PANDA — Supporting Distributed Programming in C++

H. Assenmacher, T. Breitbach, P. Buhler, V. Hiibsch, R. Schwarz

Department of Computer Science, University of Kaiserslautern
P.O. Box 3049, W - 6750 Kaiserslautern
Germany

Abstract: PANDA is a run-time package based on a very small operating system kernel
which supports distributed applications written in C++. It provides powerful abstractions
such as very efficient user-level threads, a uniform global address space, object and thread
mobility, garbage collection, and persistent objects. The paper discusses the design ration-
ales underlying the PANDA system. The fundamental features of PANDA are surveyed, and
their implementation in the current prototype environment is outlined.

1. Introduction

Systems for parallel and distributed object-oriented programming can be classified
into two basic categories. Firstly, there is a variety of programming languages de-
veloped especially to serve experimental purposes. Different object models for par-
allel and distributed programming can be investigated by designing and working
with such systems. Some examples of languages in this area are Emerald [Jul el
al. 88], Pool [America and van der Linden 90], Sloop [Lucco 87], and Orca [Bal et
al. 92]. In contrast, systems belonging to the second category provide support for
parallelism and distribution in the environment of an existing object-oriented pro-
gramming language. In this type of systems, the corresponding mechanisms must fit
into the framework of the underlying language, while in the first case no restrictions
exist for system development. An advantage of a system embedded into an existing
language environment is that the programming tools of the environment and exist-
ing software components can still be used. Furthermore, with the increasing accep-
tance of C++ [Stroustrup 86] — especially in the area of system programming —
there is a growing need for systems providing support for programming of parallel
and distributed applications in this language. Representative systems in this re-
search area are, among others, Amber [Chase et al. 89], Cool/C++ [Habert et al. 90],
and DC++ implemented on top of Clouds [Dasgupta et al. 91].

In C++, programming support for parallel and distributed applications can be real-
ized by a library of classes providing the required functionality, and a run-time sys-
tem to execute these functions. Important qualities of such systems which do not
rely on compiler extension are their portability, extensibility, and ease of modifica-
tion, as has been shown, for instance, by Presto [Bershad et al. 88]. The behavior of
every system object can be redefined, allowing to adapt it to changing requirements.
On the other hand, however, several mechanisms proposed to handle parallelism
and concurrency control in the object-oriented setting can be implemented only by
introducing special language constructs [Gehani and Roome 88, Nierstrasz and
Papathomas 90, Saleh and Gautron 91); thus, they are not applicable in this case.

362

Furthermore, providing distribution support in C++ is — to a large extend — a prob-
lem because of its “C-isms”. Restricting the language would facilitate this work but
it would conflict with the user requirements concerning software re-use. Full lan-
guage support ensures that software developed for centralized systems can be used
in a distributed environment with an acceptable amount of adaptation.

The goal of PANDA is to provide an environment for parallel and distributed pro-
gramming in C++, imposing as little as possible restrictions on the use of the lan-
guage. This work is based on the experience which we obtained in previous projects
where experimental distributed programming languages and environments were de-
veloped [Wybranietz and Buhler 89, Buhler 90]. PANDA’s basic library consists of
classes which address the issues of parallelism, distribution, object persistence, and
garbage collection. These classes can be used directly for building an application,
or — alternatively — as a basis for more specialized programming systems, since
the user is free to define new abstractions by customizing the PANDA classes. A fun-
damental part of PANDA is a thread package which provides mechanisms for ex-
pressing and handling parallelism in the user space. Here, the crucial issue is perfor-
mance. The cost of parallelism determines its grain and has thus a strong influence
on the programming style. As has been shown by FastThreads [Anderson et al. 89]
and Presto [Faust and Levy 90], high performance and flexibility of parallelism sup-
port can be achieved by a user-level thread implementation.

PANDA has been designed for a hardware platform consisting of a network of ho-
mogenous processors. It addresses the issue of distribution by the concepts of single
global address space, distributed shared memory, and thread migration. Similar to
Amber [Chase et al. 89], all nodes of a PANDA system share a single virtual address
space managed globally. Thus, a virtual address can be used as a system-wide
unique identifier. References transmitted across node boundaries do not lose their
meaning. This concept has serious limitations in the case of 32-bit addressing,
which makes virtual addresses to a scarce resource. The wider virtual addresses of
emerging 64-bit architectures, however, will support such a system organization, as
stated in [Chase et al. 92, Garrett et al. 92].

This paper surveys the PANDA system. Section 2 describes the PANDA interface
from the application programmer’s point of view, and it discusses the underlying
design rationales. The implementation of the fundamental features of our program-
ming environment is briefly outlined. In particular, the thread package, distribution
and mobility concepts, as well as the integration of persistence and garbage collec-
tion are presented. Section 3 describes the system layers of the PANDA run-time en-
vironment. In Section 4, the current status of our prototype implementation is pre-
sented. Finally, the main results are summarized, and the direction of future work is
indicated.

2. Programming in PANDA

The PANDA system architecture is based on a C++ class hierarchy, and it provides
an object-oriented application interface. The system levels of PANDA are especially

363

designed to get high performance at the application level. Our design has been in-
fluenced by new trends of hardware architectures and operating systems.

The system supports standard C++; no extensions to the original language are re-
quired. This decision was influenced by our goal to be highly portable. However,
we use C++ precompiling to simplify the user’s task of encoding. This precompiler
inserts source code fragments at specified places. This is, for example, useful when
a class should be protected against concurrent activation. Without a precompiler the
programmer would have to insert a mutual-exclusion semaphore in every method.
Instead of this, only a hint in the class definition is necessary, and the precompiler
can do this instrumentation. The precompiler frees the programmer from the burden
of such routine work, but it is not essential for the concepts that are described in the
sequel.

