Designing an Extensible Distributed Language
with a Meta-Level Architecture

Shigeru Chiba* and Takashi Masuda

Department of Information Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
E-mail: {chiba,masuda}@is.s.u~-tokyo.ac.jp

Abstract. This paper presents a methodology for designing extensi-
ble languages for distributed computing. As a sample product of this
methodology, which is based on a meta-level (or reflective) technique,
this paper describes a variant of C++ called Open C++, in which the
programmer can alter the implementation of method calls to obtain new
language functionalities suitable for the programmer’s applications. This
paper also presents a framework called Object Communities, which is
used to help obtain various functionalities for distributed computing on
top of Open C++. Because the overhead due to the meta level computa-
tion is negligible in distributed computing, this methodology is applicable
to practical programming.

1 Introduction

Languages for distributed computing have been designed mostly to provide a
general functionality that can be used in a broad range of application domains.
Designers of these languages have developed numerous language primitives or
functionalities, such as Ada’s rendezvous [26], the remote procedure call [2], and
Orca’s shared data-object {1]. Each of these functionalities has its own most
suitable domain of applications, so a language that has a single one of these
functionalities will be small and simple but will not be suitable for some appli-
cations. It is, on the other hand, possible to design a language that has many or
all such functionalities, but such a language would be large and awkward.

The goal of this paper is to demonstrate another approach, which is to make
a language extensible. By this approach, we have been able to design a language
that is, at the same time, simple, elegant, and applicable in a wide range of do-
mains. A programmer can tailor the language to exploit various functionalities.
Language extensibility has long been an important issue, and Kiczales et al.,
for example, have recently discussed the designing of extensible class libraries
[11]. A typical approach to supporting various functionalities within a single
language is to provide a set of reusable code, called a library program, that im-
plements functionalities that are not supported by the language alone. Although
functionalities implemented by this approach may show lower performance than

* JSPS (Japan Society for the Promotion of Science) Fellow-DC

483

ones implemented by altering the language system such as the compiler, this
approach is broadly employed because sufficient performance is usually obtained
by this approach in practice. The library-program approach, however, is limited
in that it cannot implement a functionality that deals with non-first-class entities
of the language.

This paper proposes methodology using an object-oriented meta-level tech-
nique in designing of an extensible language for distributed computing. To
demonstrate the use of this methodology, we present Open C++, which is a C4+
[23] variant including a simple metaobject protocol (MOP) [10]. In Open C++ the
implementation of a method call (or in the object-oriented terminology, message
passing) is made open-ended by that MOP. To obtain a new functionality that
fits the application, the programmer can easily extend the implementation within
Open C++ itself. Performance overheads are one of major issues in meta-level
techniques, but they are not critical in domains such as distributed computing,
which Open C++ deals with. The seriousness of the overheads depends on the
inherent cost of functionalities achieved with the meta-level technique. Since the
overhead of Open C++ is negligible in comparison with the implemented func-
tionalities, we believe that our approach is — like the library-program approach,
which is useful in spite of its relative slowness — applicable to actual problems.

As with other systems using meta-level techniques, an extension of Open
C++ is described in meta code (meta-level program). Although meta code is
usually written only by a system specialist because MOP would be often com-
plicated and extension was not frequent, we expect normal programmers (who
are not “wizards”) to write meta code in Open C++ whenever a new functional-
ity is required for their applications. The Open C++ MOP is therefore designed
to provide an abstraction that encapsulates implementation details unnecessary
to the extension of a method call. To facilitate extension by normal program-
mers, this paper also provides a framework, called Object Communities, that
includes some basic functionalities for extending a method call for distributed
computing. With this framework, normal programmers can easily obtain various
functionalities for distributed computing on top of Open C++.

2 Open C++: A Simple MOP for C++

In most imperative languages for distributed computing, procedure calls (or in
the object-oriented terminology, method calls) are extended to support remote
communication across a network. Those extended method calls provide not only
a functionality invoking a procedure (or a method) at a remote machine, but
also a functionality synchronizing multiple threads of control. In Ada [26] and
Concurrent C [5], for example, a statement syntactically similar to a procedure
call is used for executing a rendezvous, and a procedure call is extended to
block the sender thread until the receiver is ready. In ConcurrentSmalltalk [28],
a method call of Smalltalk-80 [6] is extended to be synchronous or asynchronous:
an asynchronous method call lets a sender thread continue its execution without
blocking, whereas a synchronous method call blocks the sender thread until the

484

receiver thread finishes a requested task.

By using a meta-level or so-called reflection technique [21], Open C++ offers
normal programmers the ability to extend a method call. Normal programmers
can modify the implementation of a method call within a user program to ob-
taln various functionalities for remote communication. The implementation of a
method call is exposed to programmers as a metaobject [15], which is an abstract
model of that implementation and conceals implementation details unnecessary
to the extension. A metaobject is almost the same as a normal object, but its
behavior corresponds to the actual execution of the method call. An object at
the base level has its metaobject at the meta level and the execution of its meth-
ods is controlled by the metaobject. If a method of the object is invoked, the
specific method of the metaobject, instead of a default implementation embed-
ded in the compiler, is used to execute the invoked method. Since a metaobject
is defined in C++, the programmer can alter the implementation of a method
call by defining another metaobject and then substituting it. OQur approach does
not require rebuilding the compiler but is done within a user program.

