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ABSTRACT : In this paper, we present a formal object-oriented specification
language designed for capturing requirements expressed on composite real-
time systems. The specification describes the system as a society of ‘agents’,
each of them being characterised (i) by its responsibility with respect to ac-
tions happening in the system and (ii) by its time-varying perception of the
behaviour of the other agents. On top of the language, we also suggest some
methodological guidance by considering a general strategy based on a progres-
sive assignement of responsibilities to agents.
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1 Introduction

Requirements Analysis (also called Requirement Engineering) is now widely
recognised as a critical activity in the context of software development.

Some languages where proved useful to express requirements. These include,
e.g., PSL/PSA [TH77], SADT [Ros77], MERISE [TRC83] or IDA [BP83]. Lan-
guages of that family have a rigorous syntax but suffer from a lack of formal
semantics. This fact leads to the development of new languages based on formal
grounds like, e.g., RML [GBM86], GIST [Fea87], ERAE [DHR91] and TELOS
[MBJK90].

The common characteristic of all these languages is the existence of a logical /
mathematical semantics which permits unambiguous and consistent expression
of requirements together with a formal framework for a rigorous investigation
of the R.A. process (see, e.g. [JF90]). Differences exist between these languages
and are inherent to their ezpressive power (i.e. the level of requirements that
can be captured using the language) and the nature of the available structur-
ing mechanisms (i.e. mechanisms which help in organizing large requirements
documents).
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In the last years, the O-O paradigm has been adopted at the level of pro-
gramming and design specification languages. OBLOG [SSE89], Larch [GHW85],
Object-Z [DKRS91] and OOZE [AG91] are examples of formal design languages
supporting the O-O paradigm. Recent approaches (e.g. [CY91], [SM88]) consider
the application of this paradigm at the requirements analysis level. Our paper
goes along this direction but emphasises the need for formality in OORA.

We propose a formal O-O language designed for supporting requirement engi-
neering. Our language aims at supporting the expression of (i) statements about
real-world entities, (ii) performances requirements and (iii) visibility and reli-
ability requirements. More precisely, the proposed language can be seen as an
extension of the ERAE language [DHR91] complemented with:

~ the concept of agent (as introduced for programming languages in [Sho90]).
This concept, which can be seen as a specialization of the concept of ob-
Jject, is needed for structuring the requirements document according to the
contractual responsibilities attached with each agent (a manual procedure, a
device or a software component) with respect to the information it manages,
accesses and modifies in the system;

— the concept of action (see, e.g., MAL [FP87]), introduced to define the role of
agents w.r.t. changes happening in the system. Secondarily, the introduction
of this concept is also motivated by our aim to overcome the frame problem
existing in a declarative language [BMR92];

— the concept of perception, introduced to model the knowledge the agent has
about its environment (i.e. the behaviour of other agents).

In Sect.2, the requirements engineering activity is first described and the
concept of “composite system” is introduced.

The language itself is presented in Sect.3. It is called ALBERT (an acronym
for “Agent-oriented Language for Building and Eliciting Requirements for real-
Time systems”) and supports the possibility of writing graphical declarations
and complement them with Zeztual constraints.

On top of a language, one definitively requires some methodological guidance
for an incremental elaboration of a complex requirements document (see, e.g.
[Fea89, FF89]). In Sect.2, we briefly describe a general strategy where the pro-
gressive elicitation of requirements is supported by identifying the goals of the
system first before to refine them in terms of local responsibilities attached to
each individual agent. In Sect.4, we illustrate how this strategy is supported in
our language.

All along this paper, we will illustrate our ideas on a simplified fragment of
a Computer Integrated Manufacturing (C.I.M.) application.

Requirements are associated with a specific cell being part of a complex pro-
duction system. This cell is in charge of the production of a bolt when a pro-
duction request is issued. A bolt results from the transformation of a rivet
through a given process. More specifically, the cell (see Fig.1) is made of:
— the rivets stock. Rivets are produced by another cell and put in this
stock waiting for their processing;
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— the bolts stock. Bolts are the resulting products of the cell activity and
are stored in a stock. Bolts remain in the stock until their use for activities
performed in other cells;

~ the lathe. It is the machine transforming a rivet into a bolt by producing
a thread on the rivet;

~ the robot equipped with a gripper. Its role is twofold : on the one hand, it
transports a rivet from its stock to the lathe machine; on the other hand,
it transports a bolt from the lathe which produces it to the stock of bolts.

