1

Specifying reactive systems is an important problem [Pnu86, Har87]. A large body of
literature exists on various specification formalisms, for example see [MP92, CM89].
These, however, demand enough formal sophistication of a practitioner. CASE no-
tations [Boo91, SM88], on the other hand, attempt to use pictorial descriptions to
capture specifiers’ conceptualization of a system under design. As Harel ([Har88a])
has eloquently argued, unless these pictorial notations are backed up by precise se-
mantics, they remain only pretty pictures. Thus, combining the intuitive appeal of

ObjChart: Tangible Specification of Reactive
Object Behavior*

Dipayan Gangopadhyay
I.B.M. Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

dipayan@watson.ibm.com

Subrata Mitra
Department of Computer Science
University of Illinois at Urbana-Champaign
1304 West Springfield Avenue
Urbana, Illinois 61801, USA.
mitra@cs.uiuc.edu

Abstract

ObjChart is a new visual formalism to specify objects and their reactive
behavior. A system is specified as a collection of asynchronously communicating
objects arranged in a part-of hierarchy, where the reactive behavior of each
object is described by a finite state machine. Value propagation is effected using
functional invariants over attributes of objects. A compositional semantics for
concurrent object behavior is sketched using the equational framework of Misra.

In contrast to other Object Oriented modeling notations, ObjChart uses ob-
ject decomposition as the single refinement paradigm, maintains orthogonality
between control flow and value propagation, introduces Sequence object which
embodies structural induction, and allows tracing causality chains in time lin-
ear in the size of the system. ObjChart’s minimality of notations and precise
semantics make ObjChart models of systems coherent and executable.

Introduction

*The term ObjChart was introduced in a video tutorial {Object-oriented paradigm, IEEE Video

Press, No. 2096AV, May 1990).

433

visual notations with the precision of formal specification languages is an important
goal.

Towards this end, we present ObjChart, a new set of visual notations for describing
objects and their reactive behavior, and precise compositional semantics of behavior
of ObjChart Objects.

In ObjChart formalism, a system under design is conceptualized by a set of con-
currently interacting objects and a set of relations among these objects. Structurally,
each object can have a set of attributes and a set of ports. An object can be de-
composed into a hierarchy of constituent sub-objects. The attributes of an object or
attributes of sibling objects (i.e., sub-objects within a common parent object) may be
be related via functional relations. Each such relation is a set of functional constraints
(invariants) over the related attributes.

The reactive behavior of each object is specified by associating an extended finite-
state machine (FSM) with it. An FSM of an object captures the reactions of this
object to received messages. Receipt of a message is treated as an event, which
may cause a state transition, concomitantly initiating the reactions; reactions being
asynchronous messages with limited scope. An object can send messages to itself,
its immediate sub-objects, its parent object or to its ports. Ports of sibling objects
can be connected by behavioral relations, each of which has an FSM controlling the
message exchanges over these connected ports. Thus, a typical ObjChart model is
a part-of hierarchy of objects with relations (both behavioral and functional) among
siblings and the behavior of these objects is controlled by FSMs.

We provide compositional semantics for ObjChart objects. Although benavior
of each object is controlled by a deterministic siate machine, any composite object
has non-deterministic behavior due to internal concurrency, with and among its sub-
objects. Thus, the output reaction of a composite object cannot be expressed as
a function of its input stimuli. We circumvent this problem by adopting Misra’s
framework of equational reasoning [Mis90]. Semantics of an ObjChart object is given
by a set of equations relating functions on traces over a set of ports—i.e., sequences
of observable messages received and sent by an object via these ports. Behavior of an
object is the set of smooth solutions each of which is a trace obeying certain causality
ordering!.

Compared to the plethora of visual notations for Object-Oriented Analysis, the ad-
vantage of ObjChart formalism is that it comprises of only a minimal set of notations
and the notations have precise semantics. Minimality and precision make ObjChart
models coherent and ezecutable — the latter property is the key to understanding and
experimentation with objects and their behavior early in the analysis phase of system
development. In fact, our rationale for naming ObjChart models as “tangible” is the
fact that the models directly represent the conceptual entities visually and the inter-
entity cause and effect relations can be perceived by observing the execution of the
ObjChart models. Few of the notation-heavy modeling disciplines lend themselves
easily to executable models.

In recent years, several proposals have used state machines for capturing reactive
behavior of objects. For example, ObjectChart and OMT use Statechart of Harel for
behavioral specification. The StateChart paradigm aims to manage state explosion

1Smoothness formalizes the notion that the output message of an object can depend only on the
input received prior to sending this output.

434

problem of FSM based system descriptions, by structuring system description into
“OR” and “AND” compositions of smaller FSMs. ObjChart models structure sys-
tem behavior by object decomposition, each object requiring a small FSM. Thus, we
achieve the same goals as Statecharts. Moreover, as a detailed comparison in Sec-
tion 5 will show, ObjCharts have simpler semantics and much better performance in
analysis—linear as opposed to exponential as compared to Statecharts.

Furthermore, treating the denotation of objects as a set of equations provides an
elegant and simple framework for defining substitution and composition of objects.
Behavioral equivalence can be thought of as equivalence of the sets of solutions for
the respective equations. Composition by containment is given by the union of such
equations. Composition by interconnection becomes union of equations with suitable
port name unification. Substitution and composition are important for developing
theory of types and subtypes for concurrent objects.

The rest of the paper is organized as follows. In Section 2 we introduce the con-
structs of ObjChart informally and illustrate them with a small example. Section 3.1
presents precisely the compositional semantics of reactive behavior of ObjChart ob-
jects using the equational framework of Misra. There we also discuss how the same
framework can be used to define precisely subsumption and composition of reactive
behavior. Thereafter, in Section 4, we discuss how ObjChart notations help one
structure system specifications naturally by object hierarchies. We also observe how
tracing causality chains along the same object hierarchy helps one organize reasoning
about system behavior. In Section 5 we compare our work with other approaches that
use state machines for describing object behavior.