2.1 Base-Level Directives

Open C++ provides a very simple MOP (metaobject protocol?) to make a
method call extensible. The objects controlled by metaobjects are called re-
flective objects. Because control by a metaobject imposes some performance and
memory overhead in Open C++, the programmer can specify whether or not
an object is reflective. A nonreflective object is compiled to be a normal C++
object, which has no metaobject, so that it is executed without overhead. To
distinguish between reflective and nonreflective objects, a reflective object is
identified by a different class name. If the class of an object that may be reflec-
tive is X, then a reflective object is ref1 X and a nonreflective object is still X.
In the current implementation, the class refl X is a subclass of X.

To create a reflective object, the class of the object and its metaobject must
be declared with special directives, which are C++ comments that start with
//MOP. Note that even if a program includes the directives of Open C++, that
program is still a valid C++ program. The declaration of a reflective object takes
the form

//MOP reflect class X : M;

This declaration means that an object of the class refl X is a reflective object
controlled by a metaobject of the class M. Note that it never means that the
classes X or refl X are subclasses of M. The class M is a normal C++ class except
that it must inherit from the class MetaObj. To extend its implementation of
a method call, a metaobject can be a reflective object that is controlled by a
meta-metaobject. Open C++ allows such an ascending tower of metaobjects.

2 A metaobject protocol is a meta-protocol organized using object-oriented techniques.
Here a meta-protocol is a protocol about the behavior and implementation of another
protocol, such as interface and functionality.

485

The methods of a reflective object are divided into two groups, depending
on whether the invocation of the method is controlled by its metaobject. The
methods controlled by the metaobject are called reflect methods, and although
reflect methods are invoked in an extended manner, the other methods are
invoked according to the plain C++ method call semantics. The following is an
example of specifying a reflect method.

class X {

public:

X0;
//MOP reflect:

int func(int);
private:

int p;

The methods following the directive “//MOP reflect:” are specified as reflect
methods. Here, for example, func() is a reflect method. Such methods may
have a category name to enable their metaobject to recognize a role of the
methods. A metaobject may alter the execution of a method call according to
the category name. Consider the following example: The method update() has
a category name “write”.

class Y {
public:

//MOP'feflect(write):
int update(int);

//MOP reflect(metamethod):
void Meta_operation();

The category name “metamethod” has a special meaning: it is used to call
meta-methods of a metaobject from the base level across the boundary of the
levels. Calling a reflect method in this category is regarded as calling a meta-
method that has the same method name. The reflect methods having the
category name “metamethod” themselves are never executed.

2.2 Metaobject Protocol

When a reflect method is called, its execution is controlled by its metaobject.
A metaobject is defined in C++, and its class must inherit from the base class
MetaObj, which mainly defines the following two methods.

— void Meta MethodCall(Id method, Id category, ArgPac& args,
ArgPac& reply);
This method implements a method call at the base level. It is invoked if a
reflect method is called.

486

— void Meta HandleMethodCall(Id method, ArgPac& args,
ArgPac& reply);
This method is used to actually execute a reflect method.

To alter the implementation of a method call, the programmer defines a subclass
of MetaObj in which those methods are redefined so that the metaobject acts in
the intended way.

Suppose that a reflect method £() is called. If the method £() is called,
then the method Meta MethodCall() is instead invoked at the meta level. The
first argument of the method Meta MethodCall() is bound to the integer iden-
tifier of the called method £() (the type Id represents integers), and the second
argument represents the category name of the method £(). The actual argu-
ments of the method call to £() are passed as the third argument, args. Note
that within a metaobject, the actual argument list of a method call is a first-
class entity because the third argument, args, is a normal C++ object whose
class is ArgPac. The argument args has the same interface as a stack so that the
programmer can access any actual argument stored in args. The programmer
can also transfer the argument args to another metaobject that may reside on
a different machine. Converting the actual arguments to an ArgPac-class object
corresponds to the reifying process, which is impossible in C++ alone without
support of the Open C++ compiler.

The method Meta_MethodCall() carries out certain computation and stores
the result into the forth argument, reply. The stored result is returned as a
return value to the caller that calls the reflect method £(). The method
Meta MethodCall() usually uses the method Meta HandleMethodCall() to
compute the result value. This method takes a method identifier and an ac-
tual argument list, and it returns the result value of the specified method. This
method allows any reflect method to be executed at any time. In the example
above, the metaobject can execute another reflect method as well as £() to
compute the result value.

To illustrate the Open C++ MOP, consider a simple example in which this
metaobject prints a message before executing a reflect method called at the
base level:

class VerboseMetaObj : public MetaObj {
public:
void Meta_MethodCall(Id method, Id category,
ArgPac& args, ArgPac& reply){
printf("#**reflect method %s() was called.\n",
Meta_GetMethodName(method));
Meta_HandleMethodCall(method, args, reply);

};

If a metaobject of the class VerboseMetaObj is specified, a message is printed on
the console every time a reflect method is called. The method Meta Method-
Call() specifies that this metaobject prints the name of the called method
before actually executing that method. Note that if we eliminate the line

487

printf(...);” from this method, the implementation of a method call by
this metaobject becomes the same as the implementation in plain C++. Fig-
ure 1 shows how a metaobject of the class VerboseMetaObj controls a method
call. The metaobject controls an object of the class refl X (as previously shown,
a reflective object of the class X). When a reflect method func() of that ob-
ject is called, the metaobject traps that method call and executes the method
func() according to the method Meta MethodCall().

metaobject (VerboseMetaObj)

void Meta_MethodCall() {
printf(...);
Meta_HandleMethodCali();

