TOOA: A Temporal Object-Oriented Algebra

Ellen Rose' and Arie Segev?
The University of Toledo'
Toledo, OH 43606 and
Information and Computing Sciences Division
Lawrence Berkeley Laboratory

Walter A. Haas School of Business*
The University of California and
Information and Computing Sciences Division
Lawrence Berkeley Laboratory
Berkeley, California 94720

ABSTRACT

In this paper, we present a temporal, object-oriented algebra which serves as a formal
basis for the query language of a temporal, object-oriented data model. Our algebra is a
superset of the relational algebra in that it provides support for manipulating temporal
objects, temporal types, type hierarchies and class lattices, multiple time-lines, and correction
sequences in addition to supporting the five relational algebra operators. Graphs are used as
the visual representations of both the schema and the object instances. The algebra provides
constructs to modify and manipulate the schema graph and its extension, the object graph.
The algebra operates on a collection or collections of objects and returns a collection of
objects. This algebra is a first step in providing a formal foundation for query processing
and optimizing in a temporal, object-oriented data model.

This work was supported by an NSF Grant Number IRI-9000619 and by the Applied
Mathematical Sciences Research Program of the Office of Energy Research, U.S. Depart-
ment of Energy under Contract DE-ACO03-76SF00098.

298

1. Introduction

The increase in complexity of new applications such as computer aided
design, office information systems, scientific databases and multimedia databases
has pressed the limits of the relational model and led to research into next-
generation data models. These new data models must capture the semantics of
complex objects and treat time as a basic component versus as an additional attri-
bute in order to build more accurate models. New primitives to handle temporal
data and complex types need to be incorporated into the query and specification
languages of these models. An algebra to transform these temporal, object-
oriented model queries into a more efficient form for execution is the focus of this
paper.

The approach taken herein evolved from the integration of research on exten-
sions of the relational model to include temporal semantics and complex objects
and the recent work on object-oriented models. The literature on temporal exten-
sions to the relational model proposes adding temporal semantics through tuple or
attribute versioning. Research in these directions includes: [Clifford & Warren
83], [Clifford & Croker 87], [Snodgrass 87], [Segev & Shoshani 87], [Gadia 88b],
[Gadia & Yeung 88] and [Navathe & Ahmed 89]. A good summary of temporal
extensions to the relational algebra can be found in [McKenzie & Snodgrass 91].
[Tuzhilin & Clifford 90] propose an algebra that is restricted to temporal relational
models which support a linear, discrete bounded model of time and propose a new
linear recursive operator. Generalized logical temporal models have been proposed
by [Ariav 86] and [Segev & Shoshani 87]. A comprehensive bibliography on tem-
poral databases and references to three previous bibliographies can be found in
[Soo 91]. Extensions to the Entity-Relationship model incorporate time as either
an entity or attribute and include [Klopprogge & Lockemann 83], [Ferg 85] and
[Elmasri & Wuu 90].

Recent work on object-oriented algebras include OQL and its algebra in
[Alashqur etal 89] and [Guo etal 91] respectively. OQL operates on sets of associ-
ation patterns which are derived from a graph of object instances. OQL includes a
non-association operator and can operate on heterogeneous sets of objects. Our
approach is most similar to that found in [Guo etal 91]. [Shaw & Zdonik 90]
developed a query language and algebra for ENCORE which supports object iden-
tity and the creation of new objects and types. EXTRA [Carey etal 88] and its
query language EXCESS were developed using a database generator EXODUS.
EXCESS supports querying nested or un-nested sets, arrays, tuples and individual
objects similar to O, and user-defined functions as in POSTGRES. The above list
of OO-Algebras is not meant to be exhaustive but rather to mention those algebras
which have features which are more closely related to TOOA.

Research on schema evolution has taken two forms: single-schema
modification and schema versioning. Most proposals [Banerjee, etal 88], and
[Penny & Stein 87] take the single-schema approach. Disadvantages of this
approach include the loss of historical values when an attribute is dropped and the
forcing of all users in a multi-user environment to accept all schema changes as
part of their view. Schema versioning in the ENCORE system [Skarra & Zdonik

299

86] and in ORION [Kim & Chou 88] [Kim etal 89] doesn’t have the aforemen-
tioned problems since it allows any user to view any data base through the schema
version of their choice. [Skarra & Zdonik 86] deal with versioning class types, not
an entire database schema. Any change to a class type creates a new version of
the type and its sub-types. Therefore, the schema of the database at any moment
will consist of the selected version of each type and the links between them. [Kim
& Chou 88] [Kim etal 89] and [Andany etal 91] are the only papers found which
deal with database schema versioning. In any version of the database schema,
only one version of each distinct class object is allowed. [Kim & Chou 8§]
develop a model of database versions based on [Chou 88]’s model of object ver-
sions and provide implementation techniques to support database schema version-
ing. The basic premise of their proposal is to allow derived schema versions to
inherit all the objects of the schema version from which they are derived. The
user is allowed to specify if the objects will be inherited and whether or not they
can be updated through the parent. In this approach, any change to the database
schema creates a new version of the database schema which can lead to the prob-
lem of managing a large number of versions. [Andany etal 91] elaborate on the
alternative approach of handling schema modification using view definitions pro-
posed in [Kim & Chou 88] in the Farandole 2 model. In this approach the concept
of a context, a connected subgraph of the database schema graph, is used as the
level of granularity for versioning. Whereas, the previous approaches look only at
structural consistency, [Zicari 91] also looks at consistency in the behaviour of
methods after a schema change has occurred. To date, no database systems have
incorporated schema versioning [Kim 90]. Our approach is one of schema his-
tories at the type level using the time-sequence concept.

Several papers which focus on temporal, object-oriented models have
recently appeared in the literature. [Kafer & Schoning 92] extend a complex
object model, adding the following attributes: references to the previous and next
tuple, a boolean existence attribute, a transaction time attribute, an object identifier
and a valid time point. This model is actually a nested relational model which
adopts tuple timestamping and therefore does not allow cyclic queries. [Su &
Chen 91} proposed an object-based temporal knowledge representation model
called OSAM*/T and query language called OQL/T. Here rules are used to cap-
ture temporal semantics other than the valid start and end times of a tuple. [Wuu
& Dayal 91] add temporal semantics to OODAPLEX. In this model, a POINT
type is the supertype of the TIME and VERSION types. Time varying properties
are modeled as functions that map time objects to non-temporal snapshot values.
A more detailed comparison with these other works is given in section 6 after the
features of TOODM have been explained.

In this paper, a temporal, object-oriented algebra (called TOOA) for the
manipulation of the intension (types) and extension (objects) of a temporal,
object-oriented data model is proposed. The time-sequence collection type [Rose
& Segev 91] is used to model histories of attribute values of objects and histories
of the set of properties which define an object’s type. Each time-sequence has an
associated sequence of corrections which can be merged with the original history.