2 ObjChart Notations

In this section, we introduce the notations of ObjChart using an example of a system
to keep track of checkbook balances. All the visual notations are summarized in
Figure 1.

Object

The primary construct of ObjChart is an object with a name and optionally with
a type?. An object can have a set of attributes, each of which can hold a value of
some type. An attribute a of object O can be queried and updated, respectively, by
the following two constructs: O < getValue(a,V)3, abbreviated optionally as 0.a(V),
retrieves the value of a into the variable V, while O < setValue(a,v) (optionally
abbreviated as O.a := v) sets the attribute to value v. In addition, objects may have
a set of named ports through which it sends and receives messages (to other objects).
Visual notation of objects and attributes is exemplified in Figure 2. Here, the object
a_RegisterEntry, modeling a typical entry in a checkbook register, has the attributes
old-balance, amount and new-balance.

2Types in this context are just user-defined words.
3a & m(Args) denotes sending a message m(Args) to a target object a

435

Object Sequence

G Crond o) Goo)

Relation
Attribute Attribute

Method @ Method

elc)
a
Arc ¢ -]
: Port_C=f(Port_A, Port_B)
! Port_B = g(Port_A) §
------------------- FSM Functional Invariants

Figure 1: Basic Constructs of ObjChart

Relations

In ObjChart, relation objects can be used to depict both behavioral and computa-
tional dependencies among objects. In the former case, a relation object may be
connected between the ports of objects, while, for the latter, attributes of objects can
be connected via relations.

A relation has a set of typed ports and semantically embodies either some be-
havioral constraint or a set of functional invariants among these ports. Behavioral
constraints are described using state machines (refer to the section below for de-
tails), whereas, a functional invariant is an equation of the form p; = f(p1--: px)
which states that the value of the port p; is a function f of the values of other ports
pi,1 <2< kand ¢ # j. Connection of an attribute a; to a port p; of a relation R
depicts substitution of a; for p; in ali functional invariants for R.

Figure 3 shows an example of a relationship among attributes. The at-
tribute new-balance is the difference of old-balance and amount for the object
a_RegisterEntry. This is depicted by the relation subtract with ports A, B and C
and a functional invariant C = A — B among them.

State Machines

Behavior of an object is defined either by associating a finite state machine (FSM) or
by defining methods in some 3GL. It can be shown that the combination of FSM used
here and the functional invariants is adequate for writing any method; thus without
loss of generality, we shall concentrate on behavior definition involving FSMs alone

436

a_RegisterEntry

old-balance

amount

|

new-balance

|

Figure 2: Object and Attribute

a_RegisterEntry

old-balance A
subtract :—
amount C=A-B
C

new-balance \

3

Figure 3: Functional Invariant

and use methods as “short-hand” for FSMs.

FSMs could be used either as controllers for single objects, or to coordinate mes-
sage interchange between a set of sibling objects. An FSM of an individual object
is meant to capture what its reactions are to the receipt of messages: the object
may make state transitions and concomitantly may generate a set of other messages.
On the other hand, a behavioral relation object, connecting several sibling objects,
coordinates message exchanges among the connected objects by embodying a FSM.
The FSM in such a relation object defines the reaction to the receipt of a message
from one connected object via a port; the reaction may include a state transition and
generation of messages to other ports of the relation i.e., to other connected objects.

The transitions of an FSM are depicted as labels on arcs between states. An
arc label is a triple of the form (Event, Condition, Actions), usually written in the
following syntax in our formalism:

Event[Condition]
Actions |

The presence of an arc labeled {e, c, @) with source state s; and destination state s,
for an object O means: If O is in state s; when it receives the message e, and the
condition ¢ “holds,” then the object undergoes a state transition (to state s;), sending
the set of messages @.

437

Figure 4 shows an example state machine for a single object, a register-entry; in
reaction to the message setAmount(A), a register entry becomes “filled” by making
a transition from the “blank” state, simultaneously generating a message to itself* to
set its amount attribute. This depicts a behavioral protocol that a register entry, once
made, cannot be altered.

setAmount(A)[true]

self<<setValue(amount,A)

Figure 4: State Machine of a typical Register Entry

The inter-object messaging paradigm of ObjChart is as follows.

o The messages in the action part of an arc label, are asynchronously sent to the
target objects without the sender waiting for their reply. Thus the sender is free
to react to other input messages.

o The messages in the action part of an arc label can be executed in any order
and the sender does not care abont the order. These iwo aspects of ObjChart’s
messaging paradigm result in its ability to model object-level concurrency.

e Each recipient object process messages in a FIFO fashion. If a message is
received when the object is not in the appropriate state, the message is lost.

The condition part of an arc label is a boolean expression involving conjunction,
disjunction or negation of predicates. A predicate can be a simple relational compar-
ison such as X <Y or a query predicate. A query predicate is of the form O.p(Args)
which is true if the object O has the property p(Args) for suitable bindings of the
Args; O is limited to be one of the immediate sub-objects or an argument of the event
for the arc in question. It is to be noted that such query predicates are evaluated
synchronously, i.e., the calling object waits until a corresponding acknowledgement is
received.

Both the FSM-s (i.e., actions and conditions in arc labels) and the methods of
an object are restricted to having scopes only local to the object. These can refer
to only the object itself (self), its environment (parent), its sub-objects, its ports
and attributes. Furthermore, FSM-s of objects can query objects which are explicitly
passed as arguments of its events during their event evaluations. Due to this locality
restriction, ObjChart description of objects are very modular and are easier to analyze.

Sequence

ObjChart provides the construct Sequence object as a short-hand for an ordered set
of identical objects. A Sequence is defined in terms of a distinguished object, its

4The distinguished word self denotes the object itself.

438

representative element; all elements of the sequence are structurally and behaviorally
similar to the representative element. Visually a Sequence is shown as a stack of
objects, where the top of the stack is the representative element. As an example,
a set of register entries can be specified by a Sequence RegisterEntries where the
representative element denotes a typical register-entry as shown in Figure 5.