Finally, there is a performance constraint imposing that a bolt must be pro-
duced within 10 minutes.

Cell

/ Rivets Stock \
Bolts Stock @

Robot Lathe

Fig. 1. The C.I.M. case study

2 Requirements Engineering of Composite Systems

In this section, we briefly details the activity of requirements engineering and its
role within the software life-cycle; then we will define the concept of composite
systems.

2.1 Requirements Engineering vs. Software Engineering

The majority of recent software development methods distinguish between two
basic activities: requirements engineering and software engineering (see Fig.2).
The former starts from informal wishes expressed by one or several customers and
elaborates a so-called requirements document where the system to be developed
is defined in a precise way. This document is the starting point of the software
engineering (or design) activity, which develops a software system meeting the
requirements in an efficient way.
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Fig. 2. Requirements Engineering vs. Software Engineering

2.2 The Four Tasks of Requirements Engineering

The requirements engineering (R.E.) activity is not as trivial as writing down
the customers’ wishes because these wishes are often unprecise, incomplete, ill-
structured, and even inconsistent. Therefore requirement engineering implies a
constant interaction between the customers and the analyst in order to progres-
sively clarify the requirements.

Acquisition Specification

Elicitation 3 Modelling

+ *

Validation - Analysis

Fig. 3. Tasks of the R.E. activity

As suggested on Fig.3, R.E. can be subdivided in four interacting tasks
[DHR91):
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— During the elicitation task, the analyst collects information about the cus-
tomers’ problem. This can be performed through several ways: interviews
and discussions, observations, study of available documentation,...

— During the modelling task, the analyst processes the information collected
during the previous task and elaborates a model, i.e. a formal representation
of the problem. This model is a new fragment added to the requirements
document elaborated so far.

— During the analysis task, the analyst detects problems (contradictions, in-
consistencies,...) resulting from the incorporation of the new requirements
fragment. These problems either relate directly to the the fragment itself or
to the integration of this fragment with the rest of the requirements.

— During the validation task, the objective of the analyst is twofold. If prob-
lems were met during the analysis task, the analyst has to communicate
them in a comprehensible way to the customers and try to solve them. Oth-
erwise, the analyst controls the adequacy of their formalised descriptions by
reformulating it to the customers in an appropriate way.

2.3 Properties of R.E. Languages

From the activities outlined above, we can derive some basic properties for an
adequate language supporting requirements engineering. These properties are
expressiveness; siructuring and formality.

Expressiveness. To support effectively the elicitation and also the validation
task, a language should be sufficiently expressive to support a natural mapping
between all kind of things that should be described in a requirements docu-
ment and the various concepts available in the language. Definitely, capturing
requirements should not be a cumbersome coding task.

Structuring. Requirements documents are often quite large and, thereby, com-
plex interactions exist between different pieces of descriptions. To facilitate the
modelling task and to make the resulting document manageable, requirements
should be organised into separable units which can be combined in a controllable
way to yield to the complete specification.

Moreover, structuring mechanisms are also essential to support the reuse of
specification components and the maintenance of requirements documents.

Formality. The formal aspect of a language depends on the availability of rig-
orous rules of interpretation which guarantee the absence of ambiguity. Besides,
rules of deductive inference are needed to make possible the derivation of new
statements from the given ones.

The deductive power of a language allows the development of tools support-
ing the analysis task (semantic checkers) and the validation task (prototype
generators and inference tools).
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2.4 Composite Systems

In the context of the development of real-time software and information systems,
the requirements document, in its final stage of elaboration, should include not
only specifications on the software piece to be implemented but also on the
environment around this software as well as the nature of the interactions taking
place between both (see, e.g., [Bj#92]). Let us consider two specific examples:

— in the context of an information system, requirements may include references
to manual procedures to be installed (like, “this department is in charge of
encoding the orders within the day of their arrival”) or to real-world enti-
ties (like the following accuracy requirement [MCN92]: “the stocks quantities
recorded in the information system should reflect the real-world stocks quan-
tities with some delta”).

— In the context of real-time software, requirements may include references to
specific hardware/devices to be used (like, “the existence of an analog device
which measures pulse and skin resistance in a patient monitoring system”
[Fea89]) or to performance requirements (like, “in a furnace system, when
the water temperature exceeds 100°C degrees, the alarm has to be triggered
on within a 10 seconds delay”).