300

Multiple time-lines are used in the time-sequence collection type to allow for both
historical and rollback queries.

The remainder of this paper is organized as follows. Section 2 presents an
example which is used to discuss the basic concepts of the data model (TOODM)
for which the algebra is designed. Section 3 gives an overview of the algebra, its
notations and assumptions. Section 4 outlines the object level operators and sec-
tion 5 describes the schema level update operators. It should be noted that the
algebra only applies to retrieval operators not to the update operators. Finally,
section 6 concludes the paper with a discussion of how our proposal compares with
other temporal extensions of object-oriented data models and also delineates future
work.

2. Motivating Example and Data Model

The model upon which our algebra operates is the temporal, object-oriented
data model (TOODM) in [Rose & Segev 91]. In TOODM, a class is viewed as the
extension of the type of an object instance, hereafter referred to as object. A type
serves as a template to encapsulate the structure (attributes), behavior
(messages/methods) and constraints of an object. Each object has a globally
unique system generated identifier that is independent of the object’s state or phy-
sical location. The state of an object is described by the values held by its attri-
butes. New types must be defined as a subtype of existing types in the type hierar-
chy. A subtype inherits the properties of its supertypes. Figure 1 shows the types
which have been defined in the type hierarchy for our social security database
example as well as the system-defined types. This database would track individu-
als as they progress from childhood to adulthood, old age, retirement and death.
At each point in an individual’s life, a different set of relevant information may be
required. An individual may be described by a different type template at different
stages of their life and belong to different classes simultaneously (e.g. every adult
is also a person) or at different time points (e.g. a person can’t be both a child and
an adult simultaneously).

User-defined COMPLEX TYPES such as PERSON are defined as subtypes
of V-TYPE which means versionable type. A history is kept of the type definition
of all types defined as subtypes of V-TYPE. META-DATA are subtypes of NV-
TYPE, meaning non-versionable type, since a history of their type definitions is
not maintained. The instances of a subtype of NV-TYPE are versionable. PTYPE,
primitive types, (e.g. integers, time, etc.) have atomic values and a set of operators.
Collection types, such as SET, TUPLE, SEQUENCE, and LIST are parameterized
types used to build the extensions of other types. A special collection type called
time-sequence,! TS[O;] is illustrated in Figure 2. TS[O;] has the type O; as its
parameter. Each time sequence object has the history and correction history (corr-
history) properties which each contain a sequence of (A; TL) pairs. “‘A”
represents a tuple of attribute values and ‘“TL’’ represents a tuple of time-line
values, (TL;), having type time (7;) or one of its specializations. Valid time (vt)

! The time-sequence object and some of its operators are based on concepts from [Segev & Shoshani 87).

30

Figure 1 - Type Hierarchy for Social Security Database

\

DOLLAR

-
@&

META-DATA

User-Defined Types

© System-Defined Types in TOODM

Note: All subtypes of the time sequence collection type, TS{Oi],
are not shown in the diagram; all SET[Oi] and PTYPE objects
are also not included to simplify the diagram.

302

Figure 2 - Time Sequence Collection Type, TS [Oi]

Define TS [Oi] as subclass of Sequence [Oi]

surr: OID
history: {(A;TL)} where A =TUPLE(Ai)
TL=TUPLE(TLi: Ti)

and data-type (Ai) : {SWC, Event, CONT, User}
and gran (TLi) : CalendarSet or Ordinal
and interp-f (Ai) : Functions

default-order: TLi in TL

corr-history: same as history except value(tt) > value(tt)

in the history sequence

lifespan: Union of Temporal Elements in history
°

. .
attributes

COUNT() FIRST() LAST() Nth()

Accumulate(Agg-Op(Target-Ai),Grp(acc-pred))
Aggregate(Agg-Op(Target-Ai),Grp(TLi, gran-value)
Select (LIST[Ai], Conditions(Ai or TLi))

Restrict (TS, condition(another property of Oi))
Merge (History-TS,Corr-TS, Temporal Element)

° operators

303

and transaction time (tt) are mandatory members of this tuple. Each attribute A,
has a data-type which is step-wise constant (SWC), event, continuous (CONT) or
user-defined. If the data-type is user-defined, an interpolation function (interp-f)
should be provided to determine values for time points which are not recorded as
data points. Each time-line, TL; has a granularity which may be a calendar time
(CalenderSet) or an ordinal number. The transaction time value for a correction
history element is restricted to be greater than that of the objects in the associated
history sequence.

The lifespan attribute is defined as a possibly (but not necessarily) non-
contiguous union of temporal elements of the history property. Temporal elements
[Gadia 88a] are finite unions of time-lines. Temporal elements are closed under
intersection, complement and union. An object’s lifespan is the union of it’s
lifespans in all classes in which it has participated.

The operators in [Segev & Shoshani 87] are defined for time-sequences with
one or more attributes but only ene time-line, vt. These operators are extended to
handle multiple time-lines in TOODM through the representation of TL; as a tuple
of time-lines. Since information can be viewed with and without corrections taken
into consideration, a merge operator was developed in TOODM. Count(), First(),
Last() and Nth () return the number of data points in the sequence, the first pair,
last pair and nth pair respectively.

Figure 3 shows example type definitions for META-DATA and user-defined
types in the example. Only the attributes of the user-defined types are shown to
simplify the diagram. Attributes of meta-data types, except the object identifier,
take values from time-sequence classes so the database schema can contain
different sets of types, constraints, etc. at different time points. The class
SET[PERSON] has a set structure and the value structure of one of its instances
would be a set of PERSON identifiers. INV indicates that the employer property
of Adult and the employees property of Company are inverses representing a rela-
tionship.

2.1. Schema Graph

The schema graph, SG, in Figure 4 is a graphical representation of the user-
defined properties in Figure 3. Unlabeled arcs represent is-a links directed from a
super-type (e.g. PERSON) to its subtypes (e.g. CHILD, ADULT, SENIOR and
DECEASED). The schema graph serves as the logical representation of the data-
base. It consists of a set of nodes (types) and a set of links (properties of the
types). The set of types is a disjoint union of the set of Primitive Types (PTYPE)
and the set of COMPLEX TYPES. Each complex type has an identifier, attributes,
a supertype list, operations and constraints. This information is stored in the
extensions of the meta-data types shown in Figure 3. If a property is single-
valued, its values are stored as a TS[O;]. If the property is multi-valued its values
are stored as TS[SET or LIST[O;]].

