MetaFlex:_
A Flexible Metaclass Generator

Richard Johnson and Murugappan Palaniappan
Aldus Corporation
411 First Avenue South
Seattle, WA 98104-2871 USA
muru@aldus.com, richj@aldus.com

Abstract

Motivated to support the needs of component-based applications, we have developed a system
called MetaFlex that generates metaclasses to extend the behavior of our C++ classes without
inventing variants of the original classes. We make the case that a flexible metaclass generator
service that allows developers to freely choose the kind and degree of detail for each metaclass is
needed and present our architecture for making this specification. We also illustrate a powerful use
of this technique with a scripting extension to our application framework. With an evaluation of our
current MetaFlex implementation and its use with the scripting extension, we conclude that this
service is best provided by compiler vendors.

Introduction

The 1980s was a period where many organizations developed application frameworks.
We can expect the 1990s to be a period where development of component-based
application frameworks will be prevalent. An industrial strength, platform independent
application framework developed in C++ by Aldus was presented in [Ferrel89]. The next
evolutionary step towards development of a C++ component-based application frame-
work is presented in [Christiansen92]. This article describes one of the major issues in
achieving the componentization goal - the need for accessing information about classes,
usually lost during compilation, at run-time.

Component-based application frameworks allow users to construct an application
dynamically to best meet their needs . By construct, we mean that users can install a set
of components, at run-time, from a list of published components. A component can be as
simple as a single drawing tool or as complicated as a page-layout application. The
application framework provides the necessary glue for components to work together as
an application. The glue is developed without knowing what kinds of components would
be developed and published.

As part of the componentization goals, we desire the ability to dynamically extend-an
application. An extension, in our sense, is the ability to add behavier.to a class either
statically or dynamically without structurally modifying the nature of the original class

503

being extended. Examples of extensions include:

. Scripting. Usually there is a delay between application functionality
development and the development of end-user scripting access to this
functionality due to the orthogonal nature of scripting development and
application functionality development. By using parser technology for
generating an application's metaclass hierarchy, it is easy to expose the
application functionality during its development for end-user scripting.

. Database access control. In terms of the access protocol to a database, the
primary difference between single-user databases and multi-user databases is
the need for transaction serialization and user access privilege management.
Database access control semantics are orthogonal to this base functionality
and are appropriately added as extensions.

. Test monitors. Unobtrusive introduction of "up-stream" quality assurance
methods may be one of the most important usages of our proposed extension
architecture. There are countless applications, including test coverage tools,
memory and performance profiling, semantic assertion checking, message
flow monitors for dynamic program behavior analysis, and object inspectors.

We have implemented a scripting extension as part of our component-based application
framework development and will use it for the case study presented in this paper. We
wanted to build a scripting scaffold into the application framework such that the code can
manipulate object types that are not known at compile-time but can be determined at run-
time. Object types refer to information like the addresses of the objects' class methods and
member variable map information. While not universally true, many typed language
implementations, including most commercial versions of C++, do not preserve the class
type information. By discarding it, they effectively freeze, at compile time, the data maps
and functions that operate on it.

To overcome this limitation, we developed a tool architecture called MetaFlex, and have
a production version of it by the same name. MetaFlex is a metaclass generator that is
built on top of a C++ parser. Metaclass refers to the type information of a class extracted
at compile time and made available at run-time.

The focus of this paper is to describe the MetaFlex architecture and the experiences we
had in achieving the scripting extension goal of the application framework using
MetaFlex. Two additional capabilities, though not implemented in the production
version of our current MetaFlex tool, are described: 1) a means of specifying what type
information should be made available in the application on a class by class basis, and 2)
a mechanism for dynamically attaching code and data to extend class behavior.

MetaFlex is more general than the metaclass notion in Smalltalk {Goldberg83] and the
factory notion in Objective C [Cox86]. MetaFlex allows extension developers to specify

504

exactly what type information is needed and how much is needed, properly gauged to the
application being developed whereas Smalltalk and Objective C automatically generate
metaclass (or factory) information for all classes of the application being developed. We
argue that a MetaFlex-like tool is needed for creating the types of extensions we are
suggesting because a) the metaclass requirements for one extension may be quite
different from that of another, b) we agree with [Stroustrup92], that it is not possible to
generate an "ideal" metaclass, and c) the generated metaclass information should be as
small as possible to reduce the size of the final executable. This final point, while perhaps
less an issue on sixty-four megabyte workstations, is definitely a problem when the target
environment is a PC class machine.

