Transparent parallelisation through reuse:
between a compiler and a library approach

J.-M. JEZEQUEL

I.LR.I.S.A. Campus de Beaulieu
F-35042 RENNEs CEDEX, FRANCE
E-mail: jezequel@irisa.fr
Tel: +33 99 84 71 92 ; Fax: 433 99 38 38 32

Abstract. Software environments for commercially available Distributed
Memory Parallel Computers (DMPCs) mainly consist of libraries of routines
to handle communications between processes written in sequential languages
such as C or Fortran. This approach makes it difficult to program massively
paralle] systems in both an easy and efficient way. Another approach relies
on (semi-)automatic parallelizing compilers but it has its own drawbacks.
We propose to tackle this problem at an intermediate level (i.e. between
high level parallelizing compilers and raw libraries), using Object Oriented
(OO) technologies. We show that existing OO techniques based on the reuse
of carefully designed software components can be applied with satisfactory
results to the large scale scientific computation field. We propose to use a
form of parallelism, known as data parallelism, and to embed it in a pure
sequential OOL (Eiffel). We illustrate on several examples how sequential
components and frameworks can be modified for parallel execution on DM-
PCs to allow for transparent parallelisation of classes using these components
and frameworks.

Keywords: Distribution, Data Parallelism, Reuse, Components and Frameworks

1 Introduction

The large scale scientific computation field is looking for ever growing performances
that only Distributed Memory Parallel Computers (DMPCs) could provide. The
spreading of DMPCs in this user community is hampered by the fact that writing
or porting application programs to these architectures is a difficult, time-consuming
and error-prone task. Nowadays software environments for commercially available
DMPCs mainly consist of libraries of routines to handle communications between
processes resulting from the execution of programs written in sequential languages
such as C and Fortran.

For instance, since its introduction in the late 50’s, Fortran has been widely
used for programming sequential numerical algorithms of engineering and science.
Naturally, Fortran users wished to program DMPCs that way. But as if it weren’t
complex enough to program large (and even very large) applications with such an
ill designed language, application programmers also had to deal with the whole task
of parallelisation, distribution, process creation, communication management, and
eventually very long debugging sessions.

385

In order to abstract Fortran programs toward parallel and massively parallel
architectures, leading industries and academics launched the so-called High Perfor-
mance Fortran Forum bound to deliver a new release of Fortran called High Per-
formance Fortran (HPF). It is based on the so-called data-parallelism model where
the set of data involved in a computation is split into partitions, to which processes
are associated: this makes it possible to benefit from one of the fundamental aspects
of scientific applications which is the use of repetitive computations on a large data
space. HPF extends Fortran 90 (which contains itself Fortran 77 as a proper sub-
set) by means of syntactically distinguished directives. Most representative among
them are directives to specify data alignment and distribution. When coupled with
array operations of Fortran 90, they would enable compilers endowed with sophisti-
cated dependence analysis and MIMD parallelisation techniques to produce message
passing code efficiently utilizing DMPCs. But there is a long way to go before such
semi-automatic tools are made available. Presently available commercial tools such
as MIMDizer [17) only help the user to decompose, distribute and parallelize his
program interactively. Anyway, even future tools emerging from either US big com-
panies or European Esprit projects (like the PREPARE Project) will still require
the user to define (at least) his data partitions, thus altering the original sequential
program either interactively or through the use of compiler directives.

Furthermore, this kind of compiler must still have a wide know-how about algo-
rithmic parallelisation rules for the distributed data structures (actually only arrays)
on which it works, and thus will be able to generate efficient code for a limited set of
well known problems only: if the programmer faces a new problem, the only solution
for him/her would be to get back to low level message passing Fortran, with all its
drawbacks.

Another important thing to be highlighted is that data distribution compiler di-
rectives change the program semantics in such a way that it is not easily manageable
outside of the compiler itself. Linking a program with HPF object code in libraries
poses several problems, because some data distribution information must exist at
runtime but cannot be encapsulated (in a compiler independant fashicn) with sub-
routines performing operations on the distributed data structure, as it couid be if
modular or object oriented languages were used. Hence new runtime format stan-
dards or external tools such as databases holding this information will be needed,
thus bringing compatibility and/or coherence problems; and adding complexity to
already overwhelming complex environments.

We claim that no library level approach can solve easily the problem of code
reuse on a DMPC. In this paper, we propose to tackle all these problems at an
intermediate level (i.e. between high level parallelizing compilers and raw libraries),
using OO technologies. We show that existing OO techniques based on the reuse
of carefully designed software components can be applied to this field with good
results.

We are not the first at thinking that the reuse of software components could
help to manage the complexity of concurrent programming. For example in [6] it is
proposed to derive parallel programs from sequential ones just by introducing asyn-
chronous (inter-object) message passing along with the wait by necessily mechanism.
Then had-hoc synchronization features encapsulated in classes allow for a customiz-
able and versatile reuse of sequential code for safe concurrent execution. In a similar

386

way, it is shown in [9] how synchronization constraints can be encapsulated in classes
and reused (and customized) through inheritance.

We consider these approaches as very valuable and promising, but we think they
lack the scalability that would make them efficient in the context of DMPCs with
hundreds of processors. Actually this kind of parallelism is of a functional nature
and thus it is not scalable: the definition of processes is determined by the sub-task
decomposition and does not allow an efficient mapping onto the very high number
of processors that may be available in a DMPC.