A

o ®

object (refl_X) {

Meta-level

Call

................................... - int_func() {

Return

Base-level

Fig. 1. Metaobject protocol of Open C++

Converting the actual arguments to an ArgPac-class object is similar to the
marshaling/unmarshaling process in remote procedure calls. In the current im-
plementation, the class refl X (which the Open C++ compiler generates) rede-
fines a reflect method so that the method carries out such conversion and then
invokes the method Meta MethodCall() of its metaobject. The current Open
C++ compiler converts some atomic types (integers, pointers, etc.) implicitly
but does not class types (i.e., objects). The class types that can be an argument
of a reflect method must have some specific methods for the conversion. A
similar limitation also appears in the marshaling/unmarshaling process because
the efficiency of converting complex data, such as an object, often depends on the
program semantics. Such conversion should be under programmer’s control [8].
Open C++, however, provides a convenient library to implement the methods
for the conversion, and it also provides some predefined classes that facilitate to
use a character string etc. as an argument of a reflect method. Thereby, the
limitation on argument types of reflect methods is not awkward.

488

2.3 Why Meta? Pros and Cons

Open C++ does not expose the implementation of a method call directly, but
through an abstract interface. Although the original implementation of a method
call, which is embedded in the compiler, is described in assembly code, the pro-
grammer who attempts to extend the method call describes a new implemen-
tation of C++ methods such as Meta_MethodCall() instead of assembly code.
Because of the description through the abstract interface, the programmer need
not consider such details of the implementation as a stack image and the num-
ber of arguments. The programmer can thus concentrate on matters strongly
relevant to the extension.

This feature of Open C++- is due to the meta-level technique that Open C++
uses. When a method of an object is invoked, the computation of the method
call is reified to be entities available in a C++ program, and operations on these
entities are reflected in the actual computation. This is a difference from “pseudo-
open” systems, which directly expose their internal structure to be extensible.
Smalltalk-80, for example, provides the whole source code of its runtime system.
Thus in a sense, it is an open-ended system because user programmers can freely
modify classes of kernel objects to extend the system behavior. This feature of
Smalltalk-80 may be a kind of reflection®. Such modification of kernel objects,
however, can easily lead the system into collapse because the programmer deals
with the complicated kernel code directly, without an abstract interface.

On the other hand, the reifying process implies that the performance of
Open C++ degenerates. The cost of reifying and reflecting is not negligible
compared with the original implementation fully described in assembly code.
This is because the reifying process bridges the wide gap between the assembly
level and the C++ level. The higher the abstract interface Open C++ provides
for extension, the bigger the performance degeneration of the reifying process
will be. This degeneration is negligible, however, when Open C++ is used for
distributed computing. The method call extended for distributed computing is
so slow that the performance degeneration becomes relatively insignificant. This
issue is discussed in detail in Section 5.

Another benefit of Open C++ is that meta code defines the extension inde-
pendently of each object so that meta code has high reusability. The same meta
code can be used to extend method calls to different objects. Because meta code
is organized according to the metaobject protocol, furthermore, part of it is also
reusable by class inheritance.

Open C++ improves the expressive power of a class library, which is also
a technique for supporting various functionalities within a single language. If a
functionality like remote method calls is implemented solely by means of class
libraries, the translation of an argument list into a network message becomes
responsibility to the programmer. This is because the class library alone cannot
deal with any entities except these available at the base level, and an argument

% Peter Deutsch pointed this out at the BOF session in the ’92 workshop on reflection
and meta-level architecture.

489

list is available not at the base level but at the meta level. On the other hand,
Open C++ enables a class library to deal with an entity available at the meta
level through a metaobject. For example, it can use a metaobject for transferring
an argument list to a different machine and can execute a remote method.

3 Object Communities — An Additional MOP for
Distributed Computing

Because a method call is a good basis of functionalities for distributed computing,
various functionalities can be implemented on top of Open C++. Most impera-
tive languages include a method call statement, and it has been used to imple-
ment a lot of existing functionalities for distributed computing. A method call
can be extended to support not only a remote method call but also asynchronous
message passing and message broadcasting. It can also be extended to be a syn-
chronization mechanism such as a rendezvous or a distributed semaphore.

To obtain a functionality suitable for the application, normal programmers
should themselves describe meta code to extend a method call. Although previ-
ous systems usually expected meta code to be written only by a specialist, the
simple MOP of Open C++ makes meta programming possible for programmers
with little knowledge as well as for specialists. The MOP of Open C4+, how-
ever, does not in itself support distributed computing; it only provides a platform
on top of which a functionality for distributed computing is implemented. This
section proposes a framework, called Object Communities, that facilitates to im-
plement such a functionality on top of Open C++. This framework is a class
library of metaobjects and includes facilities that are commonly used to extend
a method call. Object Communities add a layered protocol onto the MOP of
Open C++. It provides the classes of metaobjects that implement some typ-
ical functionalities for distributed computing so that programmers can obtain
functionalities tailored to their applications by redefining some methods of those
classes.

3.1 Background Problem

Object Communities are designed to be a framework for implementing various
application-specific functionalities for distributed computing, such as distributed
shared data, distributed transactions, remote procedure calls. Such a framework
must provide a facility managing computation distributed to multiple processes
on different machines. A simple client-server framework based on remote proce-
dure calls is not sufficient as such a framework because although it can request
computation to another process, it cannot synchronize computation between
processes.