A link in the schema graph represents a property and is directed from its
defining object type to its domain. Since more than one link can exist between the

same two types, all link types have a unique name. For example, L;?,’é‘é‘o”ﬁ"l_omno,v

Figure 3 - Type Definitions of Meta-Data and User-Defined Types

Define Meta-Types as subclass of Meta-Data

Type_Oid: OID

Type_Name: TS [String]

Superclasses: TS [LIST {Meta_Types]]
Subclasses: TS [SET [Meta_Types] |
Attributes: TS |Set [Meta_Vars] |
Operations: TS [Set [Meta_Msgs]]

Class_Attributes: TS [Set [Meta_Class_Vars]]

Relationships: TS [Set [Meta_Rels}]
Constraints: TS| Set [BOOL] |

Define Meta-Vars as subclass of Meta-Data
var-oid: OID
var-signature: TS [<var-name:String,
var-parent:Meta-Type,
var-creator : UserID,
var-type: Meta-Types> |
constraints: TS| Set [BOOL] |

Define Meta-Msgs as subclass of Meta-Data
msg-oid: OID
msg-signature: TS { <msg-name:String,
msg-parent: Meta-Types,
msg-creator: UserlD,
msg-params: Set [Params],
msg-code:<Code,Userid> > |
pre-conditions: TS[Set [BOOL] |
post-conditions: TS| Set [BOOL] |

Define Meta-Coll as subclass of Meta-Data
coll-oid: OID
coll-name: String
operators: TS {SET [Operators]
constraints: TS [Set [BOOL | |

Define Person as SubType of V-Type
soc-sec#: TS [String]
pname: TS [String]
birthdate: TS [Date]
residence: TS [Location]

Define Child as SubType of Person
guardians: TS | SET [Person]]
school: TS [School]

Define Adult as SubType of Person
employer: TS [Company]
INV is Company.employees
salary: TS [Dollar]
dependents: TS [SET [Person] |

Define Senior as SubType of Person
pension: TS [Dollar}

Define Deceased as SubType of Person
cause: TS [String]
beneficiaries: TS |SET [Person]]

Define Company as SubType of V-Type
cname: TS [String]
employees: TS [SET [Person] |
INV is Adult.employer
location: TS {Location }

Define Location as SubType of V-Type
city: TS [String]
state: TS | String]

305

Figure 4 - Schema Graph of Figure 3 User-Defined Types

residence
Date
birthdat
String
. Person =
guardians
cause
Child eneXgiarie
school Adult Senior
Deceased
lary ension
School
Dollar
employees .
employer city
state
Company location g1
String
cname

Note 1: unlabeled arcs are is-a relationships and the String type
only appears once but was drawn twice for clarity of the diagram.

Note 2: each arc has a lifespan indicating when it was a property
of the type it is directed from; lifespans are temporal elements

and may be non-contiguous

306

indicates that each PERSON has a residence whose value is in the class LOCA-
TION and a time-sequence of the location values is kept. Properties with primitive
domains can’t be represented as inverse links. Recall that relationships are
described in the type by attaching the word INV to the property as in Figure 3
where the employer property of ADULT and the employees property of COM-
PANY are inverses.

2.2. Objects and the Object Graph

Each object has a unique instance identifier (IID) which is a concatenation of
the type identifier and the object identifier. The object graph, OG, is the extension
of the schema graph. Its nodes are IID’s and links represent associations from
IID’s to time-sequence objects. In Figure 5, person 1 (pl) has subtype objects
child 1 (chl) and adult_1 (al). Each of these objects is linked to time-sequence
objects. For example, the values of the social-security attribute of pl are found in
time-sequence ts10 which indicates the social security number was recorded as
¢333-33-3333"” at tt=71 and is valid from vt=71 into the future (now+).

Deletion of information is represented by a gap in the time-sequence values
as in ts33 where no residence information was recorded between vt=[71,75]. In
Figure 6, ts68, attribute variable (V4=residence) was deleted from Person’s type
definition for the period vt=[71,75] at tt=71 corresponding to the deleted data in
Figure 5. If the information was not available but was defined in the type, it
would have appeared in the time-sequence as a null? value for vt=[71,75]. The
residence link for p3 has a lifespan of <60,[36,70]> y <76, [71,76]>. The
lifespan of a link in the object graph is the same as the lifespan of its time-
sequence object. The transaction time associated with a period where no value
was recorded is the previous transaction time where the association existed.

Relationships are constrained in terms of lifespans of the participants. For
instance, the values of company c5 in Figure 5 appear in ts41 through the employ-
ees link instance which has a lifespan of [66,86]. The first pair in ts41 associates
person p2 with the time [66,80], the second pair associates pl and p2 with time
[81,84] and the third pair associates p2 with time [85,86]. Since the employer link
is an inverse in the schema graph, c¢5 must appear in each pair in ts16 (pl’s
employer link) which has a valid time that intersects with [81,84] and in each pair
in ts26 (p2’s employer link) that intersects with [66,86].

Non-temporal data is a degenerative case where the lifespan of the link con-
sists of a single element of its time-sequence object. The end point of the valid
time interval would be now+ as in the cause of death property.

2 Different representations for nulls including not-available and unknown can be used.

307
Figure 5 - Object Graph of Some Instances of User-Defined Types

soc-sech ts10 { (333-33-3333; <71, [71,now+]>) }

ts11 { (Mary; <60, [60,65]>), (Maryann; <66, [66, now+]>) }
ts12 { (1/1/60; <60, [60, now+]>) }

ts13 { (loc8; <60, {60, 701>), (loc9; <76, [76,now+}>) }

ts14 { (elementary; <65, [66, 71]>), (jr high; <71, [72, 76]>),
) (high; <76, [77,80]>) }

—suardians pegy (15 ¢ ({p2,p3}; <60, [60, 76}>), ({p2}; <77, [77,80}>) }
ts16 { (c5; <81, [81.84]>), (c6; <87, [87,now+]>) }

ts17 { (30K; <81, [81,82]>), (33K; <82, [83,84]>),
(40K; <87, [88,now+]>) }
ts18 { (<; <81, [81,now+]>) }

p2 gl _pe-g) { (222-22-2222; <60, [45,now+]>) }
—HaNE g ts23 { (David; <60, [35,now+]>) }
DInhdale mmg o4 ¢ (2115/35; <60, [35, now+]>) }

residence
———— 0 525 { (1oc9; <60, [35,59]>), (loc8; <60, [60,70]>),
(loc9; <76, | 76,80]>), (1oc8; <81, |81 ,now+]>) }

employer ts26 { (c7; <60, [55,65]>), (c5; <66, [66,86]>) }

ts27 { (25K; <60, [55,58]>), (28K; <60, [59,62]>),
(35K; <63, [63,70]>), (45K; <71, [71,86]>) }
ts27c { (37K; <63, [63.70]>) }

ts28 { ({pl,p3}; <60, [60,69]>), ({pl}; <70, [70,74]>),
({pl.p3}; <75,[75,76]>) }
ts29 { (38K; <87, |87.88]>), (40K; <89, [89,now+]>) }

dependents

sr2

Note:
The time sequence instances "ts", are sequences of pairs (attribute-tuple;

time-line tuple), where the first element of the time-line tuple is record time
and the second is valid time.

