons,
forgoing any functionality and performance advantages of the more specialized
subclasses.

With predicate objects, this example can be reimplemented with rectangle and
square treated as predicate objects:

object polygon isa shape;
method is_rectangle (p@polygon) { ... }

pred rectangle isa polygon when polygon.is rectangle;
method is_square(r@rectangle) { r.length = r.width }

pred square isa rectangle when rectangle.is_ square;

Whenever a polygon satisfies the restrictions of rectangles or squares, the specialized
implementations of the operations suitable to those kinds of objects are used. If a vertex
is added to an object classified as a rectangle, it will be automatically reclassified
as a general polygon. Non-predicate versions of rectangle and square are not
needed. If an object inherits directly from the square predicate object, for instance,
this informs the system that the object will always remain a square, and consequently
the object will act just as if it inherited from a non-predicate version of square. The

289

implementation strategies described in section 3.8 can make the implementation just as
efficient as if square were a normal non-predicate object.

4.4 Mutable Binary Trees

Predicate objects can be used to represent distinct behavior modes of an object. The
window example from section 3.5 illustrates this application, where the two distinct
behavior modes are expanded and iconified windows. As a second example, the code
below implements mutable binary trees, where the distinct behavior modes are empty
and non-empty trees:

object tree isa collection;
field is empty(Q@tree) := true;

pred empty tree isa tree when tree.is empty;

method insert (tQempty tree, x) {
t.is_empty := false;
t.left := object isa tree; --createa new, empty tree
t.right := object isa tree;
t.contents := x; }
method do (t@empty tree, closure) {}

pred non_empty tree isa tree when not (tree.is empty):;

field left (Gnon_empty_tree);
field right (€non_empty tree);
field contents(@non_empty_tree);
method insert (t@non_empty tree, x) {
if(x < t.contents, -- if{(,,) is a user-defined control structure
{ insert(t.left, x); },
{ insert(t.right, x); }); }

method do (t@non_empty tree, closure) {

do(t.left, closure);

eval (closure, t.contents);

do(t.right, closure); }
All trees understand the insert and do messages, but the implementation of these
two messages is completely different for the two behavior modes, and predicate objects
allow the two modes to be factored apart. Additionally, the state specific to non-empty
trees is associated only with the non_empty tree object. Optimizations described
in section 3.8 can eliminate the storage space for the is_empty field by creating two
internal subclasses of t ree and changing the internal “class pointer” of a tree instance
to implement assignment to the is_empty field.

Much of this example could be implemented without predicate objects. One
approach would make empty_tree and non_empty_tree normal subclasses of
the t ree class. However, this approach would preclude adding in place to an empty
tree, since the class of the tree cannot change. Alternatively, a single t ree class could
be defined without state-specific subclasses, but this approach would sacrifice the
factoring of code, require is_empty checks in the implementation of insert and
do, and expose the left, right, and contents fields even in empty trees. The
solution with predicate objects supports both state-based factoring of code and mutating
trees in place from one state to another.

290

5 Related Work

5.1 Value-Based Dispatching in
Other Object-Oriented Languages

Object-oriented languages support one kind of dynamic binding of messages to
methods, where the method to run can depend on the run-time class or type of the
message receiver (for singly-dispatched languages) or for some subset of the message
arguments (for multiply-dispatched languages). A few object-oriented languages, such
as CLOS [Bobrow et al. 88] and Dylan [Apple 92], can dispatch on the identity of an
argument, but cannot easily dispatch on a more general condition of an argument, such
as being a negative number or an iconified window; prototype-based languages are
similar in this regard.

5.2 Sets and Polymethods in LAURE

The LAURE language is an unusual hybrid language with object-oriented, rule-based,
and constraint-based features [Caseau 91, Caseau & Silverstein 92, Caseau & Perron
93]. Of particular interest is LAURE’s ability to define sets of objects and to associate
methods (called polymethods) with all members of a set. For example, the following
two polymethods define LAURE's fibonacci function:

[define fib(x:{0,1)) polymethod => 1]

[define fib(x:{integer & {sign as +}}) polymethod =>

fib(x - 1) + fib(x - 2)]

A set in LAURE can describe a fixed list of objects, all the members of a particular
class, or all the objects having a particular attribute with a particular value. Sets can be
combined using intersection to form new sets, much as multiple inheritance is used to
combine classes, but LAURE sets also may be combined using the union and power-set
operators. Methods can be associated with arbitrary set specifications, not just classes,
as in the £ib example. LAURE uses the specifications of the sets to automatically
construct a lattice over the sets, ordered by set inclusion, and this lattice is used like an
inheritance graph to resolve conflicts among methods whenever more than one method
applies. A set specification is reevaluated whenever necessary to determine whether
some object is currently a member of the specified set.