In a rather orthogonal way, our approach aims at embedding the scalable data
parallelism programming model in an OOL, Eiffel in our case. This is presented in
the next section. In the third section, we describe main reuse techniques, both within
and outside of the object oriented context. Then we show how they can be applied
in a distributed framework: this leads us to define reusable parallel abstractions that
we illustrate on a toy example. In the fourth section, we describe how these reusable
parallel abstractions can be applied to the large scale scientific computation field,
and we study their performance overhead. Some implementation related remarks are
made before we conclude on our experiment.

2 Programming Massively Parallel Architectures with
Sequential Object Oriented Languages

2.1 Embedding data parallelism in an OOL

In our opinion a programming language should be kept as small as possible, and
most notably should leave data structures and their access procedures and functions
outside. So logically, we propose to conceptually remove the parallelisation know-how
existing for example in a parallelizing FORTRAN compiler, and to encapsulate this
know-how with the data structure to which it applies. Our approach at encapsulating
parallelism can be compared to the encapsulation of tricky pointer manipulations
within a linked list class, thus providing the abstraction /st without annoying the
user with pointer related notions.

Opposite to OOL where objects can be made active and methods invocations can
result in actual message passing communications (sometimes referred as functional
parallelism as implemented in POOL-T [1], ELLIE {2], ABCL/1 [20], Emerald [5],
COOL [7] or PRESTO [4] for example), we focus on the data parallelism model
associated with a SPMD (Single Program Multiple Data) mode of execution, we no
longer map the object oriented message passing paradigm onto actual interprocess
communications, because our goal is to completely hide the parallelism to the user
(i.e. the application programmer). '

This approach seems to be rather natural in an OO context, since object ori-
ented programming usually focuses on data rather than on functions. Furthermore,
the SPMD mode of execution appears as an attractive one because it offers the con-
ceptual simplicity of the sequential instruction flow, while exploiting the fact that
most of the problems running on DMPCs involve large amounts of data (in order to
generate usefull parallelism). Each process executes the same program, correspond-
ing to the initial user-defined sequential program, on its own data partition. The

387

application programmer view of his program is still a sequential one and the par-
allelism is automatically derived from the data decomposition, leading to a regular
and scalable kind of parallelism.

In [12], we have described how a sequential Object Oriented Language (OOL)
can embed data parallelism in a clean and elegant way —without any language
extensions— to exploit the potential power of massively parallel systems. The en-
capsulation of all the methods of a given object allow us to precisely know the
structure of the data accesses and to define appropriate parallel techniques accord-
ingly: parallelism is thus hidden in classes describing the low level accesses to data
structures without altering their interface. These “distributed” classes are also com-
pilation units (like any normal class), thus there are no more problems to link sepa-
rately compiled modules: this is a major advantage with respect to FORTRAN-like
appoaches. The modularity encourages the construction of methods by refinement.
At first, a simple implementation using the pure SPMD model is realized, reusing
sequential classes in this parallel context. Optimizations may then be added for each
method separately: this allows an incremental porting of already existing applica-
tions to DMPCs.

2.2 The Eiffel Parallel Execution Environment

We implemented these ideas in EPEE (Eiffel Parallel Execution Environment): data
distribution and parallelism are totally embedded in standard language structures
(classes) using nothing but already existing language constructions. EPEE is based
on Eiffel because Eiffel offers all the concepts we need, using a clearly defined syntax
and semantics. However our approach is not strongly dependent on Eiffel; it could be
implemented in any OOL featuring strong encapsulation (and static type checking),
multiple inheritance, dynamic binding and some kind of genericity.

An EPEE prototype is available for Intel iPSC computers (iPSC/2 or iPSC/860)
and networks of workstations above TCP/IP. We validated our approach through
an experimentaiion with an implementation of distributed matrix using EPEE, and
got interesting results [11].

We distinguish two levels of programming in EPEE: the class user (or client) level
and the parallelized class designer level. Our aim is that at the client level, nothing
but performance improvements appear when running an application program on
a DMPC. We would like these performance improvements to be proportional to
the number of processors of the DMPC (linear speed-up), which would guarantee
scalability.

The designer of a parallelized class is responsible for implementing general data
distribution and parallelisation rules, thus ensuring portability, efficiency and scala-
bility, while preserving a “sequential-like” interface for the user. If a class already has
a specification —and/or a sequential implementation— the parallel implementation
should have the same semantics: each parallelized method should leave an object in
the same abstract state as the corresponding sequential one.

To implement that, a designer selects interesting classes to be data parallelized,
i.e. classes aggregating large amounts of data, such as classes based on arrays, sets,
trees, lists... Then, for each such class, one or more distribution policies are to
be chosen and data access methods redefined accordingly, using the abstractions

388

provided in the EPEE distributed aggregate class (referred as DISTAGG in the
following). Our distributed aggregate concept is not unrelated to the notion proposed
in [8]: it is an abstract aggregate of generic data that is spread across a DMPC,
together with a set of methods to access its data transparently, to redistribute it, to
perform a method on each of its elements, and to compute any associative function
on the aggregate.

3 Towards reusing software components for parallelism

3.1 Classical approach of reuse

Reuse is not a new idea in software engineering (see for instance [13]). However,
attempts to go beyond the reuse of source code and the reuse of personnel (i.e. reuse
of the know-how of a given software engineer) are plagued by the “Not Invented
Here” complex and/or lack of flexibility of existing software components.