In this paper, we consider requirements associated with the kind of systems
described above that are sometimes referred as composite systems [Fea87]
made of multiple agents. For example, one may think about a composite system
including manual procedures, hardware, specific devices and software compo-
nents interacting together. For example, in the context of the C.I.M. case study
introduced in Sect.l, one may envisage (i), at the higher level, the system as
being made of Cell agents and an Environment agent, and (ii), at a lower level,
each cell as being made of multiple agents, viz the Rivets container, the Bolis
container, the Robot, the Lathe and the Coniroller. The last three agents play
an active role in the Cell. This is especially the case for the Controller which is
in charge of synchronising and controlling the whole production process. Con-
versely, the two first agents (viz the Rivets and Bolts containers) have a more
passive role restricted to stock keeping (see Fig.4).

In the final version of the requirements document for a composite system,
we have to be able to identify responsibilities attached with the different agents
(computerised or not) and make them precise because they form a contractual
part for the designers (not only the software designer) in charge of implementing
them and guaranteeing their desired behaviour.

On top of the detailed behaviour attached to each agent identified, we also
need to have a more abstract view of the global goals [Dub89, DFHF91], i.e. ob-
jectives associated with the system considered as a whole (black box approach).
Goals are expressed in terms of system-wide properties, regardless of how re-
sponsibility is decomposed among agents.

The requirements engineering activity should thus encompass a phase of “or-
ganisational design”, i.e. the work of organising a system into agents (subsys-
tems), assigning responsibilities to them and describing their interconnections.
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Fig. 4. Development of the Requirements Document

To conclude, we plead that an adequate method for supporting the gradual
elaboration of the requirements document should include:

1. the specification of the problem expressed in terms of goals associated with
the whole system to be developed;

2. the specification of a solution to the problem in terms of the description
of a composite system where the set of requirements attached to individual
agents meet the goals introduced.

In Sect.4, we will further detail the set of activities supporting the model
sketched above.
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3 ALBERT: the Language

3.1 Models of a specification

The purpose of our requirements language is to define admissible behaviours
of a composite system. This description, which must abstract of irrelevant de-
tails, is usually called a model of the system. A specification language is best
characterized by the structure of models it is meant to describe.

The rules for deriving the set of admissible models from a given specification
expressed in the formal language are defined in [Du 92]. Their comprehensive
presentation is however beyond the scope of this paper, which will remain infor-
mal.

In order to master their complexity, models of a specification are derived at
two levels:

— at the agent level: a set of possible behaviours is associated with each agent
without any regard to the behaviour of the other agents;

— at the society level: interactions between agents are taken into account and
lead to additional restrictions on each individual agent behaviour.

The specification describes an agent by defining a set of possible lives mod-
elling all its possible behaviours. A life is an (in)finite alternate sequence of
changes and states; each state is labelled by a time value which increases all
along the life (see Fig.5).

? ?

Rivets Bolts Rivets Bolts Rivets Bolts
stock  stock stock  stock

=\ (=0 =)\ (B
®
Produce

Remove-bolt(b623)
Store-rivet(r901)

Store-bolt(b123)
Remove-rivet(r251)

Fig. 5. A possible life of the Cell agent

The term “history” refers to the sequence of changes which occur in a possible
life of the agent. A change is composed of several occurrences of simultaneous
actions (the absence of action is also considered as a change). In our terminology
we use the word ‘action’ both for denoting:
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— happenings having an effect on the state where it occurs {called actions in
some existing specification languages: e.g. [RFM91], [JSS91));

— happenings with no direct influence on the state (called events in some other
specification languages: e.g. [DHR91]).

The term “trace” refers to a sequence of states being part of a possible life
of the agent. A state is structured according to the information handled in the
considered application. In the case study, a specific state structure is associated
with the Cell agent (see Sect.3.3).

The value of a state at a given time in a certain life can always be derived
from the sub-history containing the changes occurred so far.

3.2 Language Constructs

Basically, the formal language that we propose is based on a variant of tem-
poral logic [GBY1], a mathematical language particularly suited for describing
histories. This logic is itself an extension of multi-sorted first order logic, still
based on the concepts of variables, predicates and functions. In this paper, three
extensions are taken into account:

1. the introduction of actions to overcome the well-known frame problem
[BMR92, HR92], a typical problem resulting from the use of a declarative
specification language;

2. the introduction of agents together with their properties (responsibilities
for actions, for providing perceptions, ... ). This object-oriented concept can
also be seen as a possible way of structuring large specifications in terms
of more finer pieces, each of them corresponding to the specification of an
agent guaranteeing a part of the global behaviour of the whole system;

3. the identification of typical patterns of constraints which support the
analyst in writing complex and consistent formulas. In particular, typical
patterns of formulas are associated with actions.