The simple client-server framework, for example, cannot in an easily under-
standable way implement the functionality required by groupware[4] (or mul-
tiuser applications), which supports collaborative work by multiple users. The
essential feature of groupware is that an application program consists of multiple

480

autonomous processes that are responsible for interaction with each user. Those
processes interfere with each other because the users manipulate shared entities,
such as shared documents and pictures, and their actions are therefore restricted
by the actions of other users. The processes may also notify each other when
shared entities are updated and they can request computation, such as redrawing
the displays, in order to keep consistent images of the entities on the displays.
To do these things, the application needs a functionality that makes it possible
to block the execution of other processes as well as to request computation to
other processes.

3.2 Overview of Object Communities

The fundamental functionality of Object Communities is the management of a
group of objects distributed in different machines. Such a group is called an
object community (Figure 2). We assume that each object belongs to a single
process that has its own address space separated from others and communicates
with other processes across a network. A process is invoked explicitly by the user,
and it performs cooperatively with other processes in the same application.

Process
Process [' _,‘ ~~ Communication Process
~ N T A
metaobject ‘ - ~ ‘
- L%

A ---------

Meta Level

object Base Level

apasnnsanconnguenthes

method call

SRR

;

obje/ct cor!}munity

Fig.2. An object community

Each object of an object community acts in a manner that depends on behav-
ior of other objects of that object community. The method calls to the objects
are executed cooperatively by the metaobjects so that the objects provide a
certain functionality for distributed computing. Note that although a group of

491

objects as a whole provides some functionality, the definition of the objects does
not include any distributed concepts: these appear only in the definition of the
metaobjects. The functionality provided is implemented at the meta level, and
the base-level programmer has only to know how a method call is extended at the
base level. Object Communities provide a clear separation between distributed
computation and the substantial computation executed in the application.

In Object Communities, a metaobject has the following additional abilities.

— Concurrency Control. A metaobject controls the internal concurrency of its
object. It can ignore and delay execution of a called method of the object
until some condition is satisfied. A metaobject can also execute multiple
methods of its object concurrently. And a metaobject can execute a method
of its object when other metaobjects request that the method be executed.

— Communication. A metaobject has two means of communicating with other
metaobjects of the same object community: a remote method call and mes-
sage broadcasting. A metaobject can call a remote method of other metaob-
jects. This is done in a manner similar to that of a local method call. The
caller metaobject is blocked until a reply is returned from the called object.
A metaobject can also send a message to all metaobjects of the same ob-
Jject community. Because broadcast messages are serialized by the underlying
system, all metaobjects receive the messages in the same order. A broadcast
message is also delivered to the metaobject that sent the message.

Although a metaobject controls the internal concurrency of its object, there
is with few exceptions no internal concurrency of the metaobject by default.
The methods of a metaobject are executed sequentially, so the behavior of a
metaobject is easily understandable. If internal concurrency of a metaobject is
necessary, it must be controlled by an explicitly specified meta-metaobject.

3.3 MOP of Object Communities

To append the Concurrency Control and Communication abilities, Object Com-
munities provide the class OcCoreMetaObj, which is a subclass of MetaObj, and
the other classes of metaobjects that implement functionalities based on Object
Commaunities must inherit from this subclass.

The class OcCoreMetaObj defines some methods for manipulating an object
community, for network communication, for controlling concurrency, and so on.
The following methods are to manipulate an object community.

— Meta_CreateOc(...) creates an object community.

— Meta Destroy0Oc(...) destroys an existing object community.

— Meta_Join(...) lets an object join a specified object community.

— Meta Leave(...) lets an object leave a specified object community.

An object community is treated if it were a communication channel. An object
can join or leave an object community at any time, but the object community
remains even if no object belongs to it. It exists until it is destroyed explicitly.

492

To give initial information to a metaobject that joins an object community, the
underlying system holds an initializing message for each object community. This
message, which ¢an be dynamically updated by a metaobject, is passed to a
metaobject when its object joins to an object community.

The class OcCoreMetaObj defines three methods for communication with
other metaobjects.

— Meta EventNotify(...) broadcasts a message to the other metaobjects of
the same object community.

~ Meta_Query(...) calls a method of other metaobjects in a manner like that
of the remote procedure call. The metaobject is blocked until a reply message
arrives.

— Meta_WaitForEvent(...) blocks a metaobject until it is ready to receive a
broadcast message. A metaobject can use this method to wait for a message
broadcast by itself.

A message sent with the first two methods must be a pair consisting of an method
identifier (Id) and an actual argument list (ArgPac). By sending a message, a
metaobject requests other metaobjects to execute a method of their object so
that the methods are executed cooperatively.

The behavior of a metaobject receiving a message is defined by the following
methods. The class OcCoreMetaObj only declares these methods; their bodies
are defined in its subclasses to alter the behavior of each metaobject.

— Meta_EventCallbackBody(...) is executed when a broadcast message is
received.

~ Meta SelfEventCallbackBody(...) is executed when a broadcast message
that the metaobject itself sent is received.

— Meta_ ReplyQueryBody(...) is a method exported to other metaobjects.
This method can be called by other metaobjects with the method Meta -
Query().

Although basically there is no internal concurrency of a metaobject, these three
methods may be executed concurrently when the metaobject is blocked by either
the method Meta_Query() or Meta_WaitForEvent (). This exception is necessary
to prevent a deadlock.