Registerl:‘.mﬁes

—
—

old—balance

new-balance

|
1

Figure 5: Sequence of Register Entries

By defining a Sequence in terms of its representative element, one can express
in ObjChart an abstract schemata for potentially infinite set of objects. Moreover,
ObjChart allows definition of relations between the 7** and (i + k)** elements of the
sequence (for any constant k). The functional invariants specified through these re-
lations hold at creation and update of elements. As an example, the fact that in a
checkbook register, the old-balance of (i 4+ 1)** entry is equal to the new-balance
of the i** entry (for all 7), is expressed via the eqBal relation in Figure 6.

The ability to define functional invariants over the representative element permits
elegant reasoning on structure, using induction.

Sequences support the following built-in messages: The O « newElement message
can be used to create a new element of the Sequence 0. Elements of the sequence
are numbered (starting at 0). O < getCount{(C) returns the number of elements
currently present in the sequence O. The N-th element of a Sequence O is referenced

in ObjChart notations as O(N).

Object Decomposition

In any large modeling effort, one would like to define objects at an abstract level first
and progressively refine them into greater details incrementally. ObjChart promotes
such “step-wise refinement” by decomposing objects into sub-parts. The sub-objects
are only accessible via the containing composite object. In view of our previous
discussion on communication ports of objects, this translates to having named com-
munication ports between any object and its parent, and all its subcomponents. (Note
that these are the ports which define the part-of hierarchy. There may be other ports
which allow sideways communication between sibling objects, using behavioral rela-
tions.) As an example of object decomposition, referring to Figure 7, the checkbook

439

RegisterEntries(i
egisterEntries(i) RegisterEntries(i+1)
old-balance
] old-balance
amount subtract :— I
C=A-B amount
—bal
new—balance c new—balance

Figure 6: Dependencies between elements of RegisterEntries

register is modeled as an Object CheckRegister whose sub-objects are the elements
of the Sequence RegisterEntries.

Model Execution

ObjChart models of systems are executable. Essentially execution involves inter-
pretations of the FSMs and functional invariants, invoking the builtin messages of
the various ObjChart Constructs employed. For example, the checkbook register
model defined above, is executable: a setAmount(A) message sent to an element
RegisterEntry(i) will compute the new-balance attribute of the element and set
the old-balance attribute of the element RegisterEntry(i+1). ObjChart Builder,
described in [GMD?93), is an environment to execute and experiment with ObjChart
models.

3 Behavioral Semantics of ObjChart Objects

In this section, we provide an equational framework for defining compositional seman-
tics of reactive behavior of ObjChart objects. We use this equational framework to
define the precise meaning of behavioral subsumption of concurrent objects. Finally,
we indicate how the same framework can be used to provide a semantics for Contracts.

3.1 The Equational Framework

Reactive behavior of an object is controlled by its state machine. An object may
receive messages from its parent, itself, from one of its sub-objects or via one of its
ports. For each such message received, its state machine determines the outcome
(resulting output messages to parent, children and so forth). Furthermore, the object

440

CheckRegister

RegisterEntries

old-balance

new—balance

Figure 7: CheckRegister Object

may undergo state change in this process. Externally observable behavior is the
relationship among the messages received from and sent to the object’s environment,
that is, its parent and ports, as shown in Figure 8. Each object O can communicate
with its parent (through channel P for input, and P’ for output), itself (through the
channel marked self), all its sub-objects (using channels C; for output to and channel
C! for input from the i** sub-object), and other sibling objects via named ports (which
get connected to such ports of other objects using relations which describe behavioral
dependencies as explained in Section 2). The external behavior of an object is the
relation between the sequence of messages on channels P U Ports and P’ U Ports'.
Evidently, to give a compositional semantics, this relation must be definable in terms
of those for the sub-objects, and the description of the object’s state machine.

Defining compositional semantics of ObjChart objects is not easy because their
external behavior is in general non-functional. The main difficulty comes from their
inherent non-deterministic behavior. Since in our model every object executes con-
currently with others, the outcome of a given sequence of input messages may be
different depending on the possible interleaving of messages from the sub-objects
with the input sequence, and the order in which messages in the action part of an arc
get executed. It is well-known that input-output relation between message sequences
on channels P U Ports and P’ U Ports cannot be expressed functionally. In fact,
there have been several proposals made in the literature of non-deterministic data-
flow networks to provide compositional semantics in the presence of non-determinism,
including [Jon89, Mis90]. In this section we show that these results can be adapted
to provide a compositional behavioral semantics for ObjChart objects.

In the remainder of our discussion on this issue, we follow Misra ([Mis90]) more
closely. Misra characterizes each component by a set of equations of the form f(C) «
9(C) (f « g for short), where C is the set of channels connected to the component
of interest, and f and g are continuous functions over the traces on these channels.
The behavior itself is one of the so-called smooth solutions of the set of equations.

Object O Pl dp

Ports Ports’

Figure 8: Object Model for Behavioral Specifications

Mareover, for deterministic components, there is a unique smooth solution, whickh is
the least fixpoint of the equations. Given two descriptions of components fi « ¢
and f; < g, their combined description is given by f « g, where f is the tuple
consisting of f; and f,, and similarly for g.

Following the work on nondeterministic dataflow networks, we provide the descrip-
tion of each ObjChart object as a network of subcomponents as shown in Figure 9.
From Figure 9 we see that each object has three sub-parts (or sub-processes in the

P P
S s’
Ports . . Ports’.
—d fair- ° a fiter |——)
merge DEA
, S
C C
J i

Figure 9: Subcomponents of an ObjChart Object

data-flow network terminology), namely:

Fair-merge This is a non-deterministic process which gets input from the parent, self
and C},1 £ j < n channels, and merges them to produce a sequence of events (e)

442

for the state machine of the object under consideration. The following equations
define the Misra style behavior of this component:

select(parent,e) « P,

select(self,e) — G,
select(child;,e) « Cj,1<j<n.