Sets in LAURE share many of the characteristics of predicate classes. Both describe
the objects contained by (descended from) them, and this collection of objects can vary
dynamically. Methods are attached to sets directly, as methods are attached to predicate
classes. LAURE uses special kinds of inheritance operators to describe exhaustive or
mutually-exclusive sets: a closed union implies that its subclasses are exhaustive, while
a closed intersection somewhat counter-intuitively specifies that its superclasses are
mutually exclusive.

LAURE’s sets and predicate classes have some differences. Sets in LAURE may be
specified using a fixed group of set construction operations and base sets, while
predicate classes can be defined with arbitrary predicates. In LAURE, some of the
specificity relationships among sets (the subsumption relation) is inferred automatically
based on the structure of the set specifications, while all inheritance relationships
among predicate classes must be specified explicitly.

291

5.3 Classifiers in Kea

The Kea language is a functional object-oriented language based on multiple
dispatching [Mugridge et al. 91, Hamer 92]. Kea supports a notion of dynamic
classification of objects. A class may be explicitly divided into a group of mutually-
exclusive subclasses, and instances of the class can be classified into one of the disjoint
subclasses. For example, a List class may be classified into EmptyList and
NonEmptyList subclasses. Multiple independent classifiers may be used for any
class. For example, a Person class may be classified into Male and Female
subclasses as well as independent Young, MiddleAged, and O1d subclasses. This
approach avoids the need for creating a combinatorially-exploding number of
combining classes (e.g., a YoungMale class, an OldFemale class, etc.), as these
combination subclasses become implicit. The example in section 4.2 was inspired by a
similar example presented in Kea.

Classifiers in Kea are similar to predicate classes. Both support automatic attribute-
based classification of objects, and operations can be associated with the classified
subclasses. Classifiers, however, appear to subdivide a class into a set of exhaustive,
mutually-exclusive subclasses, with the particular subclass for an object determined
either by the value of a single attribute (whose type must be some enumerated type) of
the object or by explicit instantiation of a particular subclass. Predicate classes support
arbitrary predicates and non-exhaustive and overlapping classifications, as illustrated
by the buf fer example in section 3.2. Since Kea is a functional language, it does not
address the issue of an object whose classification varies over time.

5.4 Term Classification

Yelland developed an experimental extension of Smalltalk that supported term
classification [Yelland 92]. Yelland introduced two new Kinds of class-like constructs
into Smalltalk: primitive concepts and defined concepts:

+ Primitive concepts are used for explicit classification of objects. An object is a
member of a primitive concept only when explicitly stated.

« Defined concepts are used for implicit property-based classification. An object is
a member of a defined concept whenever its attributes (called roles) satisfy
certain role restrictions. Only a few kinds of role restrictions are allowed, such as
checking for an attribute being an instance of a particular class or concept, being
within some integer range, or being an element of some fixed set. In return,
Yelland’s system will automatically compute the subsumption relationships
among concepts (i.e., when one concept “inherits” from another) based on the
structure of the role restrictions.

Methods and instance variables may be attached to both kinds of concepts just as with
regular classes.

An object in Yelland’s system may be a member of several independent defined
concepts. Yelland’s experimental system creates internal combination subclasses, and
uses a single combination subclass to record that an object is a member of several
independent concepts simultaneously. Since Smalltalk is imperative, an object’s
properties can change at run-time, and thus the object’s classification can become out-

292

of-date. Yelland describes problems that can occur if an object is eagerly reclassified
immediately when its state changes, such as when an object temporarily violates its role
restrictions while its state is being updated. Consequently, in Yelland’s system, objects
are reclassified only when explicitly requested by the program.