2.1 Thread Package

Activities in a system are called processes or threads. In a usual C++ program there
exists only one thread. Figure 1 depicts what happens during program execution. A
single thread *“runs” sequentially through objects and their methods.

object
Data

main program

main{) {

Code

Methodl ()
Method?2 ()

Fig. 1. “Running” thread in a sequential C++ program

To create a parallel program where several threads operate in one application, the
programming model has to offer certain functionality to handle concurrency. In
PANDA, the basic mechanisms for thread management are provided by the system
class UserThread . Aninstantiation of this class generates a new activity. The ad-
vantage of this approach is that concurrency support can benefit from the object-
oriented environment. By deriving new classes from UserThread, various types

of active objects may be defined. An example illustrates the usage of PANDA
threads:

364

The following declaration specifies a thread which periodically increments its private
variable number:

class Increaser : UserThread {
public:-
Increaser (int StartValue) { number = StartValue;}

void code() {
for (i) |
Delay(lsec); //method of UserThread
number = number + 1;

}
private:
int number;
}:
Creation of threads is now performed by:
main{
incPtrl = new Increaser (10);

incPtr2 new Increaser (500);
incPtr3 new Increaser (1000);

}

Just before the closing bracket three parallel threads exist in the system, each represented
by an Increaser object (Figure 2).

Note that the Increaser class has a special method code. On instantiation, the invo-
cation of Increaser’s constructor creates a new thread which executes the code
method. The constructor is executed in the creator’s context and it is guaranteed that this
constructor has finished before the new thread is actually activated, so that parameters
may be passed safely.

IncreaserObjects

main program

main(){A/
new Increaser(10);

new Increaser (100);
new Increaser(1000)

Fig.2. Active objects obtained by derivation from
UserThread

365

PANDA threads are realized by a thread package implemented in user space
[Assenmacher 92]. The underlying operating system kernel has no notion of
PANDA threads. Management and scheduling of threads is done in non-privileged
user mode. Threads which are managed in this way are called user-level threads
[Bershad et al. 88, Marsh et al. 91]. Our implementation offers very fast thread man-
agement. Creation and deletion of threads is extremely fast, causing an overhead
within only one order of magnitude compared to a procedure call, see Table 1 in
Section 4.

In a system with concurrent activities which act on non-disjunctive object sets,
mechanisms for synchronization are required. PANDA offers synchronization ob-
jects such as semaphores, distributed read/write semaphores, and signals. To protect
objects against concurrent access, a class may be turned into a monitor. For this pur-
pose, the PANDA precompiler may be instructed to add mutual-exclusion sema-
phores to every method, thus saving a lot of encoding work.

2.2 Distribution

Recall that one of our main goals was to support programming in a distributed en-
vironment. Consequently, the question arises how PANDA manages to link the re-
mote components of a distributed application together. In particular, what provi-
sions are taken to ensure that a thread can visit and enter not only local, but also re-
mote objects? This question is central to our model. In this chapter, we address this
issue and discuss the different ways to solve the problem.

Three fundamental mechanisms can be employed to provide activities which are
able to span several nodes:

As a first alternative (Figure 3), we may simply rely on message passing to cross
node boundaries if an invocation is made to a remote object. In essence this type of
remote object invocation corresponds to the well-known remote procedure
call (RPC) mechanism which has been discussed in great detail in the literature
[Birrell and Nelson 84]. In order to provide a transparent interface, each caller and

physical
boundary
Node 1 Node 2

Thread

logical obiect

o

>
Stub |——'—]

actual invocation path

Fig. 3. Supporting remote object invocation

366

each remotely accessible object has to be equipped with an appropriate RPC stub,
and parameter marshalling has to be done on every invocation of a non-local meth-
od. In the object-oriented setting, the functionality of RPC stubs may be provided
by so-called proxies [Shapiro 86}, i.e., local representatives of remote objects. Typ-
ically, marshalling is based on some preprocessing of the source code. However,
providing perfect transparency in a language like C++ is rather difficult. For in-
stance, it is difficult to handle pointers which may occur in the parameter list of a
method. Also, it should be noted that RPC supports a slightly asymmetric model of
computation. Most applications based on RPC make an explicit distinction between
clients on the one hand, and servers on the other — at least at the conceptual level.
In some applications, such an asymmetry appears to be artificial, and is only an ar-
tifact of the underlying RPC mechanism. These subtleties diminish the location
transparency which can be achieved with RPC.

Therefore, a more natural approach to the distribution problem is to create the illu-
sion of a single, global object and thread space, i.e., to hide the node boundaries
from the application programmer. To this end, the system has to ensure that all
operations — local or remote — are eventually carried out locally. On the concep-
tual level, this can be achieved with two different strategies [Jul et al. 88, Chase et
al. 89, Dasgupta et al. 91], one based on object mobility, the other on thread mobil-
ity. In Figure 4, the system migrates the object to its invoking thread as soon as a
non-local invocation is encountered. After the object has been moved to the node on
which the thread resides, the remote object invocation turns into a local call.
Figure 5 shows the dual solution. Instead of moving the object, the system migrates
the invoking thread, again turning the remote invocation into a local one.

physical
boundary
Node 1 Node 2
Thread - Page
logical Fault
-—.._invocation

i,

-

N

’ Object
migration

Fig. 4. Object migration based on page-fault
mechanism

The solutions depicted in Figures 4 and 5 are very attractive from a programmer’s
point of view. They do not distinguish between the caller (client) and the called
(server), and they need not be reflected by the program code. In principle, the pro-
gram could be completely unaware of the distributed nature of the underlying hard-
ware. This is a highly desirable property. For example, an application could be im-

367

physical
boundary
Node 1 Node 2

invocation actual

mvocation

migration

Fig. 5. Thread migration based on page-fault
mechanism

plemented and tested in a centralized system; distribution may then be realized by
simply spreading the different components of the application to different nodes of
the distributed system, without any need to change the code of the various program
modules. In most application domains, this view is, of course, too optimistic —
efficiency considerations typically preclude a thoughtless distribution and require a
careful decomposition of the system into (relatively independent) components.
Nevertheless, location transparency is at least a first step in the direction of this ide-
al, and it helps to reduce the complexity of the application code.

Actually, both object and thread mobility have proved their value in practical imple-
mentations [Ananthanarayanan et al. 90, Bennett et al. 90, Chase et al. 92b, Garrett
et al. 92, Nitzberg and Lo 91]. The approach depicted in Figure 4 is generally de-
scribed in more abstract terms, disregarding the object structure of the data. Trans-
parent access to remote memory locations based on moving the respective data to
the requestor is usually referred to as distributed shared memory (DSM). In PANDA,
DSM is provided to support object mobility.