pi
di

- person i, ai -adulti, chi-child i, sri- seniori, tsi-time sequence i,
- deceased 1, ci - company i, loct - location i

308
Figure 5 - Object Graph of Some Instances of User-Defined Types

py groesect 530 { (111-11-1111; <60, [46,n0w+]>) }
ts31 { (Rachel; <60, [36 ,now+]>) }

ts32 { (5/18/36; <60, [36, now+1>) }

\ residence o, o 133 { (loc8; <60, [36,501>), (10c9; <60, [51,70}>),
(loc9; <76, [76,76]>) }

ts34 { (c6; <70, [70,76]>) }
ts35{ (25K; <70, [70,72]>), (27K;<72,[73,74]>) }

ts36 { ({p1}; <60, [60,76]>) }
ts38 { (cancer <77, [77, now+]>) }

ts39 { ({p1.p2}; <77, [77.89]>),
({p1}; <90, [90,now+]>) }

cname
® 540 { (GM; <60, [50,now+1>) }
c5 ® 1541 { ({p2}; <66, [66,80)>), ({p1.p2}: <81, [81,84]>),
({p2}; <85, [85,86]>) }
location
® 1542 { (loc!0; <60, [20, now+]>) }
cname
® 1543 { (IBM; <60, [(60,now+]>) }
employees

cb ® 144 { ({p3}; <70, [70,771>), ({pl}; <87, [87,now+]>) }

__location >
® 545 { (loc8; <60, [20, now+]>) }

ts46 { (Philco; <60, [49,66]>),
(Ford Aerospace; <67, [67,now+]>) }

1s47 { ({p2}; <60, [55.58}>) }

_location o @ 548 { (loc9; <60, [20, now+1>) }
loc8 at @ (549 { (San Jose; <60, [20, now+]>) }
'state ® 1550 { (CA; <60, [20, now+}>) }
loco —2——">@ (51 { (Sunnyvale; <60, [20, now+1>) }
\'SCI;L—’O 1552 { (CA; <60, [20, now+]>) }
locl0 statz ® ts53 { (Fremont; <60, 30, now+]>) }

® 554 { (CA; <60, [30, now+}>) }

309

3. An Overview of TOOA

3.1. Assumptions

Events are viewed as durationless and cause an object to change state. The
taxonomy of time given in [Snodgrass & Ahn 85] for valid time (vt) and transac-
tion time (tt) is adopted here. The state of an object persists over some duration of
time and is represented by the values held by the attributes of the object over this
time duration. The time period over which a state holds is the valid time. The
transaction time refers to when an object was recorded. Time is represented as a
primitive type which is independent of events. Time can be subtyped into absolute
and relative time values as well as specialized time types with different orderings.
A partial ordering is useful in representing alternate versions of design objects.

The semantics of existing operations -- retrievals, corrections and updates
differ in TOODM. Retrievals can result in a time-sequence of values. Corrections
are illustrated in Figure 5 where ts27c is the corr-history for ts27. The query,
““Find David’s salary at vt=64 as seen from tt=69 accounting for corrections made
during tt=[64,69]’°, can be answered by doing merge(ts27,ts27¢c,[64,69]). The
result with corrections is 37K whereas it would be 35K without. Updates (add,
change, delete) also differ from those of a static data model. For instance, chang-
ing an existing attribute’s value means adding an element to the time-sequence of
values representing the attribute. Changes to an existing object implies ending its
valid time interval one unit prior to the time of the change, at t-1 and starting the
valid time interval of the new value at time t. The end point of the new value’s
valid time interval could be a specific time point or now+ if it is assumed to hold
in the future and present. Adding a new object to a class requires creating time-
sequence objects to represent each of its properties. Deletion of an object implies
the end of its lifespan without the removal of the information from the database
and that the object can’t be referenced by any other objects from the time of dele-
tion forward until the time if any that the object re-enters the system.> These
operators are defined in the type called OBJECT in Figure 1.

3.2. Overview of the Operators

Operations can be applied to a class or the hierarchy rooted at a class, mean-
ing the result may contain heterogeneous objects with different sets of properties.
This is different from the relational algebra which only allows operations on homo-
geneous sets of objects, specifically sets of tuples where all tuples in a particular
relation have the same set of attributes. The following two sections discuss the
object level and schema level operators in terms of the example instances found in
Figures 5 and 6.

3 Historical information for *‘deleted’’ objects can be queried since the history of the object’s past states prior to
the deletion exists in the database.

310

Figure 6 - Object Graph of Some Instances of Meta-Types

TP1

® ts66 { (Person; <60, [25, now+]>) }
® 1s67 { (V-Type; <60, [25, now+}>) }

varlist @ 1568 { ({VA1,VA2,VA3,VA4); <60, [25, 70}>),
({VA1, VA2, VA3} ; <71, [71,75]>),
({VA1,VA2,VA3,VA4}; <76, [76, now+]>) }
ts69 { ({MS1, MS2, MS3 }; <60, [25, 80]>),
({MS1, MS2, MS3, M18 }; <80, [81, now+]>) }
@ 1570 { (ALL; <60, [25, now+]>) }

ts71 { ({CN1,CN2}; <60, [25,now+]>) }

creator

TP3

\—mm‘—” ts90 { (Adult; <60, [25, now+]>) }

® ts91 { (Person; <60, [25, now+]>) }
ts92 { ({VA7,VA8,VAQ,VA10}; <60, [25,now+]>) }

ts93 { ({MS7, MS8, MS9 }; <60, [25, 80]>),
({MS7, MS8, MS9, M10 }; <80, [81, now+]>) }

ts94 { (ALL; <60, [25, now+}>) }
ts95 { ({CN1,CN2}; <60, [25,now+]>) }

var-list

creator

constraints

Note: The time sequence instances "ts", are sequences of
pairs (attribute-tuple; time-line tuple), where the first
element of the time-line tuple is record time and the
second is valid time.
VA1 = soc-sec#, VA2 = pname, VA3 = birthdate, VA4 = residence,
VA5 = school, VA6 = guardians, VA7 = employer, VA8= salary,
VA9 = dependents, VA10 = cname, VA11 = employees and
VA12 = location, TPi - Type i, MSi- Message i, VAi - Variable i,
tsi - time sequence i, CNi - Constraint i