Using the language involves two activities:

— writing declarations introducing the vocabulary of the considered applica-
tion,

— expressing constraints, i.e. logical statements which identify possible be-
haviours of the composite system and exclude unwanted ones.

A graphical syntax (with a textual counterpart) is used to introduce declarations
and to express some typical constraints frequently encountered. The expression
of the other constraints is purely textual.

3.3 Declarations

The declaration part of an agent consists in the description of its states structure
and the list the actions its history can be made of.
Agents are considered as specialised objects; therefore, our modelling of a

state structure is largely inspired by recent results in O-O conceptual modelling
(see, e.g., OBLOG [SSE89] and O* [Bru91)).
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The state is defined by its components which can be individuals or popula-
tions. Usually populations are sets of individuals but they can also be structured
in sequences or tables. Components can be time-varying or constant. Elements
of components are typed using:

predefined elementary data types (like, STRING, BOOLEAN, INTEGER,...)
equipped with their usual operations !;

elementary types defined by the analyst (like, BOLT and RIVET in our
example), those are types for which no structure is given, they are only
equipped with equality;

more complex types built by the analyst using a set of predefined type con-
structors like set, list, Cartesian product,... (see, e.g. [BI78]) and elementary
types; on top of operations inherited from their structure, new operations
can be defined on these new types;

types corresponding to agent identifier.

Agents includes a key mechanism that allows the identification of the differ-
ent instances. A type is automatically associated to each class of agent. This
correspond to the type of agents identifiers within that class. E.g., each Cell
agent has an identifier of type CELL 2 3.

Figure 6 proposes the graphical diagram associated with the declaration of
the state structure of the Cell where:

— Input-stock and Output-stock are considered as two set populations, respec-
tively of type RIVET and BOLT,

— Produce, Store-rivet, Remove-bolt, Remove-rivet and Store-bolt are five ac-
tions which may happen in a Cell history. Actions can have arguments?; for
example, each occurrence of the Store-rivet action has an instance of type
RIVET as argument.

The diagram also includes graphical notations making possible (i) to dis-
tinguish between internal and external actions and (ii) to express the visibil-
ity relationships linking the agent to the outside (Importation and Ezportation
mechanisms) :

(1) Information within the parallelogram is under the control of the described
agent (the Cell) while information outside from the paralielogram denotes
elements (state components or actions) which are imported from other agents
of the society the agent belongs to. From the graphical declaration, it can be

! Operations on data types should not be confused with actions of agents: operations
denote only mathematical functions, they may be used to simplify expressions in
constraints but cannot be used to model the dynamic behaviour of systems (i.e.
agents)

2 When an agent is unique (like, e.g., the Environment agent), then a constant is also
automatically defined to refer to the identifier of that agent (envtin our case study).

® Inside the description of an agent, the self constant refers to the proper identifier of
the described agent.

* Arguments may be regarded as input or output arguments but there is no difference
on a semantics point of view.
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Fig. 6. Declaration associated with the Cell agent

read that Cellhas the initiative for Remove-rivet and Store-bolt actions while
it lets the Environment having the initiative of Store-rivet and Remove-bolt
actions 5;

(ii) For information in the parallelogram, boxes without arrow indicate that this
information is not visible from the outside. Conversely, boxes with arrow
denote information which are exported to the outside. From the graphical
declaration, it can be read that the Environment may have knowledge of the
Output-stock state and of the Store-bolt actions.

Importation and Ezportation are static properties; Perception and Publicity
are their dynamic counterparts and provides the analyst with a finer way of
controlling how agents can see information inside each other (perception and
publicity constraints will be discussed in the next section).

5 In the textual part of the specification, external actions will be referred prefixed with
the identifier of the agent responsible for it
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3.4 Constraints

Constraints are used for pruning the (usually) infinite set of possible lives of an
agent.

Unlike in O-O design languages, e.g. OBLOG, the Albert semantics is not
operational. A life must be extensively be considered before it can be classified
as possible or not, i.e. adding new states and changes at the end of a possible
life does not necessarily result in a possible life.

Figure 7 introduces the specification associated with the behaviour of the
Cell agent and refers to the graphical declaration introduced in Fig.6.