Still, building and using libraries of (sub)routines is a classical technique that is
quite successful in the scientific computation field. According to [14], this is mainly
because every instance of each problem can be identified with a small set of param-
eters and is quite independent from other problems, and also because few complex
data structures are actually involved beyond arrays. However, in the context of
DMPC programming, these assumptions no longer hold —for the reasons explained
in the introduction. One must rely on more modern and flexible reuse techniques.

One of the key issue in reuse is the aptitude to parameterize general purpose algo-
rithms of data structures traversing with the “actions” to be performed at each step.
In ML (actually CAML, an ML dialect [19]) we can find for example the function
map:

map : ((’a -> ’b) -> ’a list -> ’b list)

which applies its first argument (the function (?a -> ’t) taking as input an object
of type a and returning an object of type b) to a list of type a objects and returns
a list of type b objects. If one wants to build a list of squares from a list of integers,
one should just call:

let square x = x * X;;

Value square is <fun> : int -> int
map square [1; 2; 3; 4; 5];;

[1; 4; 9; 16; 25] : int list

In a language such as ANSI-C, this could be emulated through the use of function
pointers (see figure 1).

However, C has not the secured flexibility of something like ML: if one wants to
introduce some kind of parameterization (genericity), one must use the principle of
lype coercion which is widely known as a very unsafe feature (it can lead to runtime
type errors that crash the program).

Anyway, ML and C (along with other languages like Smalltalk) are languages
where routines are first-class objects, i.e. can be handled at runtime with dedicated
language constructs. Whereas first-class objects provide a great deal of flexibility

389

#include <stdio.h>
#define MAXT 5
| void print_square (int #n) { printf("%d\n",*ns*n); }

void apply (void (*f) (int #n), int #*t)

int 1i;
for (i=0;i<MAXT;i++) { («f£) (&t[il);}
}

main(void)

{
int tab[MAXT]={1,2,3,4,5};
apply(print_square,tab);

Fig. 1. Applying a function in C

(which does not always preclude type checking security: cf. CAML), this feature
generally requires costly run time support: in high level languages (i.e. not C for
that matter) the run-time data structure representing a routine is substantially more
complicated than the sole address of an entry point in the code. In this context, it
seems that we have to trade efficiency (a C like approach) for type checking security
(CAML). One way to cumulate efficiency and type checking security is to make use
of the feature characterizing OOL vs. modular languages like Modula or Ada, that
is to say, inherilance.

3.2 A key towards reuse in OOL: inheritance

A large amount of numeric computations involves algorithms performing data struc-
ture walking (think of matrix operations for example). These are the computations
we are actually interested in parallelizing on DMPCs, because here lies the main kind
of scalable parallelism. Actually, not every program can be parallelized in a scalable
way, i.e. its parallelisation does not necessarily bring significant performance im-
provement when adding more processors. To formalize that, Valiant proposed in [18]
the BSP model (Block Synchronous Parallel). A computation fits the BSP model if
it can be seen as a succession of parallel phases separated by synchronization barriers
and sequential phases. In this model, a computation can be efficiently parallelized
only if the cost of synchronization, communications and other processing paid for
managing parallelism is compensated by the performance improvement brought by
the parallelisation. We will get speed-up greater than one only if the size of the data
structure is large enough, and our speed-up will increase with the ratio computation
time vs. communication time.

In the following, we focus on this kind of algorithms (¢.e. those performing walk-
ing across data structure big enough); and we show how well-designed sequential

390

deferred Class ENUMERABLE [E]
—— E is a formal generic parameter

—— identifying the type of the ENUMERABLE elements

feature
start is deferred end; —— Move to some arbitrary first element
forth is deferred end; ——~ Advance to a not yet enumerated element
off : boolean is deferred end; —— Is there not a current item?

item : E is
—— Current item of the enumerable data structure. 10
require not_off: not off
deferred
end;
put (new : E } is
—— Change the current item of the enumerable data structure with new
require not_off: not off

deferred
ensure item = new
end;
end; —— class ENUMERABLE [E] 20

Fig. 2. The generic deferred ENUMERABLE class

frameworks can be reused for parallel execution on DMPCs in a transparent way.
Basically, there are two kinds of such algorithms:

— those applying a given action to each (or some of the) elements of the data
structure

— and those computing an associative function based on each (or some of the)
element of the data structure (much like the APL reduce operator).

The first step is to specify the data structures where walking algorithms can be
defined at the most abstract level. We could think of abstract data types allowing
some kind of finite enumeration, i.c. let us take an element, then another one, etc.
until we reach the last one. It is convenient to make this abstract data type (called
ENUMERABLE in the following) hold the abstract notion of cursor, which could
be a kind of window focusing on at most one element of the ENUMERABLE object.
Then an ENUMERABLE would offer the following operations:

item to look at the element under the cursor

put to change the value of the element under the cursor
start to move the cursor to an arbitrary first element
forth to advance to a not yet enumerated element

off to tell whether there is an element under the cursor

391

Using the Eiffel syntax, this ENUMERABLE abstract data type could be defined
as described in figure 2.

This class ENUMERABLE is declared as deferred because it declares features
without giving any implementation (deferred features): these features will be given
actual definitions (effected) in classes inheriting from ENUMERABLE. Eiffel also al-
lows the specification of pre-conditions (keyword require) and postconditions (key-
word ensure) in the abstract data type classical way.