The current implementation of Object Communities does not provide a pre-
emptive scheduler. The programmer must therefore voluntarily cause a con-
text switch at short intervals. The class OcCoreMetaObj defines methods like
WakeupTaskSv() and RecvMessage() to cause a context switch. Note that im-
plementing a preemptive scheduler is possible, and that a preemptive scheduler
can, in fact, be obtained if a timer-signal handler is available. The reason that
a nonpreemptive scheduler is selected is to prevent the internal concurrency of
a metaobject that has no meta-metaobject. The methods of a metaobject are
executed atomically; they are not preempted.

493

4 Examples of Method-Call Extension

Many functionalities for distributed computing can be implemented as a group
of objects on different machines. Since Object Communities provide the ability
to manage a group. of objects, such a functionality is implemented on top of
Open C++ by defining a subclass of the class OcCoreMetaObj. In fact, Object
Communities already include some subclasses of OcCoreMetaObj, which imple-
ment various functionalities for distributed computing. Figure 3 illustrates the
class hierarchy of metaobjects provided by Object Communities in default.

QuickOcMetaObj
NullMetaObj /

MetaObj / AbsOcMetaObj ———— OcMetaObj

\QEQQEQM?'@QM' \ x OcLockMetaObj

refl_RpcMetaObj

OcShareMetaObj —— OcRemoteMetaObj

Fig. 3. Class hierarchy of metaobjects

The class RullMeta0bj is irrelevant to Object Commaunities: it implements a
method call that is done in the original manner of C++ method calls. The other
subclasses correspond to various functionalities. They implement distributed
shared data, transactions, and remote procedure calls. They also implement
remote object pointers with which an object can transparently call a method of
an object on a different machine. The implementation of remote object pointers
exploits other programming techniques such as “smart pointers” [23] so that
remote object pointers are naturally available in C++4. Furthermore, another
subclass implements persistent objects by using the ability of Open C++ to
deal with instance variables of an object by the metaobject. Because of space
limitation, the details of this ability are not given here; we will present them in
another paper.

Here we explain two of the subclasses of Object Communities: distributed
shared data and transactions. Distributed shared data are implemented by the
class OcMetaObj. The shared data are replicated and held by the objects that
belong to the same object community. The metaobjects control those objects to
hold consistent values of the shared data. Suppose that the shared data is an
integer and is represented as a variable p of the class SharedData at the base
level. To update the variable p, the class SharedData has a method Update().
If the variable p is updated, this method redraws a graphical display according
to the new value of p:

494

class SharedData {

publié;
//MOP reflect:
void Update(int new_p) { p = new_p; RedrawDisplay(); }

private:
void RedrawDisplay();
int p; // inaccessible from the outside of the object

//MOP reflect class SharedData : OcMetaObj;

An object of the class SharedData can be a reflective object, and the class
of the metaobject is OcMetaObj. The method Update() is a reflect method.
If an object of the class refl SharedData is created, the metaobject makes the
object join the specified object community. Then the variable p of the object is
maintained by the metaobject to hold the same value as the values of p of the
other objects of the same object community. If the method Update() is called,
the metaobject requests the other metaobjects to use the same argument new_p,
and execute the same method of their objects. Thus if the method Update() of
an object of the object community is called, then the methods of all the objects
are executed and the values of p are updated keeping consistency. Note that the
definition of the class SharedData does not include any code concerning dis-
tributed computation; such code is in the definition of the metaobject. Methods
of the metaobject are defired as follows:

void OcMetalbj: :Meta_MethodCall(Id method_id, Id category,
ArgPack args, ArgPac& reply){

// notifying others of a method call
Id event = Meta_EventNotify(method_id, args);
// waiting until that notification is serialized
Meta_WaitForEvent(event, args);
// ezecuting the called method actually

) Meta_HandleMethodCall(method_id, args, reply);

void OcMetaObj::Meta_EventCallbackBody(Id method_id,
ArgPac& args, ArgPac& reply){
// if other metaobjects report a method call,
// the metaobject executes the called method.
Meta_HandleMethodCall(method_id, args, reply);

The consistency between the values of p is guaranteed even if two metaobjects
attempt to execute the method Update(). This is because the notifications by
those metaobjects are serialized so that every metaobject receives the notifica-
tions in the same order.

Since there is no restriction in terms of the definition of the method Update(),
the programmer can define any action that is executed whenever the shared
data are updated. This kind of processing cannot be adequately treated by other
mechanisms for distributed shared data, such as distributed shared memory [13],

495

because they do not support a functionality that invokes user-defined actions on
each machine that shares the data.

Although in the example above other metaobjects are notified of a method
call imimediately, some mechanisms for distributed shared data improve perfor-
mance by using an algorithm in which the notification is delayed [24]. Such an
algorithm is also available in Open C++ if the programmer defines a subclass
of OcMetaObj to implement it. When implementing such an algorithm, it is nec-
essary to distinguish methods that modify the shared data from methods that
simply read the data. Category names of reflect methods are useful for this.
For example,

class SharedData2 {

public:
//MOP reflect(write):

void Update(int new_p) { p = new_p; RedrawDisplay(); }
//MOP reflect(read):

int Get() { return p; }

¥

The category names let the metaobject identify the method Update() as a
“write” method, and the method Get() as a “read” one.

Next we show another subclass of Object Communities. The class OcLock-
MetaObj of metaobjects implements atomic transactions. Although the concept
of atomic transactions includes recoverability (a transaction causes no side-effect
if it fails), the class OcLockMetaObj does not support recoverability. It only
guarantees atomicity; the sequence of the operations in a transaction is executed
continuously. The method Meta MethodCall() of the class OcLockMetaObj is as
follows.

void OcLockMetaObj::Meta_MethodCall(Id method_id, Id category,
ArgPac& args, ArgPac& reply){
while(locked)
Meta_WaitForEvent(): // block unitil a lock is released.