With this context in mind, the goals of this paper are to:

. Make the case that a flexible metaclass generator service is needed that will
allow developers to freely choose the kind and degree of detail for each
metaclass to be made part of an application.

. Explain how the use of a generated metaclass offers the developer a means to
dynamically add orthogonal extensions of class behavior with mixin classes,
minimizing the need to develop specialized versions of the class.

. Describe the architecture we have used to design and implement a flexible
metaclass generator service, highlighting issues that may be useful for other
developers of metaclass generator services. An architectural description is
included of a proposed metaclass specification grammar.

. Illustrate a powerful use of this technique with a scripting extension to an
application framework.

We first present related work in the area of metaclass generation services and extension
application examples. Then, we present our design of the MetaFlex architecture which
includes a description of our specification language. We next describe the scripting
application we use as a case study of an extension application, followed by a description
of the MetaFlex implementation for the scripting application. We conclude with an
evaluation of our implementation, highlighting issues that may be useful for developers
of metaclass generation services.

Related Work

Cointe's notes that metaclasses provide meta-tools to build open-ended architecture
[Cointe87]:

"From an implementor's point of view, metaclasses are very powerful because
they provide hooks to extend or modify an existing kernel. Metaclass allows the
programmer to provide a flexible means to introduce inherited behavior in a
system, including single and multiple inheritance as well as method wrapping."

505

Since our applications are primarily developed in C++, we can also choose whether these
extensions are to be dynamically bound to the application at execution time or are
generated, compiled and made a static part of the system. This flexibility is possible
because of the nature of our metaclass design.

The creators of C++, in the process of developing their own run-time type system
implementation, acknowledge the predicament of creating a metaclass that would meet
all engineering needs [Stroustrup92]:

"... the likelihood that someone can come up with a set of (run-time type)
information that satisfies all users is zero".

For the most common computing platforms found in use today, it is too expensive in terms
of time and space to make all possible type information about a class available at run-time.
More importantly, the requirement for what type information is needed by a given
application is highly dependent upon the application being built.

Although primarily focused on database extensions, a similar architecture is suggested
for extending class behavior [Wells92a]:

. Use a meta-architecture consisting of a collection of glue modules and
definitions to provide the infrastructure for specifying/implementing
event extensions and regularizing interfaces between modules.

. Develop an extensible collection of extender modules that implement
OODB functionality via behavioral extensions.

Our metaclass architecture roughly corresponds to the authors' notion of glue modules
while our Extension classes roughly corresponds to their notion of extender modules. The
authors see a robust implementation of their Open OODB architecture having extenders
for transactions and access policy management, distributed access to objects, object
versioning, and database index maintenance, among others. This is on target from our
perspective, but stops short in that it constrains the domain of usage of this mechanism
to database functionality. Their initial implementation of the glue is the notion of a
wrapper class that will assume the role of the class being modeled in the system. These
role player classes are derived from base class Sentry, which duplicates the public
interface of the modeled class as well as having metaclass protocol for installing, de-
installing, and manipulating the extensions.

In discussing her work with the 3KRS language environment, Maes observes that the
"extra structure and computation necessary to provide objects with special features such
as documentation, constraints, or attachment (of other behavior) do not have to be
supported for all objects in the system, but can be provided on a loca] basis" [Maes87].

506

This is akey architectural goal of MetaFlex. Why generate metaclass containers for types
that are not to be extended?

Maes also explains that either an object can call upon its meta-object to extend or modify
its overall behavior (conscious reflection), or presumably, other knowledgeable system
objects can call upon an object's meta-object to modify the behavior of the object it
models.

Our architecture differs from the 3KRS language environment in that we generate only
one metaclass for each class. Although we have organized our metaclasses as first class
objects, we don't create one for each class instance created.