Our class ENUMERABLE can be seen as a generalization of the ISE Eiffel V2.3
library class called TRAVERSABLE, and will be the basis of our construction.
Actually, if we need a kind of class ENUMERABLE where we can apply a given
action to each element, we can define a class APPLIABLE as displayed in figure 3.

deferred Class APPLIABLE [E]
inherit ENUMERABLE [E]
feature
apply is
do
from start until off
loop action; forth end
end;
action is do end;
end; —— APPLIABLE [E] 10

Fig. 3. The generic deferred APPLIABLE class

By mean of multiple inheritance, this class APPLIABLE could be used in a class
LIST of INTEGER in the following way:

Class LISTINT
export squarelist, repeat FIXED_LIST -- specify the class interface
inherit

FIXED_LIST [INTEGERI];

APPLIABLE [INTEGER]

rename action as square, -- Give a more significant name
apply as squarelist -- to action and apply
define start, forth, off, item, put -- Merge APPLIABLE features with
-- corresponding ones in FIXED_LIST
redefine square; -- Give a new definition for square
feature

square is do put (item * item) end;
end;

392

deferred Class REDUCIBLE [E,F]

inherit
ENUMERABLE [E]
feature
reduce : F is
do
Result := initialisation;

from start until off
loop Result := function (Result); forth end;
end; 10
function (accumulator : F) : F is do end;
initialisation : F is do end;
end; —— REDUCIBLE [E,F]

Fig. 4. The generic deferred REDUCIBLE class

A client would just call MyIntList.squarelist to apply the square function to
each element of its list.

For the reader not fluent in Eiffel, the main rules driving multiple inheritance
are recalled below, (in agreement with [16}):

— If various features are inherited under the same final name f in class C, then
they are said to be shared, i.e. C has only one feature named f. At most one
instance of the features named f can be effected (at least all but one must be
deferred) or else there is a name conflict (detected by the compiler) that must
be remove through renaming.

— If two features are inherited under different final names in class C, then they are
said to be duplicated, i.e. C has two distinct features

In LISTINT, the features start, forth, off, item, put exist in a single in-
stance, and their implementation is the one found in FIXED_LIST.

In a similar way, if our client wish to call something like MyIntList.maxelem to
know the higher element of the list (thus performing a reduce operation on the list),
the class LISTINT should be modified as follow:

Class LISTINT
export maxelem ...
inherit

REDUCIBLE [INTEGER,INTEGER]
rename function as sup, -~ Give a more significant name
initialisation as neg_infinite, -- to function, initialisation
reduce as maxelem - and reduce

393

define start, forth, off, item, put -- Merge REDUCIBLE features with
-- corresponding ones in FIXED_LIS
redefine sup, neg_infinite; -~ Give a new definition for these
feature

sup (max : INTEGER) : INTEGER is
do if item>max then Result := item else Result := max end; end;
neg_infinite : INTEGER is -2147483648;

where the class REDUCIBLE is as displayed in figure 4.

But now, what if we want to have another reduce-like function (say total, which
computes the sum of the elements) on this list? We simply have to inherit again
from REDUCIBLE, directly using the repeaied inheritance mechanism of Eiffel: the
inheritance graph for class LISTINT is displayed in figure 5, where deferred features
are marked with an asterisk®. Again, features with the same final name will be
merged, whereas features with differing final names will be duplicated (for example,

total and maxelem are both renamed instances of the reduce feature). Here is the
final text of our LISTINT class:

Class LISTINT
export squarelist, maxelem, total, repeat FIXED_LIST

inherit
FIXED_LIST [INTEGER]
rename Create as fixed_list_Create; -— Hold fixed_list constructor
APPLIABLE [INTEGER]
rename action as square, ~= Give a more significant name
apply as squarelist -- to action and apply
define start, forth, off, item, put -~ Merge APPLIABLE features with
-~ corresponding ones in FIXED_LIST
redefine square; -- Give a newv definition for square
REDUCIBLE [INTEGER,INTEGER]
rename function as sup, -- Give a more significant name
initialisation as neg_infinite, -- to function, initialisation
reduce as maxelem ~- and reduce
define start, forth, off, item, put -- Merge REDUCIBLE features with
-- corresponding ones in FIXED_LIST
redefine sup, neg_infinite; -- Give a new definition for these
REDUCIBLE [INTEGER,INTEGER]
rename function as plus, -- Give a more significant name
reduce as total -- to function and reduce
define start, forth, off, item, put -~ Merge REDUCIBLE features with
-- corresponding ones in FIXED_LIST
redefine plus; -~ Give a new definition for plus
feature

Create (n: INTEGER) is do fixed_list_Create(n) end;

394

square is do put (item * item) end;:
sup (max : INTEGER) : INTEGER is
do if item>max then Result := item else Result := max end; end;
neg_infinite : INTEGER is -2147483648;
plus (acc : INTEGER) : INTEGER is do Result := acc + item end;
positive (acc : BODLEAN) : BOOLEAN is do Result := item>0 or else acc end;
end; —-- LISTINT

It may look complicated, but one has to keep in mind that a client of this class
only has to look at the class interface (directly provided by the short command),
whereas a descendant can get a flat view of the inheritance graph through the flat
command.

reduce

function

apply initialisation

action conclusion

squarelist
mazelem
total

item

put
start
forth

off

Fig. 5. The inheritance graph for the class LISTINT

395

We can see that the frame of the reduce operation has been actually reused
twice (in total and maxelem) and could be still reused several times, thus achieving
sequential reuse. If we can give a distributed version of this kind of reusable oper-
ation, we can achieve the transparent reuse of this distributed version by already
defined features (like total and maxelem). This is the aim of the next section.