Cell

STATE BEHAVIOUR

- Empty(Input-stock)

In(Input-stock,x) => ¢ - In(Input-stock,r)

EFFEGTS OF ACTIONS

Remove-rivet(r): Input-stock = Remove(Input-stock,r)
Store-bolt(b): Output-stock = Add(Output-stock,b)

envt.Remove-bolt(b): Output-stock = Remove(Output-stock,b)
envt.Store-rivet(r): Input-stock = Add(Input-stock,r)

COMMITMENTS

¢ min -
envt.Produce ——3" Remove-rivet(r); Store-bolt(b)

RESPONSIBILITY

PERCEPTION

F( envt.Remove-bolt / Empty(Output-stock) )
X( envt.Produce / — Empty(Input-stock) )

PusLICITY

X( Output-stock.{envt} / » Empty(Output-stock) )

Fig. 7. Constraints on the Cell agent
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In order to provide some methodological guidance to the analyst, proper-
ties are grouped under six different headings: State Behaviour, Effects of
Actions, Responsibility, Perception, Publicity, and Commitments.

State Behaviour. Constraints under this heading express properties of the
states or properties linking states in an admissible life of an agent.

First of all, there are constraints which are true in all states of the possible
traces of an agent (see the first constraint on Fig.7 expressing that the input stock
may never be empty). These constraints are written according to the usual rules
of strongly typed first order logic. In particular, they are formed by means of
logical connectives - (not), A (and), V (or), = (implies), < (if and only if),
V (for all), 3 (there exists). The outermost universal quantification of formulas
can be omitted. The rule is that any variable, which is not in the scope of a
quantifier, is universally quantified outside of the formula.

On top of constraints which are true in all states (usually referred as in-
variants), there are constraints on the evolution of the system (like, e.g. if this
property holds in this state, then it holds in all future ones) or referring states
at the different times (see the second constraint on Fig.7 expressing that a rivet
may not stay indefinitely in the input stock). Writing these constraints require
to be able to refer to more than one state at a time. This is done in our lan-
guage by using additional temporal connectives which are prefixing statements
to be interpreted in different states. The following table introduces these opera-
tors (inspired from temporal logic, see e.g. [Ser80, TLW91]) and their intuitive
meaning (¢ and 7 are statements):

O ¢ ¢ is true sometimes in the future (including the present)
® ¢ ¢ is true sometimes in the past (including the present)
0O ¢ ¢ is always true in the future (including the present)

M ¢ ¢ is always true in the past (including the present)

@ U 9 ¢ is true from the present until 4 is true (strict)
# S ¢ ¢ is true back from the present since ¥ was true (strict)

There are constraints related to the expression of real-time properties. They are
needed to describe delays or time-outs (like, e.g., “an element has to be removed
from its population within 15 minutes”) and are expressed by subscripting tem-
poral connectives with a time period. This time period is made precise by using
usual time units: Sec, Min, Hours, Days, ... [KVdR89].

Effects of Actions. Beyond this heading, we describe the effects of actions®
which may alter states in lives (see on Fig.7 how, e.g., an occurrence of the
Store-bolt(h) action alters the output stock). Only actions which bring a traceable
change are described here (for example, we do not describe the role of the Produce
action).

® This heading contains constraints which describe both effects of internal actions as
and effects of actions perceived from the outside.
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In the description of the effect of an action, we use an implicit frame rule
saying that states components for which no effect of actions are specified do not
change their value in the state following the happening of a change.

The effect of an action is expressed in terms of a property characterising the
state which follows the occurrence of the action. The value of a state component
in the resulting state is characterised in terms of a relationship referring to (i)
the action arguments, (ii) the agent responsible for this action (if this action
is an external one, the name of the agent is prefixing the action) and (iii) the
previous state in the history.

In the last statement of the “Effects” clause on Fig.7, we express that the
effect associated with the action Store-rivet issued by the external agent Envi-
ronment is to add a rivet in the Input-stock of the Cell. In the pattern associated
with the definition of an action, the left hand side of the equation characterises
the state as it results from the occurrence of the action while the right hand side
refers to the state as it is before the occurrence of the action.

Responsibility. Under this heading, we describe the role of the agent with
respect to the occurrence of its own actions. To this end, we are still using
an additional extension of the classical first-order and temporal logic by making
possible to express permissions associated with an agent. To this end, we consider
three specific connectives allowing the expression of obligations, preventions and
ezclusive obligations (respectively the O, the F and the X connectives). The study
of these connectives has been heavily influenced by some work performed in the
area of Deontic Logic (see, e.g. [FM90], [Dub91]).