Here we have assumed that each of the channels have a sequence of values, and
select is a function which gives the subsequence in which each element has the
tag given by the first argument. Note that there have to be more components
to actually attach and remove tags from the channel values, which we do not
specify for simplicity. See Section 4.10 of [Mis90] for complete details.

DFA This process implements the transition table for the deterministic state machine
for the current object. The actual description is given in Table 1 below. We
write (s,e,c,a,s’) € transitions(O) whenever there is an arc with event e,
condition ¢ and actions a from state s to state s’. Here o is a substitution for

DFA : State x Event — State x Actions
DFAo(L,e) = (L1,{})
DFAp(s,e) =
if 3.(s,¢,c,a,s’) € transitions(O)
such that Jo: ¢'.0 = e and c.0 holds, then
(¢',a.0)
else

(L, {}h
Table 1: Transition Table for DFA

the parametric variables in e’ which is a matching of e’ with e (i.e., e'.0 = e).

Filter This is a non-deterministic process, which receives a sequence of sets as input;
each set contains elements of the form O; < e;. It produces a non-deterministic
sequence from each such set and outputs the relevant portions of this sequence
on the output channel corresponding to each target object. Figure 10 gives
the detailed description of the sub-processes required for the purpose. We now

b

le
a m a tag I——icl» linearich

Figure 10: Description of Filter

provide the necessary equations (in the figure, we use b as a sequence of random

443

numbers ([Mis90]), and ¢ as a sequence of natural numbers, which is easy to
generate using a counter):

a' — permute(b,a),

"« (c,a').

In this description, tag uses natural numbers to tag its input messages such that
each input set gets a unique tag, while permute generates a random permutation
of its input set, and linearize is defined as in Table 2.

linearize(Tag, Set) =
(Tag,e1),...,{Tag, e,)
(where e;,1 < j < n is the j** element of Set)

Table 2: Description of Linearize

Finally, distribute strips off the tags and the preceding object identifier O;; it
then sends the event (e;) on the channel for O; (which could be one of parent,
self, any C; for a child or Ports]; for a port).

Note that fair-merge and filter are non-deterministic. This coincides with our intuition
that the essential non-determinism for an object is due to (1) the potential interleaving
of message sequences from its parent, its sub-objects and its ports; and (2) the order
in which messages in the actions get executed. Furthermore, fair-merge and filter
are duals of each other, since one merges input events to the state machine, while
the other distributes outgoing actions. However, their equational descriptions are
somewhat different since we are dealing with single messages for the event part, and
with sets of messages for the action part.

Finally, we provide a description of the relation object (for behavioral dependencies
using state machines) as shown in Figure 11. Note that this description is in fact a

s s
Ports . . : Ports’.
j | fair— e a filter J
merge DFA ©
S

Figure 11: Description of Behavioral Relation

simplification of the one for an ObjChart object, as shown in Figure 9.

We are now ready to describe the behavioral semantics in terms of traces. A trace
on a set of K channels is a sequence (possibly infinite) of pairs of the form (¢, v), where
v is a value appearing on the channel c. The description of an ObjChart object is the

444

set of equations for its network of components as defined by Figures 8 and 9. The
behavioral denotation of the object is the set of all smooth solutions ([Mis90]), that
is, the admissible traces, of its description. The ezternal behavior of an object is the
projection of its behavioral denotation onto the channels P U Ports and P'U Ports'.

C.
etrue] e1{true] e2[true] j
g;::z parent<<el parent<<e2 e[true]
e2[true] elftrue}
parent<<e2 parent<<el

Figure 12: Example of the Trace Model

Example 1. Consider the state machine of an object as shown in Figure 12, where the
state machine on the left is for the object O which has two sub-objects (C;,7 € {1,2}),
each of which has a state machine as shown on the right. For this collection, one
smooth solution is given by:

(P,e),(C1,¢€),{Ca,€),(C3, e2), {P', €2), {C}, 1), (P, 1),
which means that for the object O, the external behavior is given by:
(P,e),(P',e2),{F', e1).

Theorem 1 (Composition,[Mis90]). Consider an object O with N sub-objects and M
behavioral dependency relations between them, such that the i** sub-object has a de-
scription f; «— g; and the j** relation has a description f . «— g Furthermore,
let ffair-merge — 9fair-merge be the description of the fai;-merge cJomponent of O,
fpFA + 9ppa of the DFA component of O and fﬁlter — filter of the filter
component of O. Then f «— g describes O, where f is the tuple

(fh ey fNy freLa e ’frelua ffair-mergea fDFAa fﬁlter)
(and similarly g).

3.2 Object Subsumption

The equational framework presented above gives us an intuitive and elegant way to
talk about substitutability and subsuruption of objects. The general denotation of an
object is a triple, with a structure component, a behavior component and a component
for functional invariants. Since we have used equations to define both behavior (due
to Misra) and functional invariants, we can in essence treat ObjChart objects as
collections of equations, and therefore, we define object equivalence (subsumption)
as the equivalence (subsumption) of the sets of solutions of these equation. That is,
for two ObjChart objects O, and O;, we say that O; subsumes Oy if and only if the
following conditions hold:

445

Attribute The set of external attributes of O, subsume those for O;. In other words,
for each attribute of Oy, O; has an attribute which accepts the same “type” of
values.

Port The set of ports of Op subsume those for Oy. In other words, for each port of
01, O, has a port which accepts the same “type” of messages.

Behavior Every smooth solution of O; (refer to Section 3.1) is also a smooth solution
for O;. In other words, O has at least the same set of legal traces as 0.

Functional Invariants The solutions (least fixpoint) of each functional invariant of
0, is also a solution to the corresponding functional invariant of O.