3.3 Reusing sequential code for a parallel execution

Distributed Enumerable Objects We want to reuse our class LISTINT for execution
on a DMPC. The basic idea is to change the meaning of cur ENUMERABLE,
REDUCIBLE and APPLIABLE abstractions to deal with ENUMERABLE objects
distributed across a DMPC. These distributed objects are split across the DMPC
(each processor has only a piece of the object), and operations are implemented
using the SPMD programming model along with the owner-compute rule principle.
This principle assesses that an assignment is only run by the process on which the
left hand side variable is located. To deal with remote accesses, a data belonging to
a distributed object is Refreshed before any reading attempt, i.e. the owner of this
data broadcasts it to the other processors (see [3] for more details).

By definition, the class APPLIABLE makes use of local assignments only (an
action can only be applied on the item under the cursor position), so we do not need
to change it. On the contrary, the reduce function of the class REDUCIBLE is meant
to access each item of the ENUMERABLE object. But if we would use the version
of reduce directly as described above, each reduce function would only compute
on each node a local result on the locally available items. To compute the global
result from these local ones, we have to append a conclusion to this reduce function
(this is why the computed function has to be associative: the order of evaluation
may be different between a sequential execution and the distributed one). A simple
minded implementation of this conclusion would be to have each processor send
its local result to a master processor, which would then compute the global result
and broadcast it. But as the number of processors of the DMPC grows, this simple
minded implementation shows its performance limitations. We could choose more
sophisticated algorithms, using for example minimal spanning tree algorithms where
each processor computes its result with the values received from its childs on the
tree, sends it to its father, and so on until the root is reached. The global result
can then be sent back along the tree or simply broadcasted. We could also use a
built-in system level function of the DMPC when available (on the Intel iPSC/2 for
example).

A Distributed List ezample Our idea is to realize one (careful, robust, efficient) dis-
tributed implementation of some general purpose data structure walking algorithms
that distributed mmplementations of sequential classes can reuse in a transparent
way.

To achieve that on our example, we create a new class, DLISTINT, which has the
very same interface as LISTINT but with such a distributed implementation. A client
of the class LISTINT wishing to take advantage of a distributed implementation
would just use DLISTINT instead of LISTINT, without altering its code in any other
way. The only difference we could see would be the improvement of performances
when running on a DMPC.

396

mynode

) numnode
SendObject
GetObject

J cursor.owner
item
put

local_item™

apply reduce local_put*

action

function
/ initialisption
squarelist conclusion
mazelem

total

squarelist
mazelem
total

Fig. 6. The inheritance graph for the DLISTINT class

The multiple inheritance feature makes it possible to express that this distributed
DLISTINT is both a LISTINT and a distributed aggregate of integers as described
in DISTAGG [INTEGER]: see on figure 6 how we update the inheritance graph.

In DLISTINT, the only way to assign a value to an element of the list is to call
the feature put. To implement the owner-compute rule principle for this class, we
need to give a new definition of this feature, so to make it store the required value
only if the processor trying to execute the assignment owns the relevant part of the
list, i.e. if it owns the cursor. Symetrically, the feature item is the only way to access
an element of the list. We give a new definition of ilem to implement the Refresh
operation as defined above. As this is general for every distributed aggregate, these
features are actually defined in the class DISTAGG in the following way:

397

deferred Class DISTAGG [E->ANY]
-~ E is a formal generic parameter
~-- identifying the type of the DISTAGG elements
inherit
DISTRIBUTED; == Imports low level features like mynode, numnode...
ENUMERABLE [E] -- DISTAGG is a special case of ENUMERABLE made of the
-~ union accross the DMPC of "local" ENUMERABLE pieces
define start, forth, item, put;
-- Give a global SPMD meaning for those
-- while letting off deferred
feature
owner_of_cursor : INTEGER is deferred end;
cursor_owner : BOOLEAN is do Result := owner_of_cursor = mynode end;
item : E is
do
if cursoxr_owner
then SendObject(local_item,-1); Result := local_item
else Result 7= GetExpandedObject (owner_of_cursor)
end
end;
put (v: like item) is do if cursor_owner then local_put(v) end end;
start is
do cursor_start; if cursor_owner then local_start end end;
forth is
local previous_owner : INTEGER;
do
previocus_owner := owner_of_cursor;
if cursor_owner then local_forth end;
cursor_forth;
if cursor_owner and then previous_owner /= owner_of_cursor
then local_start end
end;

cursor_start is deferred end;
cursor_forth is deferred end;

local_start is deferred end; -- Move to arbitrary local first element
local_forth is deferred end; -- Go to a not yet enumerated local element
local_off : boolean is deferred end; -- Is there not a current local_item?

local_item : like item is deferred end;
local_put (v: like item) is deferred end;
end; -- DISTAGG

We can see that features dealing with the cursor (start, forth, off} are also given
new meanings, according to their global semantics in our SPMD programming model.
Actually we want every exported (public) feature of DLISTINT to have exactly
the same semantics as in LISTINT, so that a client can use DLISTINT instead of