One of the thrusts in our business of software development is to somehow reduce the
tremendous expense associated with testing our applications before they are sold. In their
work, Bocker and Herczeg introduce un-obtrusive tracing and profiling facilities to
monitor the application developer's code [Bocker90]. The authors point out it is hard to
make the tracing tools found in the marketplace "provide just the right amount of
information at a level of detail that is just about right for the problem at hand." They
recommend direct control over the specification of what to view and what to trace. Atthe
same time, they recommend the extended methods be hidden from the programmer. In
our architecture, these test monitors would be mixed in as extensions in the metaclass.

Kleyn describes a tracing tool that allows developers a means of visualizing the message
passing between objects in their system [Kleyn88]. This application would make use not
only of the metaclass extension architecture and the type information of the class being
modeled, but also use the class hierarchy /lattice information collected by it or some other
parser based application.

Palay describes AC++ [Palay92], a C++ system that permits the developer to release new
compatible versions of libraries or dynamically loaded components without recompiling
portions of the system that make use of the classes defined in these new components. The
stated purpose of the work is to develop an environment that supports the full C++
language specification as well as dynamic loading of new functionality without perfor-
mance degradation.

Achieving flexibility without performance penalty is one of our key requirements as well.
Palay points out the ability to extend behavior dynamically allows one to quickly respond
to changing application requirements, and that these extensions can be codified in amore
optimal implementation later.

Murray describes Alf [Murray92], a system that represents C++ programs as trees of
abstract objects. These abstract objects encapsulate the syntax tree complexities (offering
a surrounding infrastructure) tailored for access by tools that use the trees as their input.
Tools may attach tool-specific attributes to the Alf abstract objects, without affecting
other tools that may have interest in the same abstract objects. Alf maintains these trees

507

permanently. The conventional file based organization of C++ source code is replaced.
Incremental compilation and editing is implemented without compromising the static
semantic analysis properties found in a conventional C++ compiler.

Although MetaFlex doe not work off a database, the notion of marking classes of interest
with an Alf-like attribute is functionally equivalent to the metaclass specification we are
suggesting in this paper.

In the next section, we first present the motivation for developing MetaFlex. Following
it, we describe our parser architecture that constructs syntax trees of C++ source code. We
then describe the MetaFlex architecture that generates metaclass information for a
specific extension, based on the syntax trees it provides. The architecture section
concludes with a description of our metaclass specification language.

Architecture

Motivation

Consider the bottom half of Diagram 1, below the dotted line. It depicts how a linker
would statically compose a component based application. Nothing precludes dynamic
system composition, however. If one were to replace the linker with a loader component
that was part of acomponent framework kernel, it is not difficult to see how a component
based system could be dynamically composed at execution time. The description of how
the loader component might work is beyond the scope of this paper.

In our architecture, an extendible application, whether created statically or dynamically,
is made with the following ingredients:

. metaclass library of the extendible classes (compiled metaclasses of the appli-
cation)

. metaclass run-time library (various styles of function dictionaries, field dictio-
naries, component loaders, etc.)

. application libraries (statically or dynamically installable components, frame-
work libraries)

. extension code (behavioral extensions to a class)

In both the static and dynamic cases, the key ingredient that supplies the necessary
flexibility and extensibility properties is the run-time type information, or metaclasses for
the application. The source of the metaclasses is depicted in the top half of Diagram 1,
the MetaFlex generator, and shall be discussed in the next several sections.

508

Application type system
source

S~

Metaclass selection
specifications

/

MetaFlexcode
generator

Metaclass library
for Application

Application
libraries

Metaclass run-time
libraries

Linker

Extended

Extension source . .
application

code

Diagraml - Basic flow of MetaFlex metaclass information collection for statically
linked component based application.

The MetaFlex Parser

In order to generally analyze and interpret C++ source code for purposes other than
generating machine instructions (e.g., MetaFlex), one needs a C++ parser. In 1990, the
availability of an inexpensive, commercial C++ parser for these purposes was non-
existent. Those available were not able todeal with the full language syntax. In particular,
we needed a parser that was capable of dealing with old-style K&R grammars through
C++ 2.x grammars [Ellis90].