Providing Distributed Shared Memory

One possible way to achieve perfect location transparency in a distributed environ-
ment would be to completely re-implement the memory management layer of the
underlying C++ run-time system, and to base the execution of all programs exclu-
sively on a DSM mechanism. Unfortunately, however, in many situations DSM
turns out to be a rather expensive mechanism; a thoughtless use of shared memory
objects may lead to permanent thrashing, intolerably reducing the efficiency of the
program execution. Therefore, PANDA provides DSM only if the programmer ex-
plicitly requests for it.

From the programmer’s perspective, the allocation of an object in the DSM address
space is straightforward. The following code fragment illustrates how it is done:

368

class 2Any; //Arbitrary user class:

Any *pointer = new DSM Any:;

Adl that has to be done is to insert the preprocessor directive ‘DSM’ between the new
operator and the object class name; the preprocessor replaces this by a special parameter
which is handed to the new allocation routine. The PANDA run-time support system
takes this as a hint, and ensures that the newly created object instance resides in the DSM
where it is accessible from all nodes of the system.

Implementation of the DSM Mechanism

Basically, the PANDA implementation of DSM is as follows. A global virtual ad-
dress space is assigned to the Panda application. As shown in Figure 6, this address
space is statically partitioned into several, disjoint memory partitions, (at least) one
private partition for each node of the distributed system, and (at least) one shared
partition per node. The private partition assigned to a node contains all private ob-
jects of that node. Such objects are not shared but can only be accessed by the
threads running on the owner node of the respective partition. Consequently, the
pages of the private partitions are only mapped into the address space of their re-
spective owner node; remote nodes are not allowed to reference these memory lo-
cations. The second partition, however, comprises the DSM address space and con-
tains those objects which are shared by all nodes; the pages of all shared partitions
are mapped into the address space of all processes. Thus, every node may access any
shared location.

‘DSM partition node 1

DSM partition node 2

- DSM partition node 3

DSM partition node n

private partition node 1

private partition node 2

 private partition node 3

_ private partition node n

G tu,

Fig. 6. Statically partitioning of memory

Note that a static partitioning of the address space is only feasible if the address
space is sufficiently large. With the advent 64-bit architectures which is the emerg-

369

ing technology, spending some available memory addresses (recall that the virtual
addresses of the private partitions assigned to the remote nodes are lost on the local
host) in order to obtain a simpler and more efficient realization of the memory man-
agement mechanisms seems reasonable [Chase et al. 92, Chase et al. 92b, Garrett et
al. 92].

Having partitioned the address space as described above, DSM memory manage-
ment is now straightforward. All pages which are currently not available are read-
write protected by the memory management unit. Whenever a thread tries to access
an object which is not locally available, a page fault occurs. This page fault is han-
dled by an appropriate page fault handler. If the address that caused the page fault
refers to a private memory partition, this shows that a remote private partition has
been referenced. As objects within such a non-local partition are not remotely ac-
cessible, access cannot be granted locally, that is, an exception has to be raised to
indicate an access violation, or — depending on circumstances — the system may
try to migrate the thread that caused the page fault to the node which owns the ref-
erenced partition (see below).

If the address that caused the page fault refers to a DSM patrtition, a different strat-
egy applies. As DSM partitions are shared between all nodes, an access to an arbi-
trary DSM partition is always permissible, and should therefore always be granted.
To this end, the page fault handler follows some protocol which links together the
distributed physical DSM memory pages to a single virtual shared memory.

In the PANDA system, managing distributed memory and reacting to page faults is
particularly easy, due to the static partitioning strategy that is applied. Note that for
each virtual memory address, the system can immediately determine the corre-
sponding partition. This knowledge helps to simplify the DSM protocol. For exam-
ple, we can easily determine the node which is responsible for each partition, and
that node can coordinate all activities related to the management of the partition’s
virtual pages, for example, their retrieval, and the invalidation of read copies.

In principle, the PANDA system is open to all DSM protocols that are known from
the literature [Nitzberg and Lo 91]. However, an appropriate page fault handler has
to be provided which implements the chosen strategy. In the current PANDA proto-
type system, a simple approach (exclusive-read-exclusive-write) has been chosen,
mainly because we were able to provide this functionality with a trivial DSM man-
ager (approximately 150 lines of code). Currently, we are about to realize several
more sophisticated DSM protocols and to study their performance benefits.

Providing Thread Mobility

An approach to achieve location transparency which is dual to DSM is based on
thread mobility. Instead of moving the object to the thread where it is needed (data
shipping), we may as well move the thread to the object (function shipping). None
of these approaches is superior to the other in general; their appropriateness depends
on the actual object and thread granularity, and also on the object reference patterns

that occur in the application at hand [Ananthanarayanan et al. 90, Dasgupta et al. 91,
Jul et al. 88].

370

In PANDA, thread migration is performed by a method of the already mentioned class
UserThread. This class provides the method migrate at its interface:

class UserThread {
" public:
// Constructor, code() etc.
void migrate (destination);

bi
Conceptually, invoking this method interrupts the thread’s execution, transfers its stack
segment to the appropriate partition on the specified remote node, moves its thread con-
trol block to the same destination, and inserts it into the appropriate queue of the desti-
nation node’s scheduler. After this has been done, the thread’s execution can be re-
sumed. In practice, slight variations on this scheme are feasible to increase the efficiency
of thread migration. For example, one might postpone the transfer of the stack segment
and provide its memory pages only on demand.

From an abstract point of view, thread mobility is a possible realization of function
shipping. In Figure 5, we showed how function shipping may serve to provide loca-
tion transparency, i.e., to create the illusion of a single, global address space which
can be accessed from each node in the system. The basic idea is to provide a page
fault handler which — on receiving a page fault interrupt — determines the current
location of the referenced memory page, and then migrates the requestor to that lo-
cation. This approach provides an alternative to the DSM mechanism discussed in
the previous sections.