398

LISTINT transparently. The global version implementation can be given for start
and forth using the local (deferred) definitions. Thus an actual heir of DISTAGG
is left to effect the feature off, the local versions of cursor features (local_start,
local forth, local.off), along with those dealing with distribution policies (for
instance owner_of_cursor)

To implement DLISTINT we choose a very simple distribution scheme: we cut the
list in parts of more or less the same size, and allocate them to consecutive processors
(as shown below in the Create feature), so that it is easy to compute the owner of
a list item (see the owner_of_cursor feature below). To implement local versions of
cursor features, we use the LISTINT cursor features: we have just to rename them as
local_start, local_forth, and local off. Finally, the global cursor abstraction is
implemented by mean of an INTEGER (cursor), and deferred cursor related features
are given a definition accordingly. The class DLISTINT eventually looks like:

Class DLISTINT
export repeat LISTINT
-- Same interface than LISTINT
inherit DISTAGG [INTEGER]
define local_item, local_put, local_start,
local_forth, local_off -- to be merged with
LISTINT features

LISTINT
rename Create as Listint_Create,
item as local_item, -- Merge with
put as local_put -- DISTAGG features
start as local_start,
forth as local_forth,
off as local_off;
feature
cursor : INTEGER; -- implements the global cursor abstraction
cursor_start is do cursor := 1 end;
cursor_forth is do cursor := cursor + 1 end;
cardinal : INTEGER; -~ The total number of items in the list

owner_of_cursor : INTEGER -~ A simple distribution scheme
is do Result:= (cursor*numnode-1) div cardinal end;
off : BOOLEAN is

do Result := (cursor = 0) or else (cursor > cardinal) end;
Create (n: INTEGER) is ~- Creates just the local part of the list
do
cardinal := n;

if cardinal mod numnode > mynode
then Listint_Create(cardinal div numnode + 1)
else Listint_Create(cardinal div numnode + 1)
end
end;

399

When a client is calling MyDListInt.total for example, it is actually the dis-
tributed version of reduce which is called: transparent parallelisation is achieved
through reuse.

4 A realistic example

4.1 Generality of the method

These ideas have also been applied to more realistic heirs of ENUMERABLE, like
the class MATRIX encapsulating the abstract data type matrix of real, with such
operations as reading, addition, multiplication, inversion, and trace {(sum of the
elements on the diagonal). These features have been implemented by means of the
APPLIABLE and REDUCIBLE ones. However, whereas the class LISTINT had the
very notion of a cursor already available through the features start, forth, and
off (inherited from the library class LIST), other ENUMERABLE heirs may not
have it. We must provide it when it is not available. Since a MATRIX element is
usually accessed by means of a pair of indexes (i,j), we can encapsulate this in a
class called INDEXABLE2D and say a MATRIX is an INDEXABLE2D (i.e. inherit
from it). Figure 7 shows a possible definition of INDEXABLE2D.

deferred Class INDEXABLE2D [E]
inherit ENUMERABLE [E] —— An enumerable with 2D indezes
feature
i, j; INTEGER;
start i is do i := 1 end;
start_j is do j := 1 end;
start is do start_i; start j end;

forthj is do i := i 4+ 1 end;
forth j is do j := j + 1 end; 10
forth is do forth_j; if off j then start_j; forth_i end end;

offi : BOOLEAN is do Result := i > bsup_i end;
off j : BOOLEAN is do Result := j > bsup_j end;
off : BOOLEAN is do Result := offi end;

bsup_i : INTEGER is deferred end;
bsup_j : INTEGER is deferred end;

end;

Fig. 7. The generic deferred INDEXABLE2D class

We also added new features to deal with the potentially different signatures of
apply and action, as for example when only one parameter is needed:

400

deferred Class APPLIABLE [E]
fedture
applyl (othexr : like Current) is
do
from start until off

loop actioni(other.item); forth; other.forth end
end;

Then the addition operation M1.add(M2) can be implemented as follow:

inherit
ARRAY2[REAL]
rename Create as Array2_Create,
jtem as item2d, <-- Avoid name clashes between default ARRAY2
put as put2d; -- features and ENUMERABLE ones
INDEXABLE2D -- implementing the cursor (i,j)
rename bsup_i as height, -- merge the upper limits of iterations
bsup_j as width -- vith the numbers of lines and columns
define height, width; ~- of ARRAY2

APPLIABLE [REAL]
rename actionl as add_item,
applyl as add
define start, forth, off, item, put
redefine add_item;

feature
item : REAL is do Result := item2d(i,j) end;
put (v: like item) is do put (v,i,j) end;
add_item(other_item: REAL) is do put (item+other_item) end;

Then this feature add may be reused “as it is” in a Class DistributedMatrix
implemented the same way the DLISTINT was.

4.2 Customized walks

One point of interest appears when we need to perform a customized walk through
the data structure, like for the implementation of the trace operation. Instead of
using the common implementation for cursor moves (start, forth, off), we rename
and redefine these to implement the customized walk we need:

401

inherit
REDUCIBLE [REAL]

rename reduce as trace,
function as plus
forth as diagonal_forth, -- customizes REDUCIBLE with the new

-- meaning for forth, as defined below
define start, diagonal_forth, off, item, put
redefine plus;

plus (acc : REAL) : REAL is do Result := acc + item end;
diagonal_forth is do forth_i ; forth_j end;

When the feature trace is called, it is actually reduce that is invoked, but a
version of reduce modified so that it calls diag forth instead of the default forth.