// the following is the same as the method of OcMetaObj
Id event = Meta_EventNotify(method_id, args);
Meta_WaitForEvent (event, args);
Meta_HandleMethodCall(method_id, args, reply);

The metaobject of the class OcLockMetaObj delays the method execution
while the execution is locked. To begin a transaction, the programmer calls a
method of the metaobject, which locks method execution with a broadcast mes-
sage. Receiving the message, the other metaobjects of the same object commu-
nity stop method execution until that metaobject releases the lock. The variable
lock indicates whether execution is locked or unlocked. It is maintained by mes-
sages between metaobjects.

496

5 Overheads due to having a Meta Level

Efficient implementation of meta-level techniques is a major research topic. Be-
cause execution of a reflective object in Open C++ is partly interpreted by
a metaobject, its execution is slower than that of a nonreflective object. This
section briefly shows the result of measurements in terms of the execution speed.

The current Open C++ compiler is a preprocessor of the C++4 compiler.
Because no modification is added to the C++ compiler, an Open C++ program
is translated into a plain C++ code. Calling a reflect method thus imposes
some overhead that by some standards is not small.* We show the result of
performance measurements of method calls.

Table 1. Average Latency (usec.) of a null method call

number of arguments 0 1 5 5 x double
C++ function 0.3 0.6 1.3 2.1
C++ virtual method 0.8 1.0 1.8 2.2
reflect method 1.8 6.3 13.8 21.7
reflect/virtual ratio 2.3 6.3 7.7 9.9

SPARC 40 MHz (28.5 MIPS) and Sun C++ 2.1

Table 1 lists latency time for three kinds of null method calls. These values
were measured on a SPARC station 2 (SunOS 4.1.1), and the compiler was Sun
C++ 2.1. The latency was measured for different numbers of arguments. The
type of arguments was int except for the data of the rightmost column, for
which the type was double. Although the 0-argument method does not return
anything, the other methods return an int value. A method that takes 5 double
arguments returns a double value. The three kinds of null method calls are a
C-++ function, a virtual method, and a reflect method. The first two are
supported by both C++ and Open C++, whereas the last is available only in
Open C++. A C++ function call is to call a method of an object pointed to by a
variable. This takes a form like ptr->func(). A virtual method callis to call a
method of an object whose class is unknown at compile time; a method name is
dynamically bound to a method body. A reflect method call is one controlled
by a metaobject of the class NullMetaObj, which implements a method call so
that its behavior is the same as that of a C++ function call.

The last line of the table shows the ratio of the latency of a reflect method
call to that of a virtual method call. This ratio increases with the number of
arguments because the overhead of a reflect method call is mainly due to the

4 The initial version of the Open C++ compiler showed that a reflect method call
was 100 times slower than a virtual method call of C4++.

497

reifying process of the argument list of the method call. Arguments are copied
to an ArgPac class object separately when the reflect method is called. The
overhead for this copying increases in proportion to the number of arguments.
Since the 0-argument method takes no argument, its overhead is smaller than
that of the other methods.

The result of these measurements shows that a reflect method call is 6
to 8 times slower than a virtual method call. Although this overhead seems
important, it is actually negligible if Open C-++ is used for distributed com-
puting, since the network latency time is between several hundred microseconds
and several milliseconds. The overhead is also reduced by a proper designing
of the applications. In carefully designed applications, distributed computation
is localized in a small number of objects, which would be reflective, and the
other objects are executed without overhead since Open C++ allows to spec-
ify whether or not an object is reflective. We believe that meta-level techniques
are already applicable to practical programming if the programmer selects a do-
main in which the overhead is negligible in comparison with the overhead for
performance of a functionality implemented with the meta-level technique.

Furthermore, from the viewpoint of distributed computing, the overhead of
Open C++ is due to the cost of the marshaling/unmarshaling process, in which
transferred data are converted into a network message. Because this process
commonly appears in distributed computing, the overhead of Open C++ is
almost equivalent to that of other approaches such as Sun’s RPC [25]. When
Sun’s RPC library is used, each conversion of an int argument takes a few
microseconds because that library is a general one, and a few nested function
calls are needed whenever a converting routine (an XDR routine) is called.

If the increased overhead of a meta-level technique is limited to within a
factor of 10, then the advantage of that meta-level technique is worthwhile. In
the concurrent language ABCL/R2 [17], for example, the execution that involves
a meta-level operation is 6 or 7 times slower than a normal execution [16]. As in
Open C++, the programmer can select whether or not an object is controlled by
a metaobject. As a result, ABCL/R2 improves the execution speed of a program
by a meta-level technique.

6 Related Work

C++ provides some meta-level operations. The macro set of handling a variable
argument list can be considered to provide a few restricted meta-level operations.
It allows the programmer to traverse an argument list whose length and element
types are variable, as if the argument list were a first-class entity. Operator
overloading is also a meta-level operation because it enables the replacement
of predefined operators, such as + and ->, with user-defined procedures. No
meta-level information is available in a overloading procedure, however, because
operator overloading is not implemented by using the concept of reflection.
The stub generator [2] of remote procedure calls, such as Sun’s rpcgen [25],
has a functionality similar to that of the Open C++ compiler. It reads the de-

498

scription file of a remote procedure and then generates a stub routine, which is
a utility routine for calling the remote procedure. Unlike the Open C++ com-
piler, however, the stub generator does not expose the inside of a stub routine,
so the programmer cannot alter the implementation of a stub routine in a well-
organized manner. The FOG compiler [7] provides the ability of extending a
generated code. It allows to use in C++ a fragmented object (FO), which is a
distributed object. In the FOG compiler, the programmer can specify a commu-
nication protocol of a remote procedure call.