The pattern for an obligation “O( <internal-action> / <situation> )” ex-
presses that the action has to occur if the circumstances expressed in the situa-
tion are matched (these circumstances refer to conditions on the current state).

The pattern for a prevention “F( <internal-action> / <situation> )" ex-
presses that the action is forbidden when the circumstances expressed in the
situation are matched (e.g. “the cell cannot remove a rivet from the stock when
the stock is empty”, in other words, it is forbidden to the cell to produce the
Remove-rivet action when the stock is empty).

The pattern “X( <internal-action> / <situation> )” is used to express exclu-
sive obligation, it is a shorthand for the combination of “O( <internal-action> /
<situation> ) and F( <internal-action> /- <situation> )”.

The default rule is that all actions are permitted whatever the situation.

Using these connectives makes possible to express the control that the agent
has with respect to its internal actions.

Perception. Beyond this heading we define how the agent is sensitive to the
outside (i.e. to changes or state components which are made available to it by
other agents belonging to the same society).

Perceptions are also specified using the O, F and X connectives.

The pattern “O( <external-action> / <situation> )" defines the situation
where, if an action is issued by the external agent, the behaviour of the current
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agent’s state is influenced. For example, in our case study, one may think about
the following constraint: “the cell is obliged to take into account a production
request issued by the environment when the input stock is not empty” (in other
words, Produce actions occurring in the environment has necessarily to affect the
history of the cell when the input stock is not empty).

The pattern “F( <external-action> / <situation> )" defines the situation
where, if such action is issued by the external agent, it has no influence on the
current agent’s behaviour (e.g. “the cell cannot remove a rivet from the stock
when the stock is empty”, in other words, it is forbidden to the cell to produce
the Remove-rivet action when the stock is empty).

The “X” connective is defined for perceptions in the same way as for respon-
sibilities.

The default rule is that all all imported elements available may be perceived
whatever the situation.

Publicity. Constraints under this heading specify how information (i.e. occur-
rences of actions or state components) is made available by an agent to other
agents belonging to the same society. This is also a dynamic property and is
expressed using the O, F and X connectives introduced above.

For example, one may imagine that, in our case study, “the storing of a bolt
is made visible to the environment if it happens between 9AM and 12AM” and
the publicity statement on Fig.7 expresses that the Environment agent has no
access to the “Output-stock” component of the Cell agent state when that stock
is empty.

Commitments. This heading is related to the causality relationship existing
between some occurrences of actions.

Expressing causality rules with usual temporal connectives may appear very
cumbersome (see, e.g., motivations given by [FS86]). To this end, our language
is enriched with specific connectives which allow to specify, for example, that an
action has to be issued by the agent as a unique response to the occurrence of
another action (brought or not by the agent). A common pattern is based on
the use of the “—” symbol which is not to be confused with the usual “—"
logical symbol. In our case, we want to denote some form of entailment, as it
exists in Modal Logic [HC88].

In the case study, an example of causality exists between the Produce, the
Remove-rivet and the Store-bolt actions. It relies upon the necessity of having
a unique occurrence of the Remove-rivet and of the Store-bolt action (in that
order) in response to each occurrence of the Produce action (see Fig.7).

The “—” symbol can be quantified by a temporal operator to express per-

. O<iomin . . .
formances constraints (e.g. the * <=3 ” symbol in the commitment on Fig.7

means that the occurrence of the Store-bolt action has to happen within a 10
minutes interval after the occurrence of the Produce action).

The right part of a commitment (the reaction) may only refer actions which
are issued by the agent (i.e. actions which are not prefixed).



473

Left and right parts of a commitment may be composed of one or more
occurrences of actions. In case of more than one, occurrences may be composed
in the following ways:

— “actl ; act2” which means “an occurrence actl followed by an occurrence
act2”;

— “actl || act2” which means “an occurrence actl and an occurrence act2 (in
any order)”;

— “act]l @ act2” which means “an occurrence actl or an occurrence act2 (ex-
clusive or)”.

Some more complex expressions are provided to model iterations.

3.5 Complex Agents

The specification of a composite system is made of the specification of several
agents. To be more precise, we propose to organise these in terms of a hierarchy
where we distinguish between :

— complez agents corresponding to the nodes in the hierarchy and made of
finer agents;

— individual agents corresponding to leaves in the hierarchy and which are not
further decomposed.

In the sequel, we describe the declarations and consiraints that can be asso-
ciated with complex agents. In the next section, we will. make precise the role
played by complex agents during the elaboration of a requirements document.