From the above definition it is clear that in gemeral it may not be possible to
algorithmically decide if an object subsumes another, since we are using semantic
equivalence for both behavior and functional invariants. However, we now identify
a useful class of subsumption, where the subsuming object is obtained by copying
and extending the subsumed object, by adding attributes, states, arcs, or actions.
For such a case, it is easy to show that the subsumption problem is decidable, by
comparing the two structures in question.

We illustrate this idea with a simple example, in which we extend the state machine
of an alarm clock to produce one which also has the “snooze” feature, as shown in
Figure 13.

AlarmClockWithSnooze
AlarmClock snooze(T){true]
timer(T)[T=alarmTime] alarmTime := T+snoozeConst
snoozeT := T+snoozeConst
bell << sound_on bell << sound_off

timer(T)[T=alarmTime + ringConst]; timer(T)[T=snoozeT]
bell << sound_off bell << sound_on

Figure 13: Alarm Clock with and without Snooze

The copy-and-eztend paradigm exemplified here, is quite useful for the system de-
signer, because it shows that a system may be developed incrementally by reusing and
extending previously defined models. The ability to check subsumption algorithmi-
cally for such cases enable us ascertain that incrementally extended models are indeed
semantically proper extension of the original ones.

446

3.3 Semantics of Contracts

“Contracts” was introduced in an earlier paper [HHG90] as a way of capturing multi-
object behavioral collaboration. That paper did not, however, provide a precise se-
mantics for Contracts.

The equational framework described here can provide precise semantics for Con-
tracts. A Contract is intended to express a set of constraints on the order of message
exchanges among a set of participants. These constraints are precisely the set of equa-
tions over traces where the participants are the channel names. Contract composition
becomes union of the set of equations for the sub-Contracts (with possible channel
name unification, whenever the output of one channel is connected to the input of
another). Contract refinement has the same semantics as that of object subsumption
discussed in Section 3.2.

In the visual notations of ObjChart, Contracts are depicted by the behavioral
relation construct, such that the typed ports represent the Contract participant roles,
and the constraints are defined by the relation’s state machine. In effect, the state
machine of the Contract controls the order of message exchanges between the objects
connected to the ports.

4 Specification Structuring and Reasoning

This section discusses how ObjChart notations help structure system specifications
naturally, using object hierarchies. We alsc observe how iracing causality chains along
this object hierarchy helps organize reasoning about system behavior. Subsection 4.1
presents an ObjChart specification of a version of the Elevator Control System prob-
lem and Subsections 4.2 and 4.3 makes several observations about reasoning with

ObjChart models.

4.1 Modeling of Reactive Systems in ObjChart

In this section we specify a version of an Elevator Control System using ObjChart
notations. This example is typical of reactive systems and has been used as a test
problem for judging efficacy of specification languages [Dav89]. The example shows
that hierarchical object based decomposition provides a natural structure of the speci-
fication, and keeps the state machines under manageable size.

We first model the overall system structure as Building object, as shown in Fig-
ure 14. Building is decomposed into its sub-objects, Elevators and the floors. The
floors themselves are decomposed into their sub-objects, namely the buttons up and
down. Note that the terminal floors, 1oor(0) and floor(m), are modeled separately,
since terminal floors have one button each.

We represent the assembly Elevators as a Sequence, in which the representative
element specifies an elevator, as shown in Figure 15. Each elevator has three attrib-
utes: current-direction of movement, current-floor recording the current floor
number and door keeping the status information about its door, whether opened or
closed.

Each elevator is further decomposed into its sub-objects, a set of internal buttons
(button.set) and a request queue (request_queue). The request queue has the

447

Building
request(F,D)[self. schedule(E)}
Elevators(E) << request(F,D)
schedule)
floor (0) iFloors floor (m)
Elevators I
Iﬂoor num] [ﬂoor_num J | ﬂoor_numl
5 WEET | |

Figure 14: Overall System Structure

following four methods:

o pending?(F,D) queries if a particular request from a Floor F' and direction D
is in the queue.

e toMove?(D) determines if there are further requests for going in the Direction
D. This method essentially implements the elevator sweeping algorithm.

¢ enq(F,D) adds to the queue the request from Floor F for going in direction D.
¢ deq(F,D) removes the request from Floor F for direction D from the queue.

Next, the state machine of Figure 16 models the reactive behavior of an elevator.
An elevator could be in one of three states, namely: dead (this is a quiescence situ-
ation in which there are no requests to be satisfied), stopped (an elevator is in this
state when it is actually servicing a request) and moving (in which the elevator is
using its sweeping algorithm to continually service requests for a particular direction).
The events handled by the state machine are the following:

e request(F,D) event denotes a request to go to floor F' and direction D. These
events are generated by either pushing the floor buttons or by pushing the
buttons inside the elevators.

448

Elevators
nE ueue
ueye q
door
:,] o
1
current_direction
buttons I ending?
T
current_floor
eng
| 1
-
deq
]
] |

Figure 15: Sequence of Elevators

o floor_near(F) event is generated by the sensors (external to our model) when
a floor F is approached.

o door_close event is generated by perhaps an external timer when certain time
elapses after an elevator door is opened.

Finally, we briefly specify the reactive behavior of some of the other objects, as
shown in Figure 17.

This section highlights how specification of a system is structured easily and nat-
urally into the specifications of its constituent objects. Stepwise decomposition of
objects into sub-objects results in each object with a very local scope. Such locality
enables one to specify the objects independently and simply. For example, the FSM
of an elevator is specified using only 3 states and is independent of the state machines
of the elevator’s buttons. In the next sub-section, we shall see how reasoning about a
system under modeling is structured very naturally along inspecting objects locally.

4.2 Reasoning with ObjChart Models

In this section we use the elevator example developed in Section 4.1 to illustrate that
in ObjChart reasoning about properties of a model can be done at a very intuitive
level. The structure of such reasoning arguments follow closely the system structure.
A typical such reasoning process about a reactive system involves making eventuality
arguments and ascertaining safety properties. Eventuality arguments are effected by
following causality chains through the communicating state machines, showing that
progress making states are entered eventually. Safety properties of an object, on the
other hand, being invariants, are established by examining all states of an object.