311

4. Object Level Operators

4.1. Objects with Tuple Values
1) +f, Temporal Association

This binary operator returns a collection of graphs of objects. For each
graph in the result, an instance of the class or class hierarchy specified by the first
operand is associated through link k with an instance or instances of the class or
hierarchy rooted at the class in the second operand at time T. If the class
represented by the second operand is not primitive, then the association operator
can be applied again to retrieve a value of an attribute of that class. We can think
of the association operator as a navigational operator that allows us to specify a
path through the schema graph that existed at some time T for each link. This
means that T must be contained in the lifespan of link k for the operation to be
valid since the link is only defined during its lifespan. For example, we can
specify a path from the class Adult to Company to String where the link between
Adult and Company is employer and the link between Company and String is
cname and T is specified as [74,76] for both links. The result of the following is
shown in Figure 7a: Adult 0[8—,'2'{’712 " Company * 5% String

2) |7, Temporal Complement

Whereas the previous operator returns a TS[values] that are associated with
an object through one of its attributes, this operator returns the members of the
second operand that were not associated with the objects belonging to the first
operand during time T. For example, we can retrieve the adults who were not
employed according to their employment history in the database at time T =
[85,87]. We also need to know when this property was defined in the type
definition. From Figure 6, we see the employer property (VA7) was defined for
type Adult (TP3) at transaction time 60 and was retroactively valid from time 25
to now+. This means that T = [85,87] is valid since it is contained in the lifespan
of the property employer for type Adult in the schema. From Figure 5, we see
that a; was not employed during {85,86], a2 was not employed during [87,now+]
and a3 was not employed during [60,69] and only the first two adults were not
employed during time T. Note that a3’s lifespan ends prior to T and therefore has
no employment history after her death. We can express this Temporal Comple-
ment operation as follows: Adult I['g’;’?f'é&’{‘” Company where the result appears in
Figure 7b.

3) o-IF7p, Temporal Selection Using a Temporal Predicate

Select-IF is a unary operator which returns the set of objects that meet the
temporal predicate condition specified by TP. The temporal predicate consists of a
non-temporal FOL predicate (NTP), a quantifier (Q) over time (for all or for some)
and a temporal element (T) over which the selection is to be taken. The NTP can
consist of several predicates combined with the boolean connectives: ‘“‘and’’, “‘or”’
and ‘‘not”’. Comparisons must be made between objects of the same type: primi-
tive to primitive or IID to IID. The result of a temporal select-IF is shown in Fig-
ure 7c where we select those Adults who were employed by IBM some time in the
last 2 years. The time period during which the specified condition must exist is
used to restrict the objects in the result as follows:

312

Figure 7 - Operator Examples

Company

Adult

: 40 { (GM; <60, [74,76]>) }
@ ts43 { (IBM; <60, [74,76>) }

String
Figure 7a - Temporal Association

Company

® ts16 { (<; <81, [85,86]>) }
ts26{ (<>; <66, [87.87]>) }

—=——P Complement Link, c(ai,tsi)
Note: ((Is(ai) inter Is(employer)) - Is(tsi)) inter T = Is(c(ai,tsi))

Figure 7b - Temporal Complement

313

Figure 7 - Operator Examples

Adult Company

employer ® (516 { (c6; <87, [now-2,n0w]>) }

String

ts43 { (IBM; <60, [now-2,now] >) }

Figure 7c- Select-IF

Adult

salary

Salary

ts17 { (33K; <82, [83,84]>), (40K; <87, [88,now+]>) }
® 527 { (35K; <63, [63,70]>), (45K; <71, [71,86]>) }

Figure 7d - Select-When

314

o-IF [cname =IBM, exists, [now—Z,naw](Adult « Company * String)
4) 6-WHENy7p , Temporal Selection Using a Non-Temporal Predicate

Select-WHEN is a unary operator which returns a set of objects that meet
the non-temporal predicate condition specified by NTP. The lifespan of the resul-
tant objects is the set of times when the object meets the NTP condition. The
result of a temporal select-WHEN is shown in Figure 7d where we select the
Adults who had a salary > 30K at sometime in their history as follows:
o—-WHEN (salary>30K } (Adult)

The lifespan of the resulting objects would be the times when they had
salaries greater than 30K.

5) (7> Temporal Intersection

(M\r is a binary operator which is similar to the join operator in a relational
algebra. The result only exists if the graphs to be joined have at least one node
class in common. The result of a temporal intersection over a set of classes at
time T is given in Figure 7e where we get the current names of people who were
guardians of children in 1980 and who are also currently classified as seniors. The
set of classes in this case just contains the primitive class String.

(Child « Bugrdians Person «2"ame String) (N \Siring} (Senior « by String).
Note, we can associate Senior to class String through pname since Senior inherits
this property from its supertype, Person.

6) \Ur, Temporal Union

\Ur is a binary operator which is similar to the union operator in a rela-
tional algebra except it can operate over heterogeneous sets of objects. That is, the
graphs in the operands need not have the same topology or nodes from the same
classes. Only objects which exist in one operand or the other at time T will
appear in the resulting set of graphs. In Figure 7f we find the persons who were
not classified as seniors or deceased in 1980. This results in pl and p2 with com-
plement links to both srl and sr2 since neither had a link to senior or deceased in
1980. p3 will have a complement link to sr3 only since p3 was classified as
deceased in 1980.

7) —r, Temporal Difference

—r is a binary operator similar to the difference operator in a relational alge-
bra except it can operate over heterogeneous sets of objects. Any objects which
exist in the first operand at time T and contain an element of the second operand
that exists in it at time T, will not appear in the result. In Figure 7g we find exist-
ing adults who were not part of the group of adults who were not linked to a Com-
pany in [85,87] by subtracting the result of 7b) from the set of adults. This gives
us the adults who did not have a period of unemployment in their employment his-
tory. We express this operation as follows:

Adult =A%t (Adult | G Company)

315

Figure 7 - Operator Examples

Child

ardians ® ts15 { ({p2}; <77, [80, 80]>) }

pname
® ts23 { (David; <60,

Senior

Figure 7e - Temporal Intersection

String

Figure 7f - Temporal Union

316

Figure 7 - Operator Examples

alpha

pl @

p2 © @ (526 { (c5; <66, [74,76]>) }

p3 @ ® (s34{ (c6; <70, [74,76]>) }
gamma

alpha (-T) beta = gamma

Figure 7g - Temporal Difference

Person Location

ts13 { (loc9; <76, [76,77]>) }
ts25 { (loc9; <76, [76,77]>) }

ts33 { (loc9; <76, [76,76]>) }

Figure 7h - Time Slice

317

8) Time-Slicer

This operator reduces the objects in the time dimension just as the relational
project reduces relations in the attribute dimension and the relational select reduces
relations in the value dimension. It returns a snapshot of the object graph at time
T. In Figure 7h we find each person’s residence in T = [76,77] as follows:
Time —Slice [{7%?%'{"""} (Person «"®ence [ocation)

9) Rollbacky

This operator produces a snapshot of the database as it existed at some pre-
vious transaction time T. Note that the previous operators used T with valid time
semantics. In Figure 7i we get the history of dependents for each adult as
recorded in the database in 1962. This operation is expressed as follows:
RollbacksEe" (Adult «%Pe"4ms Person)

Only the portion of the time-sequence where transaction time is less than or equal
to T is retained in the result. No restrictions are placed on the relationship
between tt and vt.