Since C++is notan LALR(1) grammar, YACC can not be easily used to generate a parser

509

directly for C++. The solution that we selected was to use YACC to generate a parser for
a modified version of its own grammar definition language. The generated parser will
thenread the C++ fanguage expressed with this grammar, generating the parse tables that
represent the follow symbol sets that guide the match process.

The parser we have built can be characterized as top-down, for the most part predictive,
recursive descent. The for the most part predictive description is needed, since the parser
does back-track in several situations. To minimize back-tracking during the match
process, a dependency mechanism is employed. Dependent functions gain control at
propitious moments. With the ability to freely access information in the token stream,
symbol tables, and current syntax tree state, these functions force pre-mature match
failures, whenever it can be determined that pursuing some sub-tree would be pointless.

Rather than mangle type names in the system and maintain a flat symbol table, we chose
to implement a scoped symbol table, implemented as a stack of symbol tables built for
the types previously seen in the input stream. These tables are pushed and popped from
the scoped symbol table as needed.

The parser engine automatically traverses matched syntax trees for each compilation unit,
giving control at the appropriate moments to the attached applications. The architecture
of the parser permits multiple applications to be hosted or attached to it. Attachment
consists of a parser application showing interest in a particular syntax tree node by adding
an instance of itself to one of the node's dependency lists. Dependency list support is
available on all node types, including rules, productions, and production symbols. It is
possible to attach applications before a node or after it. This means that as the parser
traverses a parse tree for its attached applications, these applications can receive control
just before or just after a given sub-tree has been traversed. Furthermore, each application
can show interest in more than one syntax tree node. This makes it convenient to collect
information in complicated trees.

For certain C++ productions, parser information collection applications are implemented
as part of the standard parser. In particular, the class declaration receives this treatment.
For each class, an ordered collection of class member information is organized. Standard
information, such as member name and base type of the member are always extracted,
available through simple access protocol in the class information collector. If necessary,
however, an application is able to access the syntax trees directly through the ordered
collection member.

MetaFlex Source Code Generation

Built upon the parser described, we designed and implemented a flexible metaclass
generator called MetaFlex to support the extension behavior of C++ classes. It uses the
class declaration of a marked class to automatically generate code for a companion
metaclass class. This metaclass class models the type information of its counterpart, the
selected class. Although not part of our current implementation, our architecture plans

510

for specification of extension installation as well. These extensions may be used to either
replace or extend the modeled class’ behavior. An application's metaclass organization
is similar to the Smalltalk approach, except that not all classes necessarily have
metaclasses prepared for them. The application developers must explicitly choose which
of the classes or class hierarchies need to be modeled with metaclasses.

Perhaps the key distinction to be made here is that the developer may not only specify
which classes shall have metaclasses, but also choose which type information properties
are to be generated for a given application class. For those properties selected for
inclusion in the generated metaclass, it is possible to plug in different type information
property representations for them. Different representations are desirable to avoid
carrying large amounts of detail, when it is not needed or used in the application. For
example, class type properties such as its method addresses and instance variable map
information are available in several styles, selectable by the developer.

The following list summarizes the sorts of behavior for which we feel the metaclass
should be responsible:

. the ability to create an object by name

. offer dynamic method dispatching by name to methods of a given class.

. the ability to extend and even change the behavior of one or more methods found
in a given class.

. the ability to broadcast messages to all instances of a given class.

. offer tailorable class structural information to support service extensions, such

as general purpose object streaming, persistent object management functional-
ity, and scripting.

The metaclass instance creation protocol can be used to create instances of the type being
modeled. If specified, the instances created by this protocol can be registered in an
instance collection. No provisions in the architecture are made for registering instances
of the objects created in the traditional manner, via the new operator. To make use of the
registration service, the client must use the object creation service provided in the
metaclass. Like other type information, instance registration service may be included on
a case by case basis.

Code is generated by MetaFlex that automatically registers generated metaclasses in an
application's metaclass dictionary, each entry keyed by the class name it models. This
makes it possible to polymorphically create metaclass modeled objects (i.e. create these
objects by class name), potentially by objects or processes external to the application.
Polymorphic instance creation is part of the minimal, or what we refer to as the vanilla
MetaFlex metaclass behavior.

In addition to flexible specification of the type system information to be included in the
metaclass, adependency list mechanism is provided by MetaFlex, similar in functionality
to the Object dependency list behavior in Smalltalk. It is used to add Extension class

511

derivatives to the Metaclass instance modeling a given class. As with the other type
information, the presence of this feature is specified with instructions to the MetaFlex
metaclass generator.

Extension class derivatives allow the developer to implement orthogonal behavior that
extend the MetaFlex modeled class in some way. Since this extension is added to the
class' metaclass, and not directly to the class itself, the original semantics of the class
remain pure to their original purpose. Much as the Smalltalk View subclasses explicitly
know everything about the Model subclasses they depend upon, the Extension class
derivative has explicit access not only to the class instance being modeled, but also
explicit access to the type information available in the metaclass as well. The reverse is
not necessarily true. Nothing precludes an extended class from explicitly knowing about
its extensions, but typically an omniscient configuration/policy object is given the
responsibility to activate and deactivate the extended behavior.

Rather than create derived classes from a base Metaclass class to add extended type
information about classes, we have chosen to develop a Metalnfo hierarchy instead. Each
Metaclass has a Metalnfo. The Metalnfo contains references to the extended type
information and developer supplied extensions required by the application. Diagram 2
illustrates the general relationships of the class, its Metaclass, its Metalnfo,

extended type information, and developer-supplied extensions. The Class has a
reference to its Metaclass. In our system, this is implemented as a class variable (i.e., a
static variable in class scope). A reference to the metaclass of the modeled class'
superclass(es) is also maintained in each metaclass. The Metalnfo instance may contain
references to class extensions, class function information, class field information, and
class instances. In crder to be generated, the Metaclass, its Metalnfo, and the aspects of
the Metalnfo must be specified to the MetaFlex code generator for the class in question.

Although it is not shown for each instance of the Extension classes in the Metalnfo's
Extensions collection, there is a reference to the Metalnfo (and therefore Metaclass) for
each Extension instance. We see most extensions being heavy users of a class' type
information to perform its tasks. Applications like those suggested in [Richardson92],
[Wells92b], [Pérez92], [Bocker90], [Voss92], and [Voss93] could be implemented as
kinds of class Extension. These applications all use the type information of the class to
which they are attached.

We have described the internal MetaFlex architecture in this section. In the next section,
the external interface of MetaFlex is explained. This is the interface that
extension developers will use to specify what types of meta-information they need.

Metaclass Specification Language
The following description of the Metaclass Specification Language is a suggested design

and, at the time of this writing, has not been implemented in our existing MetaFlex tool.
These notions, however, get at the details of what we think is needed.

512

Metaclass

Metaclass

SuperClasses

Metalnfo

—

fMetaInfo)

Metaclass ’
=‘j

—)

Dependent Extensions ————%

Function Dictionary

Field Dictionary

Qnstance Collection)

Diagram2 - Relationships of the class, its metaclass, extensions and other type
information.

The specification of metaclass requirements to MetaFlex has been one of the more
difficult areas for us. These requirements are ideally directly associated with the class
declaration to be modeled with a metaclass. It is also desirable that these metaclass
specifications do not interfere with the readability of the class declaration and its
semantics. The reasoning here is that although a class can have explicit knowledge of its
metaclass, as is suggested in Diagram 2, the knowledge is not necessary to understand the
core abstractions the class provides its users.

513

Clearly, development environment support for viewing class declarations with and
without the metaclass specifications is desirable. We also feel it would be useful to view
all metaclass specifications together as a whole for an application. Such support does not
exist commercially for C++. User definable attributes on ALF trees, as discussed in
[Murray92], coupled with multiple view support on the class trees to which they are
attached, would provide the sort of facility needed.

To control the composition of Metaclass derivatives a MetaFlex tool creates for us, we
have developed a small metaclass specification language expressed in a YACC-like
grammar as shown in Diagram 3. The grammar is admittedly elementary, using a simple
keyword-value approach. It doesn't capture all of the possibilities by any means, but
offers the reader a structured means of thinking about metaclass specification.

Given this language, the following four examples are representative metaclass specifica-
tions:

1. MakeMetaClassFor Class DatabaseObject
Support FunctionDictionary Style
FunctionAddressesOnly
Install DBAccessPolicyManager

2. MakeMetaClassFor Class ApplicationKernel
Support InstanceCollection
Install ScriptingExtension
3. MakeMetaClassFor AllDerivedClassesOf Command
Support FunctionDictionary Style
FunctionDispatching

AllowAccessTo PublicMembers
4. MakeMetaClassFor Class EventHandler

In the first example, a class named DatabaseObject will have Metaclass and Metalnfo
class derivatives prepared for it. The Metalnfo class is created, since support for a
function dictionary and a behavioral extension have been requested. The particular
implementation of the FuncDict to be generated contains the address of the functions in
the class for each member, but no extensive argument and return type information needed
by applications such as scripting.

An instance of the Extension class derivative called DBAccessPolicyManager is to be
added to the Extensions list in the Metalnfo object. Assuming an access policy manager
design similar to that discussed in [Richardson92], the function dictionary with function
address availability for each dictionary member would be needed to create the
necessary method wrappers for the DatabaseObject member function protocol.

514

translationUnit

metaClassSpecifications

metaClassSpecification

specificationParms

specificationParm

classParm

styleParms

styles

accessParms

accessControl

extensionClassName

supportValues

functionDictionaryStyles

fieldDictionaryStyles

’

metaClassSpecifications

metaClassSpecification metaClassSpecifications
metaClassSpecification

MakeMetaClassFor classParm specificationParms

specificationParm specificationParms
specificationParm

Support supportValues styleParms_opt accessParms_opt
Install extensionClassName

Class CLASS_NAME
AllDerivedClassesOf CLASS_NAME

Style styles

functionDictionaryStyles
fieldDictionaryStyles

AllowAccessTo accessControl

PublicMembers
ProtectedMembers
AllMembers

CLASS_NAME

NoMetalnfo
FunctionDictionary
FieldDictionary
InstanceCollection

RespondsToSupportOnly
FunctionAddressesOnly
FunctionDispatching

OffsetsAndLengthsOnly
FullFieldInformation

Diagram 3 - Metaclass style specification grammar. Note that all grammar rules start in lower
case. Grammar tokens all start in upper case. The _opt suffix on the end of several symbols is meant
to suggest that occurrences of this symbol are optional.

515

In the second example, a class named ApplicationKernel will have Metaclass and
Metalnfo class derivatives prepared for it. The Metalnfo is needed to support an
InstanceCollection and ScriptingExtension extension instance.

The third example shows how metaclass requirements might be set for all classes derived
from a given class. In this case, all derivatives of class Command will have a Metaclass
and Metalnfo built for them. The Metalnfo will have a function dictionary capable of
supporting function dispatching. Notice that more type information is required to support
function dispatching than offered by the other function dictionary styles. Only the public
members of the Command class derivatives will have their functions included in this
dictionary.

The fourth example illustrates the case where vanilla Metaclass services (e.g., instance
creation by name, instance type identification, instance length) are needed for a class
named EventHandler, but no additional Metalnfo is required. Consequently, Metalnfo
will not be generated for this class by MetaFlex.

In all examples, the application using the metaclass system, and in particular, the type of
extensions attached to a given class' meta information, highly influence what sorts of type
information should be made available at run-time.

Nothing in this architectural description precludes the use of dynamic loading of the meta
information or developer-supplied extensions at run-time. In particular, the Extension,
FuncDict, and FieldDict derived class instances could be streamed in from persistent
storage. We see this architecture unifying the platform specific techniques used today to
load class dynamic behavior.

In the next section, a description of the scripting application that uses the MetaFlex tool
is presented, followed by a description of the MetaFlex tool currently in use.

Case Study: Scripting Enabled Applications

As part of the development of our component-based application framework, we wanted
to provide scripting support for applications at the framework-level. An application-
framework class, called the ScriptManager, provides the necessary support for process-
ing end-user scripts to access, create, and change the contents of applications. If
additional scripting functionality is required by an application that is not defined in the
framework, it can bring along its own custom scripting.

In our application framework, we established ground rules for applications where all
creation or content change operations are done through commands whereas content
accesses of an object are done through directly though their method invocation.

At the time of writing this paper, we have implemented support for Apple Events
[Apple91]. End users can use scripting applications such as AppleScript and Frontier

516

(they translate scripts to Apple Events) to access and manipulate applications. The three
major Apple Events supported by the Script Manager, but developed withoutknowing the
scripting requirements of the applications are:

. Set event - changes content of applications. For example, "set object foo to
move:{10, 15)" is an instruction to the Script Manager to access object foo
and dispatch a message to move it by the specified amount. The Script
Manager translates this instruction to create a MoveCmd(foo, Point(10, 15))
and invoking its Dolt() method. In the Dolt() method, the command sends
the message, foo-> Move(Point(10,15).

. Get event - accesses content of applications. For example, "get fontSize of
object 4" is an instruction to access object 4 for its fontSize. This instruction
translates to dispatching the message return(object 4->GetFontSize()).

. Create event - create contents in applications. For example, "create new line
with color: green" is an instruction to create an object of type line and set its
color to green. This instruction translates to creating a CreateCmd(newLine),
invoking its Dolt() method. In the Dolt() method, the command created a
newLine object and returns it to the Script Manager. Once the newLine is
created, the Script Manager creates a ColorCmd(line, green) and invokes its
Dolt() method. In the Dolt() method, the command sends the message,
newLine->Dolt(green).

In the examples above, the complication is once the target object is accessed, the Script
Manager needs a mechanism to determine whether the object will "understand” the
message that will be sent to it. In the first example, whether object foo will understand
the message Move() and in the second example, whether object 4 will understand the
message GetFontSize().

In order to accomplish the goal of type-independent script dispatching by the Script
Manager, we chose to use the MetaFlex tool to generate metaclasses for these objects.
From the generated metaclass information made available at run-time by MetaFlex, the
Script Manager uses the type information about an object to choose the correct command
to change/create content or to access content of an object through its method invocation.

The following code fragments illustrate the interface between the Script Manager and the
metaclass, generated by MetaFlex. What is shown in the code segment is only the
interface between the Script Manager and MetaFlex and not the error checking or other
processing that happens in the code. The first segment shows the Set event handler, next
the Get event handler, and finally the Create event handler.

* Set event - changes content of applications.

{

/! Non-metaclass related code

// Do the command dispatching by "Make"ing the command through its

517

// metaclass. Since it is a command, call its Dolt() method....
// Note: NumArgs + 1 is passed in to specify the number of data values
// plus the object descriptor
Metaclass* aMeta = gTheApp->GetMetaclass(cmdName);
Metalnfo* anInfo = (aMeta) ?
(aMeta ->GetMetalnfo()) : (Metalnfo*)NULL;

if(anInfo) {
aCmd = (UndoableCmd*) anInfo->Make(numArgs+1,argv);
if(aCmd) {
aCmd->Dolt();
}
}

{// Non-metaclass related code

}

* Get event - accesses content of applications.
{
// Non-metaclass related code here ...
// anObj is the object from which we want to access the information
/f cmdName is the method name to invoke in the object
Metaclass* aMeta =anObj->GetMetaclass();
Metalnfo* anlnfo = (aMeta) ?
(aMeta ->GetMetalnfo()) : (Metalnfo*)NULL;
FuncDict* aDict = (anInfo) ?
(anInfo ->GetFunctionDictionary()) :
(FuncDict*)NULL;
if (aDict) {
void* buffer = (void¥*)
(aDict->Execute(anObj,cmdName,numArgs,argv));
}

/! Non-metaclass related code

}

* Create event - create contents in applications.
{
// Non-metaclass related code here ...
/! Get the command that will create one of this object
Metaclass* aMeta = (Metaclass*)(gTheApp->GetMetaclass
(theCmdName));
Metalnfo* anInfo = (aFact) ?
(aMeta ->GetMetalnfo()) : (Metalnfo*)NULL,;

if(anInfo) {
aCmd = (UndoableCmd*) anInfo->Make(numArgs+1,argv);
if(aCmd) {
aCmd->Dolt();
}

}

// Non-metaclass related code

518

The interface requirements specified by the scripting application to the MetaFlex are:

. generate metaclasses for specified commands and objects

. provide ways of querying which methods are understood by a given class

. determine return type, function name, and argument types for all functions
found in classes modeled by metaclasses.

. provide an interface to create commands and initialize them

. provide an interface to execute a method of a selected object and return its
value

As we had not implemented the metaclass specification language described in the
architecture section, we used a macro DEFINE_METACLASS to make the specification
to MetaFlex. This macro introduced the static variable gMetaclass into the declaration,
and is the key used by MetaFlex to decide whether or not to generate a Metaclass
derivative for the class. From the application developers' perspective, all they need to do
is mark which commands and objects they want to give access to end-users, with the
macro.

MetaFlex Tool Implementation for the Scripting Application
Compile-time Description

Metaclass class declarations for the specified (i.e., marked with the
DEFINE_METACLASS macro) classes of the scripting application are generated by the
current version of MetaFlex. MetaFlex generates several source code files containing the
metaclasses. Depending upon the number of classes specified to have metaclasses
generated for them, more than one source file may be generated to hold the metaclass
declarations, definitions, and instantiation code. This feature was added due to compiler
capacity limitations. These source files are then compiled with the regular C++ compiler.
The compiled object code is linked with the application’s object code created from the
original source, to form the extended application. The generated source for the scripting
application is described in the remainder of this section.

Since function dispatching by name is the key functionality needed by the scripting
application, MetaFlex generates Metalnfo class declarations containing references to
function dictionaries. The type of function dictionary generated is able to dispatch the
functions of the class it is modeling. Field dictionaries, instance collections, or the
Extension class described in the architectural section are not used. Function dispatching
is done on behalf of the Script Manager by explicitly accessing the object's function
dictionary found in its Metalnfo instance.

Beside generating class declarations and their implementations, MetaFlex also generates
instantiation code, that can create instances of the Metaclass, Metalnfo and FuncDict
classes. Of particular note here is a C function generated for each FuncDict initialization.
Initialization of the function dictionary is done at its first access to minimize the
application startup time. The initialization process consists of loading the FuncInfo

519

elements with the function member information of the class, including the function
address. For example, given the member function declaration of class foo,

void Init (typel varl, type2 var2);

the following pointer to member function variable [Ellis90], named ptrMem, is generated
by MetaFlex:

void (foo::*ptrMem)(typel,type2) = &foo :: Init;

To support function dispatching, MetaFlex must do areasonably good job understanding
the types used in the member function declarations that are being included in the function
dictionary. Not only the string representations of a member function's base type and
argument types must be known, but the base type of all typedefs used must be understood
as well. The base type understanding is needed to determine argument lengths and
whether they are references.

Run-time Description

The run-time support provided by MetaFlex for the scripting application uses two of the
features discussed in the architecture: 1) instance creation by name, and
2) function dispatching by name.

The Metaflex generated metaclass instance supplies instance creation by name, and the
function dictionary supplies the function dispatching. An instance of class FuncDict
provides the following services:

Lookup services. Function information can be looked up by exact key (the simple name
and argument type list), by simple name alone, or by using a name that is comprised of
the simple name and first part of the argument type list. For example, the key
"Lookup(char*,i" would uniquely identify the second Lookup function in the list below.
When there is ambiguity, it is possible to have a collection of all matching function
members returned. For example, a call to the first LookupAll function below with
"LookupAll" as the argument would return an OrderedCollection with FunclInfo in-
stances for the two LookupAll functions below.

FuncInfo* Lookup (char* pszNameNPartOfArgs);

FuncInfo* Lookup (char* pszSimpleName, int iArgCnt);
OrderedCollection* LookupAll (char* pszWithThisSimpleNm);
OrderedCollection* LookupAll (char* pszWithThisSimpleNm,int iArgCnt);
char* GetFullName (char* pszWithThisSimpleNm);

char* GetFullName (char* pszWithThisSimpleNm

, int iArgCnt);

Function dispatch service. The function specified in the name key (2nd argument) is
dispatched for the client to the instance of this class that "understands" this protocol (1st

520

argument). The number of arguments and their values are passed as the third and fourth
arguments, respectively. The ArgV (4th argument) is an array of the arguments
corresponding to the formal parameters of the function to be dispatched. The function
dispatcher in the function dictionary uses this information to properly construct the stack
frame