Meta-level (or reflection) techniques have been applied in various domains
and they are still an active area of research. CLOS MOP [10] is the first try to
apply the meta-level techniques to a practical language. It provides an exten-
sible implementation of CLOS [22]: all specifications of CLOS are modifiable.
The mechanism for method lookup, for example, is extensible by a metaobject.
There are several reflective language systems other than CLOS MOP. ABCL/R2
applies a meta-level technique to parallel computation, and RbCl [9] tries to min-
imize the run-time kernel that is not extensible. AL1/D [18] provides multiple
abstract models for each aspect of the implementation, and this is effective when
many aspects of the implementation are exposed. The programmer can alter each
aspect independently, without considering other aspects.

Meta-level techniques are also beginning to be used for commercial systems.
The Meta-Information-Protocol (MIP) [3] used in some commercial systems, is
a mechanism for accessing the type information of a C++ object at run time. It
represents type information by a metaobject so that typesafe downcast is avail-
able in C++. Because a metaobject in the MIP exposes internal information but
a change of the metaobject does not influence behavior of an object, the over-
heads of the MIP is obviously small with respect to execution speed compared
with Open C++. Meta-level techniques are also used for developing systems
other than languages, such as an operating system and a window system. Aper-
tos [27] is an operating system completely based on a meta-level technique, and
Silica [19] is a window system with which the programmer can alter how the
system draws an image on a window, how the relationship of windows is main-
tained, and so on. The Choices operating system uses a meta-level technique to
implement its kernel and subsystems [14]. Using macros and programmer con-
ventions, Choices exploits a meta-level technique within the confines of plain
CH-+.

Some researchers try to reduce the cost associated with having the meta
level. CLOS MOP, for example, has no costs beyond these of plain CLOS. This
is achieved by careful protocol design and by implementation devices in which,
for example, calls to the meta-level functions are partially evaluated. Because the
execution mechanism of CLOS has inherent complexity and costs, the cost due to
the meta level can be recovered by those techniques. On the other hand, C++ is
designed so that the program is directly translated into efficient assembly code.
The C++ method call, for example, is compiled into a few machine instructions.
The techniques used for CLOS MOP are therefore insufficient to implement
Open C++ MOP without overhead.

499

Anibus [20] and Intrigue [12] support “compile-time” MOPs to reduce the
cost due to the meta level. They are Lisp compilers that are extensible according
to MOP. The “compile-time” MOPs modify the compilers to compile a program
in a different scheme. Because a meta code replaces an internal code of the
compilers instead of a compiled code, this approach, like that of CLOS MOP,
does not generate overheads. In this approach, however, meta code must describe
not how an object behaves, but how the compiler generates compiled code that
makes an object behave according to the programmer’s intention. Although this
approach has no overhead, its meta code is less straightforward than those in
CLOS MOP and Open C++.

7 Conclusion

This paper described Open C++ in order to demonstrate a methodology for de-
signing extensible languages for distributed computing. Open C++ is designed
on the basis of an object-oriented meta-level (or reflection) technique so that
the implementation of a method call is made open-ended. The programmer can
alter the implementation of a method call according to a simple metaobject
protocol (MOP), and obtain on top of Open C++ a new language functional-
ity for distributed computing. Open C++ MOP is made so simple and easily
understandable that programmers who are not familiar with the meta system
can implement a new functionality effortlessly on top of Open C++. The MOP
exposes the implementation of a method call with some abstraction. Open C++
also provides Object Communities, which is a framework that facilitates meta-
level programming for implementing a functionality for distributed computing.

Open C++ clearly separates distributed computation from the other com-
putation that is more substantial to the programmer. Computation concerning
communication and synchronization notions appears only at the meta level, and
need not be considered by the programmer writing a program at the base level.
This feature of Open C++ makes a program more understandable and easier to
describe.

The overhead associated with Open C++ MOP is negligible when Open
C++ is used for distributed computing, since even though it is not small, it is
negligible in comparison with network latency time. How much performance the
system using the MOP must achieve depends on the operations controlled by the
MOP. Although meta-level techniques are still difficult to implement efficiently,
they are already applicable to practical programming if the domain is selected
properly.

Unlike CLOS MOP, Open C++ introduces a meta-level technique into a
compiler-based language. Because Open C++ must bridge an abstraction gap
between C++ and an assembly language, its design considered implementation
issues that the design of CLOS MOP did not. It restricts the extensible part of
the language specifications in order to reduce the cost associated with the meta
level. The entities that the MOP reifies are only those necessary for distributed
computing. To apply Open C++ in application domains such as parallel comput-

500

ing as well as distributed computing, however, the overhead due to extensibility
needs to be further reduced.

Acknowledgments

We thank Satoshi Matsuoka for his suggestions on clarifying and organizing
this work. We also thank Gregor Kiczales, Hidehiko Masuhara, and Frank
Buschmann for their helpful comments on earlier drafts of this paper.

References

10.

11.

12.

13.

14.