One could also imagine to combine data shipping with function shipping by simply
providing both strategies within a single page fault handler. Based on the type of ob-
ject that is requested, the type of thread which made the request, and on global load
conditions in the system, the handler could decide on each page fault whether to
move the object to the thread, or whether to move the thread to the object. We will
further pursue such strategies in the future.

23 Persistent Objects

In conventional programming languages data is transient. Its lifetime maximally
spans the program’s execution. Very often, preserving data across multiple invoca-
tions of several programs is required. Moreover, some data should even survive sys-
tem failures. Data having these properties is called persistent. In conventional envi-
ronments, persistence is typically realized with the help of file systems or database
interfaces. But the lack of integration makes these realizations rather difficult to
handle. Using the file system to make data persistent imposes a lot of additional en-
coding work on the programmer. He has to “flatten” his data structures to make
them storable and re-readable. If a database interface is used, the user has to learn a
database language, and he has to fit his data structures into the model provided by
the database. New approaches in object-oriented databases [ODeux et al. 91, Lamb
et al. 91] try to better bridge the gap between programming languages and databas-
es. A database, however, is rather resource intensive, and therefore probably not ad-
equate for those applications which do not require its functionality to the full extent.

371

Thus, the integration of persistence mechanisms into the run-time environment of
the language seems to be a reasonable alternative. Such an approach has been pur-
sued — in particular — in systems designed for fault tolerant computing {Ahamad
et al. 90, Liskov 88, Shrivastava et al. 91].

In PANDA, an integrated persistence mechanism has been realized. Persistence is
modelled as an additional object attribute which is orthogonal to the existing fea-
tures of the C++ language. Persistent objects are remotely accessible.

If a class is intended to be persistent in PANDA, the precompiler directive “persistent”
has to be placed in front of its definition:

persistent class Confer {

public:

Confer (int year) { date = year; }
private:

int date;

}i

Creation of a persistent instance of such a class is done by:
Confer *con = new “ECOOP” Confer(93);

Finding an existing persistent object is performed by:
Confer *con2 = new “ECOOP”;

One major problem concerning persistent objects is how to maintain their consisten-
cy in the presence of concurrent access and node failures. An abstraction which
guarantees this requirement is the transaction principle.

PANDA offers distributed transaction support, restricted to persistent objects. By de-
fault, transaction brackets are automatically inserted by the precompiler at the be-
ginning and the end of each method of a persistent class. However, there exists a
precompiler directive which suppresses this default to allow manual instrumenta-
tion. Currently, nested transactions are not supported; recursive invocations are, of
course, feasible. If a failure occurs, always the outermost transaction bracket is
aborted. Only persistent objects are recovered. Our implementation of transactions
is based on the page-fault mechanism. Shadow copies of modified pages are man-
aged. Pages are stored on a simple block-oriented file system. Distributed transac-
tions are based on two-phase-commit.

24 Garbage Collection

It is generally claimed that environments which support applications comprising a
changing set of dynamically allocated objects have an urgent demand for automatic
garbage collection. Distributed garbage collection has been intensively studied in
the literature, in particular in the context of functional programming environments
where dynamically allocated data is ubiquitous [Rudalics 88].

In imperative programming languages such as C++, however, an excessive use of
dynamically allocated data is less common, and it is always explicitly requested by

372

the programmer. Due to the language’s block structure, most of the volatile data can
simply be declared within the block scope, i.e., on the invocation stack; such stack
objects are removed on block exit. In C++, true heap objects tend to be rather long-
lived. Empirical studies have shown, however, that long-lived objects are rarely
subject to garbage collection [Hayes 91, Sharma and Soffa 91]. As the application
programmer is generally well aware of their existence, and of their lifetime, manual
deletion is probably most effective.

The potential benefits of garbage collection may be further restricted if there is a
shared access to complex dynamic data structures. Figure 7 shows an example. Sup-

Shared linked list object
root r
p
Fig. 7. Limitations of automatic garbage collection

pose that several threads share acommon linked list, reachable via the root pointer r.
One of these threads may call some list operation drop(p) to declare *p as “no longer
in use” from its local perspective. However, *p cannot so easily be discarded, with-
out knowing whether all other threads have also dropped p. Consequently, *p has to
remain in the list until it is certain that it has semantically tured into garbage. Un-
fortunately, the notion of semantical reachability is not adequately matched by the
criterion of physical reachability on which all garbage collectors are based. Note
that all list items will always remain physically reachable via r unless they are ex-
plicitly removed by the list management. Obviously, automatic garbage collection
is of little help in such cases; instead, an explicit agreement protocol for the identi-
fication of garbage has to be provided by the programmer. Situations similar to our
example are quite common in concurrent applications sharing linked data structures.
Similar observations have been reported from systems based on an actor model
[Kafura and Washabaugh 90].

Design Rationales

For efficiency reasons, PANDA supports a co-existence of ordinary objects with ob-
jects that are automatically garbage-collected. This means that a garbage-collect-
able object can be declared and used in roughly the same way as any other object.
Being garbage-collectable should be mostly orthogonal to existing features of the
C++ programming language [Detlefs 92, Edelson 90]. This rules out any form of
added formalism deviating from normal C++ syntax.

We currently pursue a telecommunication exchange system application. There, re-
sponsiveness — i.e., the ability to react to incoming stimuli within a short and pre-
dictable interval of time — is one of the most stringent requirements, even more im-
portant than efficiency. Unfortunately, many of the most efficient distributed collec-
tors known from the literature exhibit a stop-and-collect behavior which conflicts
with the requirements of responsiveness. What is needed is an incremental garbage

373

collection scheme which collects garbage on the fly. So-called reference counting
collectors are well suited for that purpose [Bevan 89, Piquer 91, Rudalics 88], in
particular because they can easily handle references in transit which are a major
source of difficulties in distributed garbage collection schemes.