Manufacture

Environment

Fig. 8. Declaration associated with the Manufacture agent

Declarations of Complex Agents. Figure 8 proposes the graphical declara-
tion associated with the CIM case study where Manufacture is a complex agent
while Cell and Environment are individual agents. The Environment agent has
been introduced for sake of simplicity but a more realistic specification would
have been considered Environment as being itself composed of a Production &
Planning unit, a Quality Assurance unit,...).
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The existing hierarchy among agents is expressed in term of two combina-
tors: Cartesian Product and Set. In our specific case, the Manufacture agent is
an aggregate of one Environment agent and several Cell agents (which form a
“class™).

Constraints on Complex Agents. A complex agent has no specific behaviour
except the aggregation of the local behaviours of individual agents which it is
composed of.

In the specification associated with a complex agent, we will only express
global properties derived from properties attached to individual agents. These
properties are called goals and correspond to the declarative part of the state-
ments presented in the previous sub-section, viz constraints expressed under the
State Behaviour and the Commitments headings.

On Fig.8, it would have been possible to attach goals to the Manufacture.
The concept of goals will be illustrated in the next section.

4 The Elaboration of the Requirements Document

4.1 The Elaboration Process

The requirements document, in its final stage of elaboration, is usually a complex
document due to the number of individual agents belonging to the composite
system and the complexity of the interactions taking place among these agents.
Therefore, one cannot imagine that the R.E. activity performed by the speci-
fier only consists in the transcription of the customers’ wishes in terms of the
requirements document. It is essential to provide some methodological guidance
in the process of a progressive elaboration of the requirements document.

The elaboration of a specification can be seen as a sequence of development
steps, each step being defined by the application of a transformation on the
current state of the requirements document and resulting in a new state of this
document [DvL87]. The application of a transformation at some stage of the
development depends on some strategies followed by the specifier.

In some recent work [Dub91, DDR92], we have proposed the following strat-
egy:

1. Express specifications on the problem, i.e. on the system considered as a
monolithic one (i.e. black-box approach).

2. Identify new sub-systems and attach to each of them their responsibilities
so that the refinement preserves the original prescribed behaviour.

3. Apply recursively the step 2 up to the identification of ‘terminal’ sub-systems,

i.e. components for which designers (see Sect.2) agree on the implementation

of their attached properties.

Applying this strategy to the Manufacture application results in the possible
sequence of development steps already suggested on Fig.4 where:
— in state 1, the Manufacture is considered as an individual agent in our lan-
guage;
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— in state 2, the Environment and Cell's are the individual agents, the Manu-
facture is now considered as a complex agent;

— in state 3, the final version identifies new individual agents composing the
Cell agents (now considered as complex agents).

In the next sub-section, we further detail the process followed by the specifier
when he/she goes from the state 2 to the state 3 of the requirements document.

Cell

Bolts-container Rivets-container

Lathe Controller

Fig. 9. Declaration associated with the Cell agent (II)

4.2 Identifying Agents Responsibilities

In the previous section, we introduced Fig.8 which represents the state of the
requirements document at the state 2 of the process. This specification is not a
terminal one because the cell is more a “virtual” agent rather than a “concrete”
one (i.e. which can be implemented by a designer). To this end, the specifier has
to follow a refinement process (analogously to the one followed in software design,
see, e.g., [BI78]) which will result in the final version of document presented on
Fig.9.
At this level, five new terminal agents are identified :

1. the lathe corresponds to the machine in charge of the transformation of a
rivet into the bolt. This agent is a device;

2. the Input-coniainer is a passive agent in charge of keeping rivets stored on
it;

3. the Output-container is a passive agent with a role similar to the previous
one, viz a bolts keeper;

4. the Robotis an active agent in charge of transporting rivets and bolts between
containers and the lathe machine;
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5. the Controller is the software piece which plays the important role of man-
aging the other agents so that the production goal attached to the cell is

reached.
Controller
it - .
1 Cell I Begin
1 busy : transp .
! 1 obot
BooL |!
o) -
"""""" From / \ To
_____________ LOCATION LOCATION
| Robot ¢ ' lathe :
| b 0! b ' Begin
: > ! : o : work Lathe
[ BOOL ' [ BOOL ]
et e ! -
el - jm————- -
! I
Bolts-container : Ful ! Rivets-oonrainer: Empty
> _' - !
-BOOL | BOOL |!
! ]
Finish Finish
Fobot transp Lathe work Environment | Froduce

e ) g = OO

Fig. 10. Declaration associated with the Controller agent

For lack of place, the formal specification characterising the behaviour of each
agent is not further detailed. On Fig.10 and Fig.11, we are just making precise
the role of the Coniroller. From this specification, it results that the controller
is in charge of managing the Produce orders by issuing the appropriate orders
to the different other agents and by controlling their behaviour. For example,
the Controller is issuing transportation orders to the Robot and is aware of the
emptiness of the Rivets-container (which is equipped with a sensor).