Yelland’s system is similar to LAURE and Kea in that the system is responsible for
automatically determining the “inheritance” relationships among concepts, at the cost
of limiting the form of the role restrictions. The predicate expressions of predicate
classes can be any boolean-valued expression, at the cost of requiring explicit
programmer declaration of the inheritance relationships. To avoid problems with eager
reclassification of objects while keeping automatic reclassification in the system, Cecil
re-evaluates predicate expressions lazily as needed to resolve method lookup. As
described in section 3.8, an optimizing implementation might choose to track
inheritance from predicate classes in other ways for faster method lookup.

5.5 Dynamic Inheritance in SELF and Garnet

SELF is a prototype-based language with a simple and uniform object model [Ungar &
Smith 87, Holzle et al. 91]. One consequence of SELF’s uniformity is that an object’s
parent slots, like other data slots, may be assigned new values at run-time. An
assignment to a parent slot effectively changes an object’s inheritance at run-time.
Consequently, the object can inherit different methods and exhibit different behavior.
This dynamic inheritance allows part of an object’s implementation to change at run-
time. Dynamic inheritance has been used in SELF to implement mutable objects with
several distinct behavior modes, such as binary trees with empty and non-empty states
[Ungar et al. 91]. The example in section 4.4 was inspired by this use of dynamic
inheritance in SELF.

The Garnet systemn [Myers ef al. 92] includes a similar mechanism, also called
dynamic inheritance but implemented differently, to effect wholesale changes in the
implementation of an object’s behavior. This feature has been used in Garnet to capture
the significant changes in a user-interface object’s behavior when switching between
build mode and test mode in an application builder tool.

Predicate classes can emulate some of the functionality of dynamic inheritance as
found in SELF or Garnet. Where a SELF program would have an assignable parent slot
and a group of parent objects that could be swapped in and out of the parent slot, Cecil
with predicate objects would have an assignable field and a group of predicate objects
whose predicates test the value of the field. However, dynamic inheritance is more
powerful than are predicate objects in Cecil. Predicate objects support associating state
and behavior with possibly time-varying behavior modes of an object. Dynamic
inheritance can do the same, but dynamic inheritance also allows an object to inherit
from other run-time objects with their own run-time state; Cecil today only supports
inheritance from statically-defined objects. Dynamic inheritance is rather unstructured,
and often it is difficult to determine the behavior of an object with assignable parents,
since any object conceivably could be assigned as a parent. The set of potential
predicate descendants of an object, in contrast, are statically determined (at link-time),
and we hope are easier to reason about. In those situations where predicate objects

293

provide sufficient functionality, we believe they are preferable to dynamic inheritance
since the purpose and dynamic behavior of predicate objects is clearer.

A related mechanism is the become: primitive in Smalltalk-80' [Goldberg &
Robson 83]. This operation allows the identities of two objects to be swapped, and so
is more than powerful enough to change the representation and implementation of an
object. The become: operation thus is even more powerful and unstructured than
dynamic inheritance, and is likely to be at least as difficult to reason about if used
extensively. Additionally, become: is difficult to implement efficiently without
slowing down other basic operations of the system.

5.6 Other Related Work

Several other systems have constructs similar to aspects of predicate classes. Boolean
classes [McAllester & Zabih 86], Exemplars [Lalonde et al. 86], and Clovers [Stein 91]
all address the issue of forming automatic combination or union subclasses to avoid
combinatorial explosion and better organize methods; in none of these systems is the
classification based on an object’s state, however. Some knowledge representation
systems address many of the same issues as predicate classes, though usually more from
a representation or modelling viewpoint than from a linguistic viewpoint. Many
specification systems restrict the applicability of operations using preconditions and
many concurrent systems allow operations to be conditional on guard expressions.
Exception handling mechanisms share predicate classes’ goal of factoring cases,
although from an entirely different vantage point.

6 Conclusion

Predicate classes provide a descriptive and modelling capability absent from most
object-oriented languages. Predicate classes identify and name important states or
behavior modes of objects, describe relations among these behavior modes, and
associate state and behavior with these modes. By factoring the implementation of a
class into a group of state-specific subclasses, we hope to make code clearer and easier
to modify and extend. Predicate classes complement normal classes, providing a form
of automatic property-based classification that is compatible with the explicit
classification supported by normal classes.

Predicate classes enable programmers to resolve the tension between representing
state as data and representing state through subclasses. Programmers can factor state-
dependent behavior into specialized subclasses without incurring the maintenance
headaches caused by a combinatorial explosion of multiple, independent subclasses and
without restricting the state represented by the subclass to be immutable or creating
difficult type-checking problems. Predicate classes support clean solutions to existing
“benchmark” problems such as representing multiple attributes of people and
representing hierarchies of mutable geometric shapes.