10) 7, Temporal Projection

This operator is the counterpart of the relational project in that it returns
objects which contain some subset of the object’s properties. The difference is it
returns a history of the values of each of those properties. For example, each per-
son has four associated attributes in our example database and we may only want
to return the history of their residence property if they have ever lived in Sun-
nyvale. The result of the following expression appears in Figure 7j:

T (Person +"*"¢ G—IF [in, = Sunnyvale, exisis,) (Location % String)) [Location)
where the temporal element is left out since we are requesting the entire history.

The unary operators have precedence over the binary operators and the ord-
ering for the binary operators is: *7 , l7, (g, —r and {_J;. Parentheses can be
used to create other orderings.

4.2. Set and List Structures

Set structures have the operations: €, (™, minus, _J, count. List structures
have the operators: ith €, sublist, concat and count. Other aggregate operators
such as max, min and avg can be added to collections of objects of type SET[T]
or LIST[T] when T is a numeric type.

4.3. Time Sequence Structures

The time-sequence structure is used to model histories of attributes of com-
plex objects. The operators defined in the time-sequence type are only briefly dis-
cussed here due to space limitations. These operators include: €, ith, merge, res-
triction over a time-line or by values of the attributes in the time-sequence pairs
and accumulation over time. These operators are described in [Segev & Shoshani
87]. We have also extended the select, aggregate, accumulate and restrict opera-
tors to handle multiple time-lines as discussed in Figure 2 where TL; can be any
time-line. For example, one could request the average salary of adults grouped on
valid time with a granularity of year by sending the following message where
Result is a keyword in the data manipulation language used to indicate a collection

318

Figure 7 - Operator Examples

Adult Person

©® 28 { ({pl,p3}; <60, [60,69]>) }

Figure 7i - Rollback

Location

ts13 { (loc8; <60, [60, 70]>), (1oc9; <76, [76,now+]>) }

ts25 { (loc9; <60, [35,59]>), (loc8; <60, [60,70]>),
(loc9; <76, [76,801>), (loc8; <81, [81,now+]>) }

ts33 { (loc8; <60, [36,50]>), (loc9; <60, [51,70]>),
(loc9; <76, [76,761>) }

Figure 7j - Temporal Projection

319

where the result of the operation is stored: Result =
Aggregate(AVG(salary),GRP(vt,year)) Similarly, one could request the average
salary of adults grouped by transaction time with a granularity of year as follows:
Result := Aggregate(AVG(salary),GRP(tt,year))

4.4. Update Operators

The following operators are defined in COMPLEX TYPE and are inherited
by all user-defined types except subtypes of primitive types and collection types.

Add_Obj_Instance(o, A)

Adding an object o to the EXT(A) where A is the defining type of object o
involves creation of an IID for the object where the class part of the IID is the
identifier for type A. The user must supply the valid time interval for each pro-
perty and transaction time will be the current time. A time-sequence object is
created for each property of the new object.

Del_Obj_Instance(o, A)

Deleting an object o from the EXT(A) where A is the object’s defining type
involves ending the lifespans of all properties of the object. Since relationships are
stored as properties their lifespan is also ended. The inverse attribute in the other
type participating in the relationship will have the last (A,T) pair* in its time
sequence which includes the IID of the deleted object adjusted in one of the fol-
lowing ways. If the time-sequence (TS) stores a set or list of values of type A
then a new (A,T) pair is added to the TS which does not include the deleted object
and the lifespan of the previous element is ended. If the TS object stores a single
value the lifespan of the last (A,T) pair is ended.

Mod_Obj_Instance(o, A, [List of property:value])

Modification of an object o in the EXT(A) involves updating the TS associ-
ated with each property in the list. The end point of the previous (A,T) object’s
valid time interval will be set to the current time or a user-specified time and the
start time of the new (A,T) object’s valid time will be set to that time plus one
time unit. The transaction time of the new object is set to the current time. Since
relationships between this object and others are by reference and only involve its
IID, no other updates are required. Any values in the list can not violate condi-
tions in the set of constraints associated with object type A.

5. Schema Level Operators

The domain for the schema operators is the extension of the meta-data types.
These classes contain instances of type definitions, variable definitions, operation
(message) definitions and collection definitions. The meta-data classes can be
queried using the operators defined at the object level since they are treated in the
same way as the data. Therefore, we just define the update operators in this sec-
tion. Operators for adding/deleting/renaming types, instance variables (attributes),

4 (A,T) pair is used to refer to a time-sequence pair or element. TS refers to a time-sequence.

320

messages, and constraints are defined. Operators to add/delete a supertype from a
type’s list of supertypes, to modify an attribute’s domain, parent or creator and to
modify a message’s parent, creator, parameters and code module are defined as
well. We don’t include transaction time in the operator’s parameters since it is
automatically recorded by the system.

1) Add_Type (Name, LIST[O;], TUPLE[Meta-Vars], SET[Meta-
Msgs], UserID, SET[BOOL], vt)

The user supplies a string-value for Name, a list of existing identifiers indi-
cating the new type’s supertype list his/her userid and the valid time when the type
is allowed to be used. The valid time is restricted to be greater than or equal to
the time when the type is recorded (tt) since a type can not have an extension until
it exists in the database. Next, the user is asked to define the instance variables
that will represent the structure of the object and the messages and constraints that
will define its behavior. This operator results in the creation of an instance of
Meta-Types, a set of instances of Meta-Vars, a set of instances of Meta-Msgs and
a class object called SET[Name] to represent the extension of the new type.

2) Del_Type(OID, Name, UserID, END(vt))

The user supplies the name of the type to delete, his/her userid and the date
when the deletion will become effective - END(vt). Names of types must be
unique so the name can be used to find the OID of the type to be deleted. The
lifespans of all properties associated with the instance of Meta-Types with this
OID will be ended with the time END(vt). All the lifespans of the properties of
the corresponding Meta-Vars and Meta-Msgs instances will be ended with the
same time. These properties will no longer be inherited by the deleted type’s sub-
types as of END(vt). The supertype lists of the deleted type’s subtypes must be
updated to exclude the deleted type as of END(vt). This entails terminating the
last element of the supertype list time-sequence at END(vt) and adding a new ele-
ment that doesn’t contain the deleted type whose valid start time is END(vt) + 1
where 1 has the same granularity as vt. The endpoint of the new interval is
defined as now+. The lifespan of the extension of the deleted type, SET[Name]
must also be ended at END(vt).