Another reason why stop-and-collect approaches are probably not an adequate
choice is because they tend to leave garbage objects in the system for a substantial
amount of time before they actually delete them. This may conflict with C++
destructors, methods which are called when their corresponding object is deleted. If
(as it is often the case) a garbage collector treats garbage as a single, uniform mem-
ory space without considering the individual garbage objects, then this may com-
pletely preclude the invocation of any destructors [Edelson 90]. But even if the in-
dividual garbage objects are identified, but their deletion is delayed until the next
detection phase, this conflicts with the semantics of destructors which are assumed
to be instantaneously called on deletion (and may cause relevant side effects that
must not suffer from any delays). These subtle requirements originating from C++
as well as the demand for responsiveness were our main motivation for choosing a
simple reference counting scheme.

Language-Based Implementation

To support reference counting in C++, the method at hand is to employ so-called
smart pointers [Detlefs 92, Edelson 92], i.e., reference objects which provide all ba-
sic functionality of an ordinary pointer, but transparently carry out additional se-
mantic operations. This can be put nicely into practice, based only on features which
are provided by C++.

We included two different garbage collection schemes in our PANDA run-time sup-
port system. The first follows the classical reference counting approach. The second
strategy is based on positive weights which are assigned to each garbage-collectable
object, and to each reference to such an object [Bevan 89].

The idea is to maintain the following invariant: The sum of the weight of an object
and of the weights of all references that point to that object is a known constant
CONST. To satisfy this invariant, an object and its original reference is initially
equipped with a weight of CONST/2 each. Whenever a weighted reference to an ob-
ject is copied, its weight is split into two shares. One share is handed back to the
original reference, the other is assigned to the newly created reference. Accordingly,
as soon as a reference is removed or overwritten, its current weight is returned to the
object. Obviously, as soon as the weight of the object increases to CONST, all its
references must have been deleted, and the object is garbage. For more details, the
interested reader is referred to [Bevan 89] and [Schwarz 92]. The potential benefit
of this scheme is that reference copying only involves the original reference and its
copy, but not the (potentially remote) object. This may help to save communication
bandwidth and copying delay.

PANDA supplies a base class GC_obJj which provides the basic functionalit)}' re-
quired for (weighted) reference counting. An object class is made garbage-
collectable simply by deriving it from GC_ob j. All other objects (probably, the ma-

374

class UserType: public GC_obj {
...// add internals, e.g.:
char *name;

}i

UserType objl, obj2;

GC_ref<UserType> refl, ref2;

refl = ref2 = new UserType;

refl->name = “AnyName”;

obj2 = *refl;

if (ref2 == 0) cerr << “?2??\n”;

refl = 0;// implicit deletion;

ref2 = sobjl;// implicit deletion:
// *** collection ***

Fig. 8. A code fragment showing the application of
garbage collection

jority) are by no means affected by garbage collection. We regard this as an essential
feature. Probably only a small fraction of all objects is subject to garbage collection.
This will drastically reduce the computational overhead and the storage require-
ments of reference counting. Figure 10 shows a code fragment which illustrates how
garbage collection can be applied. Note that garbage-collectable references — im-
plemented by the template class GC_ref<...>— may be assigned, compared,
and dereferenced like any ordinary pointer of the C++ language.

Potential Problems

Garbage collection based on smart pointers is subject to certain limitations. This
general observation is particularly true for C++ which suffers from the burden of
several C anachronisms. In [Edelson 92], the author discusses the weaknesses of
smart pointers in C++. The three main sources of potential trouble are: Smart point-
ers to constant objects, implicit type casting and “pointer leakage”.

The first problem — the difficulty to provide the smart pointer equivalent of a
const Type pointer — does not so much affect the functionality of smart point-
ers, but is just desirable for documenting and structuring reasons, and to provide a
more rigorous compile-time checking of the application code. Edelson presents a
solution to this problem which causes, however, some inconvenience for the appli-
cation programmer.

The inability to extend the implicit type casting rules of C++ to smart pointers has
more significant consequences. For example, ambiguous function calls are often
made unambiguous by comparing the argument types with the signatures of the
functions in question. This procedure depends on a number of implicit type conver-
sion rules which the C++ compiler automatically applies to the function arguments.
With smart pointers, such implicit casts are no longer feasible. In most cases, how-
ever, the programmer can simply specify an explicit type conversion to resolve am-

375

biguous (or otherwise even illegal) situations. This may be inconvenient, but it is not
a fatal handicap.

So-called pointer leakage [Edelson 92] is another potential pitfall. Note that the
overloaded "->" operator must return an ordinary pointer. Therefore, once a tempo-
rary smart pointer has been dereferenced and "->" has returned an ordinary pointer,
the smart pointer is no longer needed and may be destroyed. If it was the only ref-
erence to an object, then the object might be subject to garbage collection, although
the ordinary pointer returned by "->" is still in use. The danger of pointer leakage
can be reduced by careful encoding; unfortunately, aggressive optimizing compilers
may sometimes try to eliminate “superfluous” intermediate variables, thus destroy-
ing the last smart pointer to an object.

Besides these shortcomings which are inherent to C++ and the smart pointer ap-
proach, the main weakness of our (weighted) reference counting strategy is its in-
ability to identify cyclical garbage structures. On the other hand, a cyclical structure
often represents one entity of the application domain which should rather be repre-
sented by an atomic object providing a specialized delete operation. A trick that
might sometimes help to combine user-defined destructors with automatic garbage
collection is illustrated in Figure 9. The basic idea is to exploit the compatibility be-
tween ordinary pointers and reference objects, and to break the cycle by inserting at
least one simple pointer in the reference chain.

— reference
- ordinary C++ pointer

Fig. 9. Breaking cycles by mixing references with
ordinary pointers

Despite of the problems mentioned above, we think that the advantages of our solu-
tion outweigh its potential drawbacks:

* Only garbage-collectable objects are penalized by the collector.
» Garbage is eliminated incrementally.

» The overhead is proportional to the access frequency to garbage-collect-
able objects.

* Our strategy complies with the semantics of C++ destructors.

* Our approach does not depend on any special system support, and it is ap-
plicable in a parallel and distributed setting.

3. System Architecture

The design of our system very much benefits from current hardware trends, which
will have a major impact on future system architectures in general [Karshmer and

376

Nehmer 91]. We expect that multiprocessor workstations connected by a high-
speed network capable of a bandwidth of 1 GB/s will soon become the standard
working environment. The availability of 64-bit wide machine addresses will allow
the use of a global address space shared by several applications [Chase et al. 92].