Consider the elevator model described in Section 4.1. A natural desire of the
system analyst may be to prove the following property about the model:

If an up button is pressed at floor f, eventually some elevator comes to
the floor and opens the door.

449

floor_near(F)
[not(queue.pending?(F current_direction))]

request(F,D)[true]

current_floor := F
queue << enq(F,D)

L)

moving

[
request(F,D)[F > current_floor]}

floor_near(F)
[queue.pending?(F current_direction)]

current_floor := F
door := open
queue << deq(F,current_direction)

current_direction := up
queue << enq(F,D)

request(F,D)[F < current_floor]

current_direction := down door_close[queue.toMove?(D)]
queue << enq(F,D)

door := closed
current_direction := D

request(F,D)[F = current floor]

door := open

door_close
[not(queue.toMove?(_D))]

door := closed
request(F,D){F =/= current_floor]

stopped

request(F,D)
[F = current_floor]

{1

queue << enq(F,D)

Figure 16: State machine for an individual elevator

We proceed by breaking this top-level goal into various smaller sub-goals which we
solve one at a time:

1. Every button push reaches some elevator E. To establish this, one can
trace the causality chain from the individual button (for floor f, and direction
up), and establish that when this button is pressed, some elevator (say F)
eventually gets request(f,up). For example, one possible such chain could be

push ~» floory < dir{up)

floory < din(up) ~ Building < request(f, up)
Building < request(f,up) ~» Elevators(E) < request(f,up),

i.e., eventually, elevator E will receive the request (some scheduling algorithm is
employed by the building to determine the actual value of E).5 Refer to Figures
14 and 17 of Section 4.1 for more details on the actual structure of the model.
Note that, in general, it will be necessary to establish that each object in such
a causality chain is indeed in a state in which it is ready for the corresponding

5The notation a ~» b means that a causes b and in fact, a is an event and b'is an action in some

arc label of an FSM.

450

up down
push(true] push(true]
parent << dir(up) parent << dir(down)

FSM of the individual buttons

a_Floor

dir(D)[self.floor_num(F)]

parent << request(F,D)

FSM of an individual floor

Figure 17: Specification of Behavior

message. For our example, all the intermediate objects involved, from a floor-
button to an elevator, have a single state in their state machine, and so this fact
is easy to ascertain.

. Elevator E services the message request(f,up) eventually. To do so,
however, we have to consider the following sub-goals:

(a)

(b)

(c)

Elevator E never loses any request. This is a safety property that can
be established by inspecting all the states of the elevator (Figure 16), and
noting that in each state the message request(f,up) is handled. Hence, the
request gets immediately satisfied if E was in “dead” state at floor f or the
request gets queued if the elevator was in either “moving” or “stopped”
states.

Whenever elevator E has a non-empty queue, it returns to the
“moving” state. This can be deduced from the facts that (i) toMove?
would always hold whenever the queue is non-empty, and (ii) whenever the
elevator enters the “stopped” state a door_close event occurs eventually.
Furthermore, if the elevator was in a “dead” state, a request will send it
to the “moving” state.

In the “moving” state, the elevator makes finite progress towards
satisfying request(f,up). For this we assume receipt of a correct sequence
of floor.near events whenever the elevator is in the “moving” state. As

451

a result, the elevator may either transit to the “stopped” state or may
continue in the “moving” state. In the former case, we use the previous
argument to show that either the request has been satisfied, or the elevator
must return to “moving” state again. In the latter case, we say that we have
progressed one step closer to satisfying the request under consideration.
Note that it may be the case that the elevator is actually moving away from
the request under consideration, however, this is still progress, because the
elevator is getting closer to its next sweep (i.e., direction change) in which
the current request would be serviced.

The above arguments assume:

¢ All the methods of the gqueue object work correctly. In particular, the query
toMove? is assumed to evaluate to true when the queue is non-empty. In fact,
if we did specify the queue object completely, using its state machine, then we
could have actually established this fact using similar causality argument about
that state machine. However, in this paper, due to lack of space, we have simply
assumed that the interface for queue is pre-defined in terms of methods which
satisfy certain specifications.

e The external events (door.close and floor_near) arrive correctly whenever re-
quired.

This example shows that the ObjChart formalism allows system modelers to in-
tuitively reason about their models by inspecting causality chains among the FSM-s
of the objects under consideration. Furthermore, hierarchical decomposition modu-
larizes, in most cases, such reasoning to inspecting a single object.

4.3 Orthogonality of Functional Invariants from Causality
Chains

In this section we describe an example to show that our method for specifying func-
tional invariants obviates the need of reasoning with explicit pre- and post-conditions.
This example also illustrates that reasoning with functional invariants is orthogonal
to reasoning with the causality chains.

The example involves specifying a bicycle, as shown in Figure 18. In our partial
description of the system we have two objects, called rear and front which denote
the wheels of the cycle. Each wheel has three attributes, namely: omega (for angu-
lar velocity), radius and velocity. The functional invariants describe the relation
among angular and linear velocities of each wheel and the fact that the linear veloc-
ities of the two wheels must be equal. Furthermore, the Wheel Assembly responds
to a rotate message (which is generated from the pedal object in a more detailed
scenario).

Suppose we want to establish that turning the pedal at an angular velocity W,
will turn the front wheel at angular velocity W * rear.radius/ front.radius.

This can be accomplished using the following two orthogonal steps:

o establish that pedal's message rotate(W) will set the value of rear object’s
omega attribute. That is, rear.omega = W. This is done by inspecting causality
chain from pedal to WheelAssembly’s FSM.

452

WheelAssembly
rotate(W){true]
Rear << setValue(omega, W)
Rear

Figure 18: Orthogonality of FSMs and Functional Invariants

o establish that the angular velocities of two wheels are inversely proportional to
their radii. That is, front.omega = rear.omega * rear.radius/ front.radius.
This can be established by following the chain of functional invariants.