Predicate objects are an adaptation of the general idea of predicate classes to the
Cecil language. Predicate objects can be associated with arbitrary time-varying

1. Smalltaik-80 is a trademark of ParcPlace Systems, Inc.

294

predicates defined over the state of an object. The relationships among predicate objects
are specified explicitly by the programmer through inheritance declarations and
disjoint, cover, and divide declarations; these declarations help method lookup
find the most specific method and help the static type checker suppress spurious type
errors. Predicate objects can have methods and fields associated with them just like
normal objects, helping to integrate predicate objects into the rest of the language.

Several areas of predicate objects in Cecil need further study. Interesting
interactions between predicate objects and inheritance and fields were described earlier
in the paper. Predicated methods appear to generalize the idea of predicate objects to
groups of objects. Strategies for efficient implementation of predicate objects need to
be implemented and measured. Finally, predicate objects encourage a new kind of type
checking to be investigated where the interface exported by an object depends on its
current state.

Predicate classes would probably be easy to incorporate into other object-oriented
languages in a similar fashion, although multiple inheritance appears to be required and
the ability to add methods to a previously-declared predicate class would be helpful. We
believe that the potential increased expressiveness of predicate classes and their easy
integration within other object-oriented programming models merits further
experimentation and study.

Acknowledgments

We thank Alan Borning, Miles Ohlrich, Jeff Dean, Kevin Sullivan, Stuart Williams,
Christine Ahrens, Doug Lea, and the anonymous reviewers for their helpful comments
on earlier drafts of this paper. This research has been generously supported by a
National Science Foundation Research Initiation Award (contract number CCR-
9210990), a University of Washington Graduate School Research Fund grant, and
several gifts from Sun Microsystems, Inc.

References

[Apple 92] Dylan, an Object-Oriented Dynamic Language. Apple Computer, April, 1992.

{Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D.
A. Moon. Common Lisp Object System Specification X3J13. In SIGPLAN Notices
23(Special Issue), September, 1988.

[Caseau 91] Yves Caseau. An Object-Oriented Language for Advanced Applications. In
Proceedings of TOOLS USA 91, 1991.

[Caseau & Silverstein 92] Yves Caseau and Glenn Silverstein. Some Original Features of the
LAURE Language. In Proceedings of the OOPSLA *92 Workshop on Object-Oriented
Programming Languages: The Next Generation, pp. 35-43, Vancouver, Canada, October,
1992.

[Caseau & Perron 93] Yves Caseau and Laurent Perron. Attaching Second-Order Types to
Methods in an Object-Oriented Language. In In ECOOP *93 Conference Proceedings,
Kaiserslautern, Germany, July, 1993.

295

[Chambers et al. 89] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation
of SELF, a Dynamically-Typed Object-Oriented Language Based on Prototypes. In
OOPSLA '89 Conference Proceedings, pp. 49-70, New Orleans, LA, October, 1989.
Published as SIGPLAN Notices 24(10), October, 1989. Also published in Lisp and
Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

[Chambers & Ungar 91] Craig Chambers and David Ungar. Making Pure Object-Oriented
Languages Practical. In OOPSLA '91 Conference Proceedings, pp. 1-15, Phoenix, AZ,
October, 1991. Published as SIGPLAN Notices 26(10), October, 1991.

[Chambers 92a] Craig Chambers. The Design and Implementation of the SELF Compiler, an
Optimizing Compiler for Object-Oriented Programming Languages. Ph.D. thesis,
Department of Computer Science, Stanford University, report STAN-CS-92-1420, March,
1992.

[Chambers 92b] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In ECOOP *92
Conference Proceedings, pp. 33-56, Utrecht, the Netherlands, June/July, 1992. Published
as Lecture Notes in Computer Science 615, Springer-Verlag, Berlin, 1992,

[Chambers 93] Craig Chambers. The Cecil Language: Specification and Rationale. Technical
report #93-03-05, Department of Computer Science and Engineering, University of
Washington, March, 1993.

[Cook 89] W. R. Cook. A Proposal for Making Eiffel Type-Safe. In ECOOP '89 Conference
Proceedings, pp. 57-70, Cambridge University Press, July, 1989.