Object-Oriented System Design

In order to maximize extensibility, exchangeability, maintainability, and to mini-
mize development time, an object-oriented design of our system has been chosen.
We regard it as an adequate approach to structure the operating system kernel, the
run-time support, and also the applications. Hence, we focused on a single program-
ming language for both application and system software. This approach prevents the
obstacles and the performance penalties entailed by interface mismatch. Moreover,
structuring the system in an object-oriented manner simplifies the replacement of its
components, thus facilitating experiments regarding various system configurations.
Derivation techniques in combination with dynamic binding and polymorphism al-
low a gradual refinement of system components and improve structural clarity.

Main Components

As shown in Figure 10, the system is divided up into three different layers: pico-ker-
nel, run-time package, and application layer. The objects within each layer form a
set of exchangeable building blocks. This technique simplifies maintenance and the
integration of new or customized components.

application
o
g
=3
w
g
> run-time
o
8
13
2
g
-

AN ——— . w?_
© physical physical N \ physical
& processor processor processor
3 =
o -
x memory memory N

o e

Fig. 10. PANDA system layers

A single application may span several run-time packages. There is a one-to-one
mapping between run-time packages and virtual processors. Several virtual proces-
sors may share a single physical processor, whereby scheduling is done on a pre-

377

emptive single-priority FIFO basis. This policy prevents an application from pro-
cessor monopolization. The current scheduling policy can, however, easily be
adapted to specialized application domains. For example, a fixed time slot may be
assigned to a virtual processor in order to meet the requirements of real-time sys-
tems.

The pico-kernel offers only those hardware abstractions which are critical in respect
to protection and monopolization considerations: protection domain management
and virtual processor scheduling. The code size of the pico-kernel is reduced to an
absolute minimum because only those functions remain in the kernel which actually
require the privileged instructions of the processor.

All kernel calls are non-blocking. This allows the continuation of user-level threads
within the run-time package. No thread will ever block within the kernel stopping
the whole run-time package. For a further discussion of problems related to the im-
plementation of user-level threads, the reader is referred to [Anderson et al. 92,
Draves et al. 91, Marsh et al. 91].

kernel-level interface

KERNEL_Classes

“\\\\\\\\\
hardware

NONNMNNNNN

Fig. 11. PANDA interfaces

At the first glance, assigning only one virtual processors to each run-time package
seems to be restrictive, Note that it precludes true parallelism between threads with-
in the same run-time package. On the other hand, scheduling a single virtual proces-
sor can be accomplished without additional overhead for locking. This eliminates

378

the need for special multiprocessor mechanisms, discussed, e.g., in [Anderson et al.
89]. By saving the synchronization costs in this critical code section, substantial per-
formance gains are obtained. An application may still benefit from a multiprocessor
platform by simply employing several run-time packages. One drawback of this ap-
proach is that it is up to the application to evenly distribute load over the available
processors. However, global load distribution may be implemented by using thread
migration between the run-time packages.

System support such as communication service, different DSM services, migration
service, or persistence service are realized as exchangeable components of the run-
time package. Most of these servers are hidden from the application by higher-level
abstractions. In general, an application uses the application-level interface. It may,
however, also access the low level interface, but only “applications” meant as sys-
tem extensions — such as a load distribution facility — are encouraged to do so. The
three different interfaces are provided by corresponding class families (see
Figure 10).

A valuable tool provided by our programming environment is a C++ precompiler.
It facilitates the instrumentation of programs with stub classes, statistical counters,
monitoring hooks, transaction brackets, method add-ons etc. In contrast to a mere
preprocessor, this precompiler is fully aware of the syntactical structure, which al-
lows the integration of new language constructs, proposed, e.g., in {Gehani and
Roome 88, Buhr and Stroobosscher 92]. But this is a technique which we try to
avoid because the precompiler should not be a basic requirement for our system.

4, Status

We currently support the processor types SPARC (32 bit), Motorola 680xx, and
Intel i386/i486. The main development stream uses SPARC processors, the others
are updated and adopted from time to time. Currently, remote communication via a
raw Ethernet and a TCP/IP or UDP connection is supplied. Our system is highly
portable because the pico-kernel’s hardware dependencies are limited to a context
switch facility, MMU access, and the interrupt handler interface.

For convenience, most of the development is done by using a pico-kernel emulation
on top of UNIX (SunOS 4.1.1). As this environment does not yet reflect new hard-
ware trends like, for example, 64-bit wide address spaces and high-speed local area
networks, we are currently restricted to prototype applications.

Performance

In order to put the PANDA system into perspective, some preliminary performance
measurements are listed in Table 1. Our results compare quite well with the perfor-
mance of FastThreads [Anderson et al. 92], Presto [Faust and Levy 90], and Psyche
[Marsh et al. 91]. The measurements were carried out on Sun SPARC-2 worksta-
tions connected by a 10 Mb/s Ethernet, with a pico-kernel emulation on top of Sun-
OS 4.1.1. Comparing the null procedure with a null process (creation, context
switch, null execution, and deletion), it should be taken into account that the SPARC

379

Benchmark operation Time

Thread creation, null execution, and deletion
(with/ without lazy stack allocation) 15.1 us/10.7 ps

Context switch 17.7 ps

Remote message (8 bytes) transfer (ping / burst) 1.8 ms/0.3 ms

Local memory allocation and deletion 1.5 us

Remote memory access via DSM page transfer 9.6 ms

Null procedure call
(with / without register window overflow) 7.1 ps/031ps

Tab. 1. Performance of the PANDA prototype

architecture is particularly tuned to allow extremely fast procedure calls; context
switches, on the other hand, are relatively slow, and only poor support for user-level
threads is provided [Anderson et al. 91].

5. Conclusions and Future Work

The results gained so far are encouraging. PANDA has proved to be a practical and
efficient support for parallel and distributed programming. Due to our compliance
with standard C++, an industrial partner is seriously considering our system as a
platform for telecommunication software, and is currently employing it for proto-
type implementations. Thus, we are able to obtain valuable feedback regarding our
design choices.