This example illustrates the fact that reasoning about an ObjChart model is a
truly orthogonal process: Follow a causality chain (any system trace) to find mes-
sages requesting value change and reason about the value network separately using
techniques like function composition. In contrast, in some systems one has to explic-
itly deal with pre- and post-conditions in order to establish that a particular trace
is valid for the object under consideration. We believe such orthogonality simplifies
reasoning tremendously.

5 Comparison

In contrast to other state machine based behavior modeling languages, ObjChart uses
object decomposition as the single system refinement paradigm, maintains orthogo-
nality between control flow and value propagation, introduces Sequence object which
embodies structural induction, and allows tracing causality chains in time linear in
the size of the system. We elaborate these issues in the following sections.

453

5.1 Statechart

Statechart [Har87] proposes an elegant extension to FSMs so as to allow hierarchic
refinement of states, decomposition of the system state machine into a set of orthog-
onal sub-component FSMs and multilevel concurrency utilizing broadcast communi-
cation of events among component state machines. Due to the hierarchy of states
and substates, Statechart has also the notion of history nodes which remember the
sub-state from the previous entry. Furthermore, chain reactions of internal events,
triggered by a single external event, cannot interleave with arrival of further ex-
ternal events [HPSS87]. These two features seemingly complicate the semantics of
Statechart-—see Section 3 of [HPSS87].

In contrast, we use hierarchical object decomposition in lieu of orthogonal com-
ponents for keeping the state machine of each object simple. We also use directed
communication, unlike broadcast, along the decomposition hierarchy.

As shown in Section 4.2, typical reasoning for reactive systems involve chasing
causality chains. Hierarchically directed communication of ObjChart allows us to
analyze the effect of a chain reaction, caused by an external event, by considering
only affected objects as opposed to all the objects in the system. For example, for a
system of N objects where each object has at most ¢ sub-objects, a k-step transition
sequence may involve O(c**?) = O(N) objects, i.e., number of inspections is linear in
the size of the system. In contrast, for Statechart, analyzing a k—step chain reaction
(i.e., a k-step micro-step sequence) requires exponentially many (O(N ®)) inspections.
To see this consider a system which has N “AND” components. An external event
e may cause state transition for any of these N subcomponent. Furthermore, each
such transition may generate new events, which may cause transitions for all the N
components again. Thus, each event has the potential to cause transitions for any of
the N objects, and therefore, for every event one may potentially have to look at the
entire system to find its effect, and thus the result. Finally, in ObjChart, communica-
tion between two objects in different parts of the hierarchy may need O(logN) steps,
and thus involve O(logN) components. In Statecharts, although the same communi-
cation may be accomplished in a single step due to broadcast, it would still require
inspections of all N components to find its effect.

Moreover, our semantics is relatively simple due to the following two facts. First,
since hierarchically decomposed objects in practice need very few states, we do not
have “OR” decomposition and thus, we do not have the complications due to History
Nodes. Second, since we allow interleaving of external messages with those from the
sub-objects, our semantics is free from the complications due to the asymmetry of
macro and micro steps.

Thus, ObjChart accomplishes the same objectives as Statechart by using the object
decomposition paradigm with a simpler semantics and a much better time complexity
in analyzing system models.

5.2 ObjectChart

ObjectChart [BCHA90, CHB92] retains the traditional notion of classes and uses
Statecharts to define the behavior of classes. They have used both “AND” and “OR”
decomposition of Statecharts. It is not apparent how the orthogonal components of a
Statechart within a single class can communicate and synchronize without broadcast,

454

because their claimed directed communication is only for sending messages from one
object to another and not for communication among orthogonal components within
a single class.

As for operational semantics, ObjectChart is very restrictive: execution of each
message (called an interaction) has to complete before the next one begins in the entire
system. Moreover, execution of a service request cannot involve a nested request for
another service. Thus, the concurrency allowed in Statechart formalism is not even
utilized in ObjectChart’s semantics.

ObjectChart also allows annotating states by state invariants (i.e., conditions hold-
ing at a given state) and associating pre- and post-conditions with service requests
(message executions) in order to reason with the effects of these service requests. How-
ever, ObjectChart models have not achieved orthogonality—a trace derived from the
state machines may still be disallowed if the necessary pre-conditions of the constituent
service requests are not satisfied. Therefore, dealing with pre- and post-conditions de-
stroys the intuitive simplicity of reasoning with state machines.

In contrast, we treat value propagation by functional invariants. The beauty of
this approach is that these invariants always hold and therefore, any causality chain
determined from inspecting state machines alone is always legal for the system. The
result is that reasoning with ObjChart models consists of two truly orthogonal phases:
follow a causality chain to identify any value update and then use functional invariants
to determine consequent value propagation (see Section 4.3 for an example).

Finally, ObjectChart, being class based, does not directly support part-of decom-
position at the object level. As such, the flatness of the traditional class model makes
it difficult to express hierarchical layering of a system [BBJS92).

5.3 OMT

OMT uses three facets to describe a system, namely: the object model (E-R diagram),
the dynamic model (Statechart) and the functional model (DFD). They have two
major problems for describing large systems: First, their dynamic descriptions are
at the class level, and therefore, like ObjectChart, the flat structure of classes is
inelegant for describing hierarchically layered systems. Second, a system description
gets refined along these three separate models, thus making it difficult to maintain
coherence between these models [BBJS92, HC91).

As such, any system design methodology employing separate refinement hierar-
chies, for example, [Boo91, Har88b] and a list of others, have this inherent impediment
of maintaining coherence among the different models. On the contrary, in ObjChart,
object decomposition is the only system refinement paradigm. We believe that ob-
ject is the fundamental element in any object oriented system, and therefore, object
decomposition must be the predominant (and perhaps the sole) system refinement
discipline.