Bal, H. E., M. F. Kaashoek, and A. S. Tanenbaum, “Orca: A Language For Parallel
Programming of Distributed Systems,” IEEE Trans. Softw. Eng., vol. 18, no. 3,
pp. 190205, 1992.

Birrell, A. D. and B. J. Nelson, “Implementing Remote Procedure Calls,” ACM
Trans. Comp. Syst., vol. 2, no. 1, pp. 39-59, 1984.

Buschmann, F., K. Kiefer, F. Paulisch, and M. Stal, “The Meta-Information-
Protocol: Run-Time Type Information for C++,” in Proc. of the Int’l Workshop
on Reflection and Meta-Level Architecture (A. Yonezawa and B. C. Smith, eds.),
pp. 82-87, 1992,

Ellis, C., S. Gibbs, and G. Rein, “Groupware —Some Issues and Experiences,” Com-
mun. of the ACM, vol. 34, no. 1, pp. 38-58, 1991.

Gehani, N. and W. Roome, “Concurrent C,” Software—Practice and Ezpertence,
vol. 16, no. 9, pp. 821-844, 1986.

Goldberg, A. and D. Robson, Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

Gourhant, Y. and M. Shapiro, “FOG/C++: a Fragmented-Object Generator,” in
Proc. of USENIX C++ Conference, pp. 63-74, 1990.

Herlihy, M. and B. Liskov, “A Value Transmission Method for Abstract Data
Types,” ACM Trans. Prog. Lang. Syst., vol. 4, no. 4, pp. 527-551, 1982,

Ichisugi, Y., S. Matsuoka, and A. Yonezawa, “RbCl: A Reflective Object-Oriented
Concurrent Language without a Run-time Kernel,” in Proc. of the Int’l Workshop
on Reflection and Meta-Level Architecture (A. Yonezawa and B. C. Smith, eds.),
pp. 24-35, 1992.

Kiczales, G., J. des Riviéres, and D. G. Bobrow, The Art of the Metaobject Proto-
col. The MIT Press, 1991.

Kiczales, G. and J. Lamping, “Issues in the Design and Specification of Class Li-
braries,” in Proc. of ACM Conf. on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 435-451, 1992.

Lamping, J., G. Kiczales, L. Rodriguez, and E. Ruf, “An Architecture for an Open
Compiler,” in Proc. of the Int’l Workshop on Reflection and Meta-Level Architec-
ture (A. Yonezawa and B. C. Smith, eds.), pp. 95-106, 1992.

Li, K., Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Dept. of Computer Science, Yale Univ., 1986.

Madany, P., P. Kougiouris, N. Islam, and R. H. Campbell, “Practical Examples. of
Reification and Reflection in C++,” in Proc. of the Int’l Workshop on Reflection
and Meta-Level Architecture(A. Yonezawa and B. C. Smith, eds.), pp. 76-81, 1992.

15.

16..

17.

18.

19.

20.
21.
22.
23.
24.

25.
26.

27.

28.

501

Maes, P., “Concepts and Experiments in Computational Reflection,” in Proc. of
ACM Conf. on Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 147155, 1987.

Masuhara, H., S. Matsuoka, T. Watanabe, and A. Yonezawa, “Object-Oriented
Concurrent Reflective Languages can be Implemented Efficiently,” in Proc. of
ACM Conf. on Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 127-144, 1992.

Matsuoka, S., T. Watanabe, and A. Yonezawa, “Hybrid Group Reflective Archi-
tecture for Object-Oriented Concurrent Reflective Programming,” in Proc. of Fu-
ropean Conf. on Object-Oriented Programming ’91, no. 512 in LNCS, pp. 231-250,
Springer-Verlag, 1991.

Okamura, H., Y. Ishikawa, and M. Tokoro, “AL-1/D: A Distributed Programming
System with Multi-Model Reflection Framework,” in Proc. of the Int’l Workshop
on Reflection and Meta-Level Architecture (A. Yonezawa and B. C. Smith, eds.),
pp. 36-47, 1992,

Rao, R., “Implementational Reflection in Silica,” in Proc. of European Conf. on
Object-Oriented Programming ’91, no. 512 in LNCS, pp. 251-267, Springer-Verlag,
1991.

Rodriguez Jr., L. H., “Coarse-Grained Parallelism Using Metaobject Protocols,”
Techincal Report SSL-91-61, XEROX PARC, Palo Alto, CA, 1991.

Smith, B. C., “Reflection and Semantics in Lisp,” in Proc. of ACM Symp. on
Principles of Programming Languages, pp. 23-35, 1984.

Steele, G., Common Lisp: The Language. Digital Press, 2nd ed., 1990.
Stroustrup, B., The C++ Programming Language. Addison-Wesley, 2nd ed., 1991.
Stumm, M. and S. Zhou, “Algorithms Implementing Distributed Shared Memory,”
IEEE Computer, vol. 23, no. 5, pp. 54-64, 1990.

Sun Microsystems, Network Programming Guide. Sun Microsystems, Inc., 1990,
U.S. Dept. of Defense, Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A, 1983.

Yokote, Y., “The Apertos Reflective Operating System: The Concept and Its Im-
plementation,” in Proc. of ACM Conf. on Object-Oriented Programming Systems,
Languages, and Applications, pp. 414-434, 1992.

Yokote, Y. and M. Tokoro, “The Design and Implementation of Concurrent-
Smalltalk,” in Proc. of ACM Conf. on Object-Oriented Programming Systems,
Languages, and Applications, pp. 331-340, 1986.