We also explore PANDA'’s capability to serve as a base for various concurrent and
distributed programming models. To this end, we implemented a run-time support
layer for COIN [Buhler 90], a programming language especially designed for par-
allel and distributed applications. As expected, PANDA’s low-level interface pro-
vided a suitable set of abstractions for this purpose, and no major performance pen-
alties had to be payed due to interface mismatch.

Our experience with C++ is twofold. On the one hand, it is an emerging standard
which provides access to a variety of software, and which allows very efficient sys-
tem programming. On the other hand, it has definite disadvantages as far as concur-
rency and distribution are concerned. We are well aware of the fact that C++ is prob-
ably not an ideal language to address these issues. Therefore, our work is directed
towards two main goals. First, we would like to enhance our environment by adding
C++ classes to deal with problems related to — in particular — robustness and per-
sistence. Second, we will also investigate how the aspects of parallelism, distribu-
tion, and persistence can be more suitably reflected in an object-oriented program-
ming language.

380

Acknowledgments

We would like to thank Peter Sturm for many fruitful discussions, and Thomas Gau-
weiler for his technical help.

eferences

{Ahamad et al. 90] M. Ahamad, P. Dasgupta, and R.J. Leblanc, Jr. Fault-tolerant Atomic
Computations in an Object-Based Distributed System. Distributed Computing, Vol. 4,
pp. 69-80, 1990.

[America and van der Linden 90] P.H.M. America and F. van der Linden. A Parallel Object-
Oriented Language with Inheritance and Subtyping. Proc. of European Conference on
Object-Oriented Programming and ACM Conference on Object-Oriented Program-
ming: Systems, Languages, and Applications (Ottawa, Canada, Oct. 21-25), ACM,
New York, pp. 161-168, 1990.

[Ananthanarayanan et al. 90] R. Ananthanarayanan et al. Experiences in Integrating Distrib-
uted Shared Memory With Virtual Memory Management. Technical Report GIT-CC-
90/40, Georgia Institute of Technology, College of Computing, Atlanta, GA, 1990.

[Anderson et al. 89] T.E. Anderson, E.D. Lazowska, and H. Levy. The Performance Impli-
cations of Thread Management Alternatives for Shared-Memory Multiprocessors.
IEEE Trans. Comput. 38, 12 (Dec.), pp. 1631-1644, 1989.

[Anderson et al. 91] T.E. Anderson, H.M. Levy, B.N. Bershad, and E.D. Lazowska. The
Interaction of Architecture and Operating System Design. Proc. ACM SIGOPS *91,
1991.

[Anderson et al. 92] T.E. Anderson, B.N. Bershad, E.D. Lazowska, H.M. Levy. Scheduler
Activations: Effective Kernel Support for the User-Level Management of Parallelism.
ACM Transactions on Computer Systems, Vol. 10, No. 1, Feb. 1992.

[Assenmacher 92] H. Assenmacher. The PANDA Run-time Package. Technical Report,
Department of Computer Science, University of Kaiserslautern, Germany, 1992.

[Bal et al. 92] H.E. Bal, M.F. Kaashoek, and A. S. Tanenbaum. Orca: A Language for Par-
allel Programming of Distributed Systems. IEEE Trans. Softw. Eng. 18(3), pp. 190-
205, March 1992.

[Bennett et al. 90] J.K. Bennet, J.B. Carter, W. Zwaenepoel. Adaptive Software Cache Man-
agement for Distributed Shared Memory Architecture. Proc. 17th Annual Int. Sympo-
sium on Computer Architecture, Seattle, Washington, pp. 125-134, May 1990.

[Bershad et al. 88] B.N. Bershad, E.D. Lazowska, H.M. Levy, and D. Wagner. An Open
Environment for Building Parallel Programming Systems. Proc. of the ACM SIPLAN
PPEALS - Parallel Programming: Experience with Applications, Languages, and Sys-
tems, (July 19-21), pp. 1-9, July 1988.

[Bevan 89] D.I. Bevan. An Efficient Reference Counting Solution to the Distributed Gar-
bage Collection Problem. Parallel Computing 9, pp. 179-192, 1989.

381

[Birrell and Nelson 84] A.D. Birrell and B.J. Nelson. Implementing Remote Procedure
Calls. ACM Transactions on Computer Systems, 2(1), Feb. 1984.

(Buhler 90] P. Buhler. The COIN Model for Concurrent Computation and its Implementa-
_tion. Microprocessing and Microprogramming 30, No. 1-5, North Holland, pp. 577-
584, 1990.

[Buhr and Stroobosscher 92] P.A. Buhr and R.A. Stroobosscher. pC++ Annotated Refer-
ence Manual. University of Waterloo, Canada, Aug. 1992.

[Chase et al. 89] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J. Littlefield.
The Amber System: Parallel Programming on a Network of Multiprocessors. Proc. of
the 12th ACM Symposium on Operating Systems Principles, pp. 147-158, 1989.

[Chase et al. 92] J.S. Chase et al. How to Use a 64-Bit Virtual Address Space. Technical
Report 92-03-02, Department of Computer Science and Engineering, University of
Washington, Seattle, WA, 1992

[Chase et al. 92b] J.S. Chase et al. Lightweight Shared Objects in a 64-Bit Operating System.
Technical Report 92-03-09, Department of Computer Science and Engineering, Uni-
versity of Washington, Seattle, WA, 1992.

[Dasgupta et al. 91] P. Dasgupta, R.J. LeBlanc, M. Ahamad, and U. Ramachandran. The
Clouds Distributed Operating System. IEEE Computer, pp. 34-44, Nov. 1991

[Detlefs 92] D. Detlefs. Garbage Collection and Run-time Typing as a C++ Library. Proc.
USENIX C++ Conference, Portland, Oregon, Aug. 1992.

[Draves et al. 91] R.P. Draves, B.N. Bershad, R.F. Rashid, and R.W. Dean. Using Continua-
tions to Implement Thread Management and Communication in Operating Systems.
Proc. of the 13th ACM Symposium on Operating Systems Principles, Oct. 1991.