3) Rename_Type(OID, Old_Name,New_Name, UserID,vt)

Adds a new element to the time-sequence associated with the typ-name pro-
perty of the Meta-Type instance whose typ-name = Old Name and creator =
UserID. The new element will have New Name and Userld as its attribute values.
It will become valid at time vt.

4) Add Var(Type-OID, Name, Parent, UserID, Domain,
SET[BOOL], vt)

The user supplies the OID of the type to which the variable is to be added,
the name of the variable, the parent it is inherited from, his/her userid, the domain
type from which the variable will get its values, constraints on the variable and the
time when the definition becomes valid. This results in the creation of a new
instance of Meta-Vars and adds an element to the time-sequence associated with
the instance of Meta-Types that has the given OID.

321

5) Del_Var(Type-OID, Var-OID, vt)

The lifespan of the last element in the time-sequence associated with the
var-list property of the Meta-Type instance with Type-OID as its identifier will be
ended at vt. A new element will be started which does not contain the OID of the
deleted instance variable. The lifespans of all properties of the instance of Meta-
Vars with the identifier Var-OID will also be ended at time vt. If the variable is
an inverse, the same procedure must be done for the instance of Meta-Vars
representing the inverse variable.

6) Add_Msg(Type-OID, Name, Parent, UserID, SET[Param], Code,
vt, SET[BOOL])

This operator creates an instance of Meta-Msgs using the user-supplied
values. Pre- and Post-condition constraints for the use of the messages can also be
specified as a set of boolean conditions. The last element of the time sequence
associated with the msg-list property of the instance of meta-types identified by
Type-OID has its lifespan ended at vt and a new element which includes the new
message is added to the sequence as in the previous add operations. Parameters in
the new message are restricted to represent existing variables during the message’s
lifespan.

7) Del Msg(Type-OID, Msg-OID, vt)

The lifespan of the last element in the time-sequence associated with the
msg-list property of the Meta-Type instance with Type-OID as its identifier will be
ended at vt. A new element will be started which does not contain the OID of the
deleted instance variable. The lifespans of all properties of the instance of Meta-
Msgs with the identifier Msg-OID will also be ended at time vt.

8) Add_Bool(Type-OID,{Var-OID| Msg-ID| Coll-ID}, BOOL, vt)

This operator creates an instance of type Boolean using the expression,
BOOL, supplied by the user. The last element of the time sequence associated
with the constraints property of the instance of meta-types identified by Type-OID
has its lifespan ended at vt and a new element which includes the new constraint is
added to the sequence as in the previous add operations. If a variable, message or
collection OID is specified as the second parameter, the previous operation is car-
ried out on the constraint (pre-/post-conditions) property of the appropriate
instance.

9) Del_Bool(Type-OID,{Var-OID| Msg-ID| Coll-ID}, BOOL-OID, vt)

The lifespan of the last element in the time-sequence associated with the
constraint (pre-/post-condition) property of the specified instance will be ended at
vt. A new element will be started which does not contain the OID of the deleted
constraint.

10) Add_SuperT(Type;, Type;, position, vt)
This operator says to make Type; a supertype of Type; and to add Type; to
the supertype list of Type; at position. This operation entails ending the lifespan

of the last element in the time-sequence associated with the superclasses property
of Type; at time vt and adding a new element which includes the new supertype.

322

Type f

and Type; must both be pre-defined in order to perform this operation.

11) Del_SuperT(Type;, Type;, position, vt)

This operator says to delete Type; from the supertype list of Type; at posi-
tion. This operation entails ending the lifespan of the last element in the time-
sequence associated with the superclasses property of Type; at time vt and adding

a new element which excludes the supertype to be deleted. Type; and Type; must
both be pre-defined in order to perform this operation.

12) Mod_Var_ Signature(Var-OID, Name, Parent, UserID, Domain, vt)

This operator lets the user change the name, parent, userid and/or domain
associated with the variable identified by Var-OID. The last element of the time
sequence associated with the var-signature property of the instance of meta-vars
identified by Var-OID has its lifespan ended at vt and a new element which
includes the new signature values is added to the sequence.

13) Mod_Msg_Signature(Msg-OID, Name, Parent, UserID,
SET[Param], Code, vt)

This operator lets the user change the name, parent, userid parameters and/or
code associated with the message identified by Msg-OID. The last element of the
time sequence associated with the msg-signature property of the instance of meta-
msgs identified by Msg-OID has its lifespan ended at vt and a new element which
includes the new signature values is added to the sequence. Parameters in the new
message are restricted to represent existing variables during the message’s lifespan.

6. Summary and Future Work

Unlike the three temporal object-oriented models described in the introduc-
tion, TOODM supports type definition histories and makes use of the time-
sequence construct shown in Figure 2. [Wuu & Dayal 91] and TOODM use attri-
bute time-stamping whereas the other two papers time-stamp at the object instance
level. TOODM allows a lifespan to be a finite union of non-contiguous intervals
whereas [Wuu & Dayal 91] require contiguous intervals which does not allow for
the case where a particular attribute may have been part of a type definition, then
removed from it and later added back. [Su & Chen 91] do not directly support tt
in their data model, rather they require the user to define rules to handle tt. Nei-
ther [Wuu & Dayal 91], [Su & Chen 91] or [Kafer & Schoning 92] include a dis-
cussion of a temporal object-oriented algebera with their data model.

In this paper, we developed a temporal, object-oriented algebra (called
TOOA) for the manipulation of the intension and extension of a temporal, object-
oriented data model. The time-sequence collection type was used to model his-
tories of attribute values of objects and histories of the set of properties defining an
object type. The paper makes the following contributions. First, it provides an
algebra that operates on collections of object graphs. Second, it provides sets of
update operators for both object histories and type definition histories. Third, it
provides a merge operator for time-sequence objects to filter in or leave out

323

corrections. The algebra includes a rollback operator to allow reversion back to a
previous state of the recorded model as well as operators that retrieve values based
on when they were valid. The separation of recorded values from their corrections
also allows us to maintain an audit trail which could prove useful in accounting
applications and in duplicating the results of previous analyses. Our operators also
allow us to specify a different time period for each property of an object through
the use of the associate/non-associate operators.

The next step in the development of this model will be to map the algebra to
a higher-level, SQL-like syntax. Formal proofs to establish the equivalence pro-
perties will be used to determine transformations that will optimize query process-
ing. Constraints are also being developed for the model to provide a means of
doing semantic query optimization by transforming the query into a syntactically
different but semantically same query which may have a more efficient execution
plan. Implementing the optimizer as a rule-based system would make it more
extensible, providing a means for adding new information and optimization
methods. We will also need to investigate the trade-offs between optimizing the
time to execute a query and the time to select the best query execution plan.
Determining access patterns and indexes to facilitate those patterns will also be
investigated through the development of a graphical front-end to the POSTGRES
extended relational system.