[Goldberg & Robson 83] Adele Goldberg and David Robson. Smalitalk-80: The Language and
Its Implementation. Addison-Wesley, Reading, MA, 1983.

[Hamer 92] John Hamer. Un-Mixing Inheritance with Classifiers. In Multiple Inheritance and
Multiple Subtyping: Position Papers of the ECOOP’92 Workshop W1, pp. 6-9, Utrect, the
Netherlands, June/July, 1992. Also available as working paper WP-23, Markku Sakkinen,
ed., Dept. of Computer Science and Information Systems, University of Jyviskyla,
Finland, May, 1992.

[Hélzle et al. 91] Urs Holzle, Bay-Wei Chang, Craig Chambers, Ole Agesen, and David Ungar.
The SELF Manual, Version 1.1. Unpublished manual, February, 1991.

[Hudak et al. 92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph Fasel, Maria M. Guzmdn, Kevin Hammond, John Hughes, Thomas Johnsson, Dick
Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson. Report on the Programming
Language Haskell, Version 1.2. In SIGPLAN Notices 27(5), May, 1992.

[LaLonde ez al. 86] Wilf R. LaLonde, Dave A. Thomas, and John R. Pugh. An Exemplar Based
Smalltalk. In OOPSLA 86 Conference Proceedings, pp. 322-330, Portland, OR,
September, 1986. Published as SIGPLAN Notices 21(11), November, 1986.

[Lea 92] Doug Lea. Personal communication. December, 1992.

[McAllester & Zabih 86] David McAllester and Ramin Zabih. Boolean Classes. In OOPSLA ' 86
Conference Proceedings, pp. 417-428, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Meyer 91] Bertrand Meyer. Static Typing for Eiffel. In An Eiffel Collection. Technical report
#TR-EI-20/EC, Interactive Software Engineering, Goleta, California, 1991.

[Meyer 92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, New York, 1992,

[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, MA, 1990.

296

[Mugridge et al. 911 W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-
Typed Programming Language. Technical report #50, Department of Computer Science,
University of Auckland, 1991. A later version published in ECOOP ’91 Conference
Proceedings, Geneva, Switzerland, July, 1991.

[Myers et al. 92] Brad A. Myers, Dario A. Giuse, and Brad Vander Zanden. Declarative
Programming in a Prototype-Instance System: Object-Oriented Programming Without
Writing Methods. In OOPSLA '92 Conference Proceedings, pp. 184-200, Vancouver,
Canada, October, 1992. Published as SIGPLAN Notices 27(10), October, 1992.

[Stein 91] Lynn A. Stein. A Unified Methodology for Object-Oriented Programming. In
Inheritance Hierarchies in Knowledge Representation and Programming Languages,
John Wiley & Sons, 1991.

[Strom & Yemini 86] Robert E. Strom and Shaula Alexander Yemini. Typestate: A Programming
Language Concept for Enhancing Software Reliability. In JEEE Transactions on Software
Engineering 12(1), pp. 157-171, January, 1986.

[Strom et al. 91] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy Lowry, Daniel M.
Yellin, Shaula Alexander Yemini. Hermes, A Language for Distributed Computing.
Prentice Hall, Englewood Cliffs, NJ, 1991.

[Touretzky 86] D. Touretzky. The Mathematics of Inheritance Systems. Morgan-Kaufmann,
1986.

[Ungar & Smith 87] David Ungar and Randall B. Smith. SELF: The Power of Simplicity. In
OOPSLA '87 Conference Proceedings, pp. 227-241, Orlando, FL, October, 1987.
Published as SIGPLAN Notices 22(12), December, 1987. Also published in Lisp and
Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

[Ungar et al. 91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Holzle. Organizing
Programs without Classes. In Lisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Wadler 87] Phillip Wadler. Views: A Way for Pattern Matching to Cohabit with Data
Abstraction. In Proceedings of the Fourteenth ACM Conference on Principles of
Programming Languages. Munich, Germany, January, 1987.

[Yelland 92} Phillip M. Yelland. Experimental Classification Facilities for Smalltalk. InOOPSLA

'92 Conference Proceedings, pp. 235-246, Vancouver, Canada, October, 1992. Published
as SIGPLAN Notices 27(10), October, 1992.