4.3 Reusing the class Matrix to build a class DistributedMatrix

We proceed the same way as for building a class DLISTINT from the LISTINT
one. First we express that a distributed Matrix is both a Matrix and a distributed
aggregate:

Class DMATRIX
export repeat MATRIX
-- Same interface than MATRIX
-— inherit from both ancestors
inherit DISTAGG [REAL];
MATRIX

The Distributed Matrix constructor (Create feature in Eiffel) can be defined so
that it splits the Matrix onto the various nodes of the DMPC, using the Distributed
Aggregate features. As we work in a SPMD model, each processor executes the
creation instruction, but creates only its own part of the matrix. Then as the only way
MATRIX elements are accessed is through the features item and put, these features
are renamed and given a new definition exactly the same way as for corresponding
features in DLISTINT, i.e. using the global versions available in DISTAGG.

4.4 A comment on the efficiency of this approach

Since we are using rather advanced features of Eiffel (repeated inheritance, subtle
use of the rename clause to manage feature duplication or merging), the question of

402

their efficient implementation arises. It is even crucial for us, as our main rationale
to use DMPCs lies in their potential computing power. If we would end up with
a parallelized code running slower than the (best) sequential one, we would have
completely missed the point. Fortunately, it is not so.

The first thing to be highlighted is that most of the feature name resolutions can
usually be done at compile time. If a matrix M is declared of type DMATRIX (and if
DMATRIX has no descendant), every feature call on M can be identified statically:
the general dynamic binding mechanism can be discarded and replaced with a mere
procedure call. For instance, the compiler can realize that the addition operation (as
in M1.add(M2)) invoked in some client is in fact the renamed form of the applyl
feature of the APPLIABLE class, with action (re-)defined in MATRIX, and start,
forth, and off features defined in INDEXABLE2D: the direct procedure calls can
be generated accordingly.

Then it is possible to avoid the overhead of procedure calls through inline ex-
pansions: the ISE Eiffel compiler can do it automatically when it finds it interesting.
Finally, with all this OO stuff removed from the intermediate code, state-of-the-
art compiling techniques can be used to implement loop merging, common sub-
expression eliminations, etc. and to generate code as efficient as a hand-written
equivalent in FORTRAN.

Since the features taking advantage of the parallelism of the DMPC can rely on
the reuse of the implementations of features such as reduce and apply, the final code
running on the DMPC could be as efficient as the best hand-coded one (i.e. at the
message passing level). As an example, we can say that our feature add (from class
DMATRIX) is optimal because it involves absolutely no (machine level) message
exchange: the better FORTRAN hand-written version would have exactly the same
behavior and performance.

4.5 Implementation comments and results
EPEE (Eiffel Parallel Execution Environment) is actually mace of three main parts:

— the DISTAGG generic class, encapsulating the distributed aggregate abstraction
and the DISTRIBUTED class, which is a normal Eiffel class making heavy usage
of external C functions calls. This class must be inherited by each Eiffel class
willing to take advantage of parallelism and distribution features within EPEE.

— a set of interface modules (written in C), built on top of the ECHIDNA experi-
mentation environment [10] to provide an homogeneous and instrumented inter-
face to the Distributed Aggregate Class. At present, modules for Intel iPSC/2,
iPSC/860 and Sun networks are available.

— a set of tools to facilitate cross-compilation and distributed experimentation of
an Eiffel program in EPEE.

We experimented our ideas through the implementation of prototype classes
(Matrix and Distributed Matrix), using the ISE Eiffel compiler (V.2.3) which allows
the production of portable C packages.

It is worth insisting that with EPEE, a pure Eiffel program is compiled, with
the full sequential semantics of Eiffel. However, we currently have a limitation: we
do not handle non-fatal exceptions properly, so the Eiffel rescue mechanism cannot

403

always be used safely. The only other visible difference when executed on a DMPC
is an increase of performances.

We led some performance measurements of our implementation on an Intel hy-
percube iPSC/2 with 32 processors. For various cube sizes, we measured execution
times of various methods of the class DMATRIX. We compared these results to
their best sequential counterparts (i.e from the class MATRIX) run on one iPSC/2
node, thus allowing a speed-up evaluation. We got nearly linear speed-up (presented
in [11]), that is to say that when problems are large enough, we can half the com-
puting time by doubling the number of processors.

4.6 Problems and limitations

We found two kinds of problem while implementing our ideas. First, conceptual
problems that limit the expressiveness and ease of use of our approach:

— Not all operation can be expressed in terms of the few reusable parallel abstrac-
tions (apply, reduce, etc.) we provide: a real implementation should be much
more complete.

— Full automatic parallelism is obtained only for the features making use of our
reusable parallel abstractions: other feature will also work in parallel, but no
performance improvement will be obtained. However, critical methods (in terms
of efficiency) can be redefined, using the SPMD programming model to take
advantage of a specific data distribution. The general methods defined in the
classes DISTRIBUTED and DISTAGG are to be used to hide the underlying
system.

— features such as apply must be provided with at least three signatures: apply
without parameter, with one, and with a list of parameters. This can be tedious,
as the code is essentially the same. Furthermore, each APPLIABLE descendant
class would have these three features, even if only one is needed. A possible
solution would be to have three classes (APPLIABLE, APPLIABLEL, and AP-
PLIABLEnR) with only one apply feature in each of them.