REFERENCES

[Alashqur etal 89] AM. Alashqur, S.Y.W. Su and H. Lam, OQL: A Query
Language for Manipulating Object-Oriented Databases, Proceedings of the
Sth International Conference on Very Large Data Bases, Amsterdam, The
Netherlands, 1989, pp. 433-442.

[Andany etal 91] J. Andany, M. Leonard and C. Palisser, Management of Schema
Evolution in Databases, Proceedings of the 17th International Conference on
Very Large Data Bases, Barcelona, Spain, September 1991, pp. 161-170.

[Ariav 86] G. Ariav, A Temporally Oriented Data Model, ACM Transactions on
Database Systems, V. 11, N. 4, December 1986, pp. 499-527.

[Banerjee etal 88] J. Banerjee, W. Kim, and K.C. Kim, Queries in Object-Oriented
Databases, Proceedings of the 4th International Conference on Data
Engineering, Los Angeles, California, February 1988, pp. 31-38.

[Clifford & Warren 83] J. Clifford and D.S. Warren, Formal Semantics for Time
in Databases, ACM Transactions on Database Systems, V.8, N. 2, June 1983,
pp. 214-254.

[Carey etal 88] M.J. Carey, D.J. DeWitt and S.L. Vandenberg, A Data Model and
Query Language for EXODUS, Proceedings of the ACM SIGMOD Interna-
tional Conference on the Management of Data, June 1988, pp. 413-423.

[Clifford & Croker 87] J. Clifford and A. Croker, The Historical Data Model
(HRDM) and Algebra Based on Lifespans, Proceedings of the 3rd

324

International Conference on Data Engineering, Los Angeles, California,
February 1987, pp. 528-537.

[Elmasri & Wuu 90] R. Elmasri and G.T.J. Wuu, A Temporal Model and Query
Language for ER Databases, Proceedings of the 6th International Conference
on Data Engineering, May 1990, pp. 76-83.

[Ferg 85] S. Ferg, Modeling the Time Dimension in an Entity-Relationship
Diagram, Proceedings of the 4th International Conference on the ER
Approach, In Entity-Relationship Approach, Ed. Chen, P.P.S., Elsevier Sci-
ence Publishers B.V. North-Holland, 1985, pp. 280-286.

[Gadia 88a] S.K. Gadia, The Role of Temporal Elements in Temporal Databases,
Database Engineering, V 7, 1988, pp. 197-203.

[Gadia 88b] S.K. Gadia, A Homogeneous Relational Model and Query Language
for Temporal Databases, ACM Transactions on Database Systems V. 13, N.
4, December 1988, pp. 418-448.

[Gadia & Yeung 88] S.K. Gadia and C.S. Yeung, A Generalized Model for a Rela-
tional Temporal Database, Proceedings of ACM SIGMOD International
Conference on the Management of Data, V. 17, N. 3, June 1988, pp. 251-
259.

[Guo etal 91] M. Guo, S.Y.W. Su and H. Lam, An Association-Algebra for Pro-
cessing Object-Oriented Databases, Proceedings of the 7th International
Conference on Data Engineering, Kobe, Japan, April 1991, pp. 23-32.

[Kafer & Schoning 92] W. Kafer and and H. Schoning, Realizing a Temporal
Complex-Object Data Model, to appear in Proceedings of the ACM SIGMOD
International Conference on the Management of Data, San Diego, California,
June 1992.

[Kim & Chou 88] W. Kim and H.T. Chou, Versions of Schema for Object-
Oriented Databases, Proceedings of the 14th International Conference on
Very Large Data Bases, Los Angeles, California, 1988, pp. 148-159.

[Klopprogge & Lockemann 83] M.R. Klopprogge and P.C. Lockemann, Modeling
Information Preserving Databases: Consequences of the Concept of Time,
Proceedings of the 9th International Conference on Very Large Data Bases,
Florence, Italy, 1983, pp. 399-416.

[McKenzie & Snodgrass 91] E. McKenzie and R. Snodgrass, Evaluation of Rela-
tional Algebras Incorporating the Time Dimension in Databases, ACM Com-
puting Surveys, V. 23, N. 4, December 1991, pp. 501-543.

[Navathe & Ahmed 89] S.B. Navathe and R. Ahmed, A Temporal Relational
Model and Query Language, Information Sciences, V. 49, 1989, pp. 147-175.
[Rose & Segev 91] E. Rose and A. Segev, TOODM - A Temporal, Object-
Oriented Data Model with Temporal Constraints, Proceedings of the 10th

International Conference on the Entity-Relationship Approach, San Mateo,
California, 1991, pp. 205-229.

325

[Segev & Shoshani 87] A. Segev and A. Shoshani, Logical Modeling of Temporal
Databases, Proceedings of ACM SIGMOD International Conference on the
Management of Data, May 1987, pp. 454-466.

[Shaw & Zdonic'90] G.M. Shaw and S.B. Zdonic, A Query Algebra for Object-
Oriented Databases, Proceedings of the 6th International Conference on
Data Engineering, Vol. 12, No. 3, February 1990, pp. 154-162

[Skarra & Zdonik 86] A.H. Skarra and S.B. Zdonik, The Management of Changing
Types in an Object-Oriented Database, Procceedings of the OOPSLA Confer-
ence, Portland, Oregon, September 1986, pp. 483-495.

[Soo 91] M.D. Soo, Bibliography on Temporal Databases, SIGMOD Record, V. 20,
N. 1, March 1991, pp. 14-23.

[Snodgrass & Ahn 85] R. Snodgrass and I. Ahn, A Taxonomy of Time in Data-
bases, Proceedings of ACM SIGMOD International Conference on the
Management of Data, May 1985, pp. 236-246.

[Snodgrass 87] R. Snodgrass, The Temporal Query Language TQUEL, ACM Tran-
sactions on Database Systems, V. 12, N. 2, June 1987, pp. 247-298.

[Su & Chen 91] S.Y.W. Su and H.M. Chen, A Temporal Knowledge Representa-
tion Model OSAM*/T and Its Query Language OQL/T, Proceedings of the
17th International Conference on Very Large Data Bases, Barcelona, Spain,
September 1991, pp. 431-442.

[Tuzhilin & Clifford 90] A. Tuzhilin and J. Clifford, A Temporal Relational Alge-
bra as a Basis for Temporal Relational Completeness, Proceedings of the
16th International Conference on Very Large Data Bases, 1990, pp. 13-23.

[Wuu & Dayal 91] G. Wuu and U. Dayal, A Uniform Model for Temporal

Object-Oriented Databases, Proceedings of the 8th International Conference
on Data Engineering February 1991, pp. 584-593.

[Zicari 91] R. Zicari, A Framework for Schema Updates In An Object-Oriented
Database System, Proceedings of the 7th International Conference on Data
Engineering, Kobe, Japan, April 1991, pp. 2-13.