6 Conclusion

In summary, ObjChart formalism aims to combine the intuitive appeal of visual no-
tations with preciseness of formal methods. The constructs have been carefully de-
signed, on one hand, to promote the tangible thinking in terms of objects as the sole

455

system building-blocks and, on the other hand, to provide facilities such as functional
invariants and structural induction (via Sequence object) which are found useful in
reasoning.

By modeling many examples in ObjChart, we have made several encouraging
observations: (1) system specifications are structured naturally as the objects of the
system and (2) the same object structure is useful in guiding the reasoning process in a
natural fashion. In many cases, such reasoning is very local, requiring inspections only
within an object. Furthermore, we observe that causality chains of message passing
can be reasoned orthogonally from reasoning with networks of functional invariants.
Finally, tracing causality chains is the corner stone for reasoning with ObjChart mod-
els and can be accomplished in time linear in the size of the system. All these factors
lay the foundations for reasoning with ObjChart models to scale up to practically
sized systems. However, much more work is needed to realize these potentials.

Currently, we have built a prototype environment, called ObjChart Builder
[GMD93], to create, edit, reuse and execute ObjChart models. In practical terms,
execution of ObjChart models enable one to understand the cause and effect relations
among objects. ObjChart Builder enables a system analyst to debug the concep-
tualization of a system directly at the level of ObjChart models by execution and
inspection of the states of the objects.

In developing ObjChart notations, we have focused on object-level dynamics as
the key component of system modeling and have not emphasised the static modeling
features typical of class-based notations. For example, we cannot express, in ObjChart
notations, disjunctive facts such as “Vehicles are either Cars or Trucks”. Extending
the Sequence Object construct by allowing alternative representative elements will be
a potential solution.

Finally, using equations over traces as the denotation of objects provided us with
an elegant framework to define object substitution and composition. However, the
current framework is based on a fixed network of components and cannot handle the
semantics of dynamic object creation. Semantics of Actors, on the other hand, can
handle dynamic creation; however, the semantics is operational in nature. We believe
that extension of the concept of smooth solutions to equations involving higher order
functions may provide a general framework in which dynamic object creation can be

handled.

Acknowledgement

The authors wish to thank several people who have, over the years, been involved
in the Tangible Programming Project — Mukesh Dalal, Ashish Gupta, Constantine
Laufer and Richard Helm. They all helped directly or indirectly in developing the
ideas presented here, although the authors remain responsible for any remaining flaws.
We would like to thank Rajendra Panwar and Jarir Chaar for proof-reading earlier
versions of this paper. We are also indebted to Satbir S. Dhaliwal, who implemented
a major portion of ObjChart Builder in C++.

456

References

[BCHA90] S. Bear, D. Coleman, F. Hayes and P. Allen. Graphical specification of

object-oriented systems. In Proc. OOPSLA/ECOOP ’90 Vol. 25, No.
10, pages 28-37, 1990.

[Boo91] G. Booch. Object-oriented design with applications. The Benjamin
Cummings Publishing Company Inc., 1991.

[BA81] J. D. Brock and W. B. Ackerman. Scenarios: a model of nondeterminate
computation. In Formalization of programming concepts, LNCS 107,
pages 252-259, 1981.

[BBJS92] B. Bruegge, J. Blythe, J. Jackson and J. Shufelt. Object-oriented system
modeling with OMT. In Proc. OOPSLA ’92Vol. 27, No. 10, pages 359-
376, 1992.

[CM89] K. M. Chandy and J. Misra. Parallel program design. Addison-Wesley,
1989.

[CHB92] D. Coleman, F. Hayes and S. Bear. Introducing ObjectCharts or how to
use Statecharts in object-oriented design. IEEE Transactions on Soft-
ware Engineering, Vol. 18, No. 1, 1992.

[Dav89] N. Davis. Problem Set for the Fourth Int. Workshop on Software Spec-
ification and Design. In Proc. of the Fourth IEEE Int. Workshop on
Software Specification and Design, Monterey, USA, 1989.

[GMD93] D. Gangopadhyay, S. Mitra and S. 5. Dhaliwal. ObjChart-Builder: An
environment for executing visual object models. IBM Technical Report.
Submitted for publication. 1993.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, Vol. 8, pages 231-274, 1987.

[HPSS87] D. Harel, A. Pnueli, J. P. Schmidt and R. Sherman. On the formal
semantics of Statecharts. In Proc. of the Second IEEE Symp. on Logic
in. Computer Science, pages 54-64, 1987.

[Har88a) D. Harel. On visual formalisms. Communications of the ACM, Vol. 31
(5).

[Har88b) D. Harel et al. Statemate: A working environment for the development
of complex reactive systems. In Proc. of the Tenth Int. Conf. on Software
Engg., pages 396-406, 1988.

[HC91] F. Hayes and D. Coleman. Coherent models for object-oriented analysis.
In Proc. OOPSLA 91, Vol. 26, No. 11, pages 171-183, 1991.

[HHGY0] R. Helm, I. M. Holland and D. Gangopadhyay. Contracts: specify-
ing behavioral compositions in object-oriented systems. In Proc. OOP-
SLA/ECOOP 90, Vol. 25, No. 10, pages 169-180, 1990.

[Jon89]) B. Jonsson. A Fully Abstract Trace Model for Dataflow Networks. In
Proceedings of the sizteenth annual Symposium on Principles of Program-
ming Languages, pages 155-165, 1989.

[MP92] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent
Systems. Springer-Verlag, 1992.

[Mis90) J. Misra. Equational reasoning about nondeterministic processes. For-
mal Aspects of Computing, Vol. 2, pages 167-195, 1990.

457

[Pnu86] A.Pnueli. Application of temporal logic to the specification and verifica-
tion of reactive systems: A survey of current trends. In Current Trends
in Concurrency, LNCS 224, pages 510-584, 1986.
[RBPEL91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen.
Object-oriented modeling and design. Prentice-Hall, 1991.
[SM88] S. Shlaer and S. Mellor. Object-oriented systems analysis. Yourdon
Press, 1988.