We also found problems linked to the version 2.3 of the Eiffel language and its
compiler:

— The Eiffel concept of genericity is very powerful, and works very well in general.
However, it is not totally orthogonal to the rest of the language: we got prob-
lems when trying to mix genericity and expanded types (mostly for I/O and
interprocessor communications).

— In case of complex occurrences of repeated inheritance and renaming, the com-
piler does not always give the expected results, and tools like flat can be fooled.
Furthermore, the current syntactic mechanism driving the merging or the du-
plication of features does not have all the expressive power that we would have
liked, so in a few cases, we had to hack the design of our reusable classes to make
them pass through the compilation process.

On these two points, the next version of Eiffel (as described in the book Eiffel: The
Language {15]) will bring significant improvements: expanded types should be much
better integrated in the language, and a more expressive syntax will be available to
drive renaming, merging, selection and even undefinition of features.

404

5 Conclusion

We have proposed a method based on the reuse of carefully designed software com-
ponents to allow the programming of DMPCs in an easy and efficient way. A pro-
totype of a software environment (EPEE) has been developed, implemented and
experimented on real DMPCs with satisfying performances.

EPEE facilitates DMPC programming at both user and class designer levels.
While providing a SPMD programming model to the designer of distributed classes,
EPEE presents a sequential model to the user, so the DMPC is only seen as a
powerful processor whose architecture details are hidden. Furthermore, EPEE makes
it possible to reuse already existing Eiffel sequential classes in a parallel context, with
a transparent gain in performances for features using our data structure walking
abstractions.

However our prototype is just a first step demonstrating the interest of program-
ming DMPCs at the right level, using the versatile features of OOL: we have shown
there is an interesting intermediate level between full (semi-)automatic parallelizing
compilers and raw message passing libraries. We currently try to extend it through
experimentations with other domains, like sparse matrix operations, with promising
results. But much more work is still necessary before we have some really operational
and efficient object oriented environment available for the programming of DMPCs.

References

1. P. America. Pool-t: a parallel object-oriented programming. In A. Yonezawa, editor,
Object-Oriented Concurrent Programming, pages 199-220, The MITT Press, Yonezawa
A.Tokoro M., ”Object-Oriented Concurrent Programming”, Cambridge, MA, 1987.

2. Birger Andersen. Ellie language definition report. Sigplan Notices, 25(11):45-64,
November 1990.

3. Francoise André, Jean-Louis Pazat, and Henry Thomas. Pandore : A system to manage
Data Distribution. In International Conference on Supercomputing, ACM, June 11-15
1990.

4. Briand N. Bershad, Edward D. Lazowska, and Henry M. Levy. Presto: a system for
object-oriented parallel programming. In Software-Practice and Ezperience, February
1988.

5. Andrew P. et al. Black. Emerald: a general-purpose programming language. Software-
Practice and Ezperience, 21(1):91-118, January 1991. '

6. D. Caromel. Concurrency and reusability: from sequential to parallel. Journal of
Object-Oriented Programming, 3(3):34-42, September 1990.

7. Rohit Chandra, Anoop Gupta, and John L Hennessy. COOL: a Language for Parallel
Programming, chapter 8. MIT Press, 1990.

8. A. A. Chien and W. 1. Dally. Concurrent aggregates (ca). In Proc. of the Second ACM
Sigplan Symposium on Principles and Practice of Parallel Programming, March 1991.

9.].-F. Colin and J.-M. Geib. Eiffel classes for concurrent programming. In J. Bezivin
et al. (eds.), editor, TOOLS 4, pages 23-34, Prentice Hall, 1991.

10. C. Jard and J.-M. Jézéquel. A multi-processor Estelle to C compiler to experiment
distributed algorithms on parallel machines. In Proc. of the 9t IFIP International
Workshop on Protocol Specification, Testing and Verification, University of Twente,
The Netherlands, North Holland, 1989.

11.

12.

13.

14.
15.
16.
17.

18.
19.

20.

405

J.-M. Jézéquel. EPEE: an Eiffel environment to program distributed memory parallel
computers. In ECOOP’92 proceedings, Lecture Notes in Computer Science, Springer
Verlag, (also to appear in the Journal of Object Oriented Programming, 1993), July
1992.

J.-M. Jézéquel, F. André, and F. Bergheul. A parallel execution environment for a
sequential object oriented language. In JCS’92 proceedings, ACM, July 1992.

M. D. Mcllroy. Mass-produced software components. In P. Naur J.M. Buxton and B.
Randell, editors, Software Engineering Concepts and techniques (1968 NATO confer-
ence of Software Engineering), 1976.

B. Meyer. Reusability: the case for object-oriented design. JEEE SOFTWARE, (3):50-
64, March 1987.

Bertrand Meyer. FEiffel: The Language. Prentice-Hall, 1992.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.
MIMDizer user’s guide. Version 7.02. Technical Report, Pacific Sierra Research Cor-
poration, 1991.

Leslie G. Valiant. A bridging model for parallel computation. CACM, 33(8), Aug 1990.
P. Weis, M.V. Aponte, A. Laville, M. Mauny, and A. Sudrez. The CAML reference
manual. Rapport Technique 121, INRIA, septembre 1990.

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concur-
rent programming in ABCL/1. In OOPSLA 86 Proceedings, September 1986.