[Edelson 90] D.R. Edelson. Dynamic Storage Reclamation in C++. Technical Report
UCSC-CRL-90-19, University of California at Santa Cruz, CA, June 1990.

[Edelson 92] D.R. Edelson. Smart Pointers: They're Smart, but They’re Not Pointers. Proc.
USENIX C++ Conference, Portland, Oregon, pp. 1-19, Aug. 1992.

[Ellis and Stroustrup 90] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[Faust and Levy 90] J.E. Faust and H.M. Levy. The Performance of an Object-Oriented
Thread Package. Proc. of European Conference on Object-Oriented Programming and
ACM Conference on Object-Oriented Programming: Systems, Languages, and Appli-
cations (Ottawa, Canada, Oct. 21-25), ACM, New York, pp. 278-288, Oct. 1990.

[Garrett et al. 92] W. E. Garrett, R. Bianchini, L. Kontothanassis, R.A. McCalium, J. Tho-
mas, R. Wisniewski, and M.L. Scott. Dynamic Sharing and Backward Compatibility on
64-Bit Machines. TR 418, University of Rochester, Computer Science Department,
Rochester, NY, April 1992.

[Gehani and Roome 88] N.H. Gehani and W.D. Roome. Concurrent C++: Concurrent Pro-
gramming with Class(es). Software — Practice and Experience 18(12), pp. 1157-1177,
Dec. 1988.

[Habert et al. 90] S. Habert, L. Mosseri, and V. Abrossimov. Cool: Kernel Support for
Object-Oriented Environments. Proc. of European Conference on Object-Oriented Pro-

382

gramming and ACM Conference on Object-Oriented Programming: Systems, Lan-
guages, and Applications (Ottawa, Canada, Oct. 21-25), ACM, New York, pp. 269-
277, Oct. 1990.

[Hayes 91] B. Hayes. Using Key Object Opportunism to Collect Old Objects. Proc. OOP-
SLA’91, Phoenix, Arizona, Oct. 1991.

[Jul el al. 881 E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained Mobility in the
Emerald System. ACM Trans. Comput. Syst. 6(1), pp. 109-133, Feb. 1988.

[Kafura and Washabaugh 90] D. Kafura and D. Washabaugh. Garbage Collection of Actors.
Proc. ECOOP/OOPSLA’90, pp. 126-134, Oct. 1990.

[Karshmer and Nehmer 91} A. Karshmer and J. Nehmer (eds.). Operting Systems of the 90s
and Beyond. LNCS 563, Springer-Verlag, 1991.

[Lamb et al 91] C. Lamb, G. Landis, J. Orenstein, D. Weinreb. The Objectstore Database
System. Communications of the ACM, Vol. 34, No. 10, pp. 50-63, Oct. 1991.

[Liskov 88] B. Liskov. Distributed Programming in ARGUS. Comm, ACM, Vol. 31, No. 3,
pp- 300-312, March 1988.

[Lucco 87] S.E. Lucco. Parallel Programming in a Virtual Object Space. Proc. of ACM
Conference on Object-Oriented Programming: Systems, Languages, and Applications
(Orlando, Fla., Oct. 4-8). ACM, New York, pp. 26-34, Oct. 1987.

[Marsh et al. 91] B. D. Marsh, M.L. Scott, T.J. LeBlanc, and E.P.Markatos. First-Class
User-Level Threads. Proc. of the 13th Symp. on Operating Systems Principles, Pacific
Grove (California), pp. 110-121, Oct. 1991.

[Nierstrasz and Papathomas 90] O.M. Nierstrasz and M. Papathomas. Viewing Objects as
Patterns of Communicating Agents. Proc. of European Conference on Object-Oriented
Programming and ACM Conference on Object-Oriented Programming: Systems, Lan-
guages, and Applications (Ottawa, Canada, Oct. 21-25), ACM, New York, pp. 38-42,
1990.

[Nitzberg and Lo 91] Nill Nitzberg and Virginia Lo. Distributed Shared Memory: A Survey
of Issues and Algorithms. IEEE Computer, pp. 52-60, Aug. 1991.

[ODeux et al. 91] O. Deux et al. The O, System. ACM Communications of the ACM, Vol.
34, No. 10, pp. 34-48, Oct., 1991.

[Piquer 91] J. Piquer. Indirect Reference Counting: A Distributed Garbage Collection Algo-
rithm. In: LNCS 505, E.H.L. Aarts, J. van Leeuwen, M. Rem (eds.), Springer-Verlag,
pp. 150-165, 1991.

{Rudalics 88] M. Rudalics. Multiprocessor List Memory Management. Technical Report
RISC-88-87.0, Research Institute for Symbolic Computation, J. Kepler University,
Linz, Austria, 1988.

[Saleh and Gautron 91] H. Saleh and P. Gautron. A Concurrency Control Mechanism for
C++ Objects. Proc. of the ECOOP ‘91 Workshop on Object-Based Concurrent Com-
puting (Geneva, Switzerland, July 15-16), LNCS 612, Springer-Verlag, pp. 95-210,
1991.

383

[Schwarz 92] R. Schwarz. Language-based Garbage Collection in the PANDA System. Inter-

nal Report, Department of Computer Science, University of Kaiserslautern, Germany,
1992.

[Sharma and Soffa 91] R. Sharma and M. L. Soffa. Parallel Generational Garbage Collec-
tion. Proc. OOPSLA’91, Phoenix, Arizona, Oct. 1991.

[Shapiro 861 M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy
Principle. Proc. 6th Int. Conference on Distributed Computer Systems, pp. 198-204,
Cambridge, MA, May 1986.

[Shrivastava et al. 91] S.K. Shrivastava, G.N. Dixon, G.D. Parrington. An Overview of the
ARJUNA Distributed Programming System. IEEE Software, pp. 66-73, Jan. 1991.

[Stroustrup 86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Read-
ing, MA, 1986.

[Wybranietz and Buhler 89] D. Wybranietz and P. Buhler. The LADY Programming Envi-
ronment for Distributed Operating Systems. Proc. of the PARLE’89 Conference, Eind-
hoven, Holland, Juni 1989. Springer-Verlag, LNCS 365, pp. 100-117, 1989.