4.3 Reasoning on Agents Responsibilities

In the specification presented on Fig.9, Cellis identified as a complex agent and
thereby goals are associated with it. These goals correspond to a subset of the
specification presented on Fig.7 and restricted to declarative constraints (State
Behaviour and Commitments).

The refinement process followed by the specifier is a correct one if the goals
attached with the Cell complex agent are met by the joint behaviour of the
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STATE BEHAVIOUR

— (Lathe-busy A Robot-busy)
(Lathe-busy V Robot-busy) = Cell-busy

EFFECTS OF ACTIONS

Begin-transp(o,d): Robot-busy = true

Begin-work: Lathe-busy = true

envt.Produce: Cell-busy = true
robot.Finish-transp(o,d): Robot-busy = false

robot. Finish-transp(lathe, bolts-shelf): Cell-busy = false
lathe.Finish-work: Lathe-busy = false

COMMITMENTS
¢<10min . .
envt.Produce o3 Begin-transp(rivets-shelf,lathe);
Begin-work;
Begin-transp(lathe, bolts-shelf)
RESPONSIBILITY

F( Begin-transp(o,d) / Robot-busy V — Cell-busy )
F( Begin-work / Lathe-busy V — Cell-busy )

PERCEPTION

X( envt.Produce / - Cell-busy A - rivets-shelf Empty A - bolts-shelf.Full )
X( robot.Finish-transp / Cell-busy A Robot-busy )
X( lathe.Finish-work / Cell-busy A Lathe-busy )

PusLicIiTYy

Fig. 11. Constraints on the Controller agent
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five individual agents [FH91]. For example, the goal of “producing a bolt within
10 minutes after a request’ has to be achieved through the combination of the
individual actions made by the Controller, Robot and Lathe.

Due to the formality of our language, a formal proof can be exhibited. For
sake of brevity, it is not detailed in this paper but the interested reader may
refer to [Dub89] for further discussion.

5 Conclusion

Analogously to some recent contributions in Distributed Artificial Intelligence
[Hew91] or in the Design of Distributed Software [SSE89, FM90], we claim that
a formal language for capturing requirements should encompass the specification
of a composite system, i.e. a system made of multiple agents. Different authors
propose different concepts for modelling agents and reasoning on their proper-
ties (see, e.g. [Fea87, Bjg92, DFvL91]). In this paper, we introduce ALBERT,
a formal language for capturing some of them. This language includes a cer-
tain number of features also proved useful in languages like TROLL [JSS91] or
DAL [RFM91]. It also incorporates recent results gathered in O-O conceptual
modelling by considering agents as a specialization of the object concept (agents
being characterized by some specific dynamic properties).

For lack of place, we have not illustrated the structuring mechanisms (based
on parameterization and inheritance) which can be used to achieve (i) a better
structuring of the requirements document (in particular, by defining a specific
vocabulary for some application domain) and (ii) the reuse of existing specifica-
tion fragments. More details on that topic can be found in [DDR92].

Within the framework of an Esprit II project, a semantics has been given to
our language in terms of GLIDER [DDRW91] (A General Language for an In-
cremental Definition and Elaboration of Requirements). The GLIDER language
is based on a so-called loose (algebraic) semantics [OSC89] which supports the
expression of constraints using, among other things, typed first-order formulas
and streams (i.e. infinite sequences). In this project, a set of supporting tools
are also under development including, in particular, a graphical editor for our
language. Finally, our research plans are in three directions:

— the validation of the language concepts and the enhancement of the proposed
methodology through the study of conclusions from large industrial experi-
ments currently done in a Computer-Integrated-Manufacturing (C.I.M.) en-
vironment and in the field of advanced communications applications;

— at the product level, the identification of a set of orthogonal patterns sup-
porting the expression of different forms of commitments;

— at the process level, the study and the formalisation of a set of typical trans-
formations and of their strategies of use. Examples of them include the de-
velopment of specifications for non reliable agents and/or non omniscient
agents.
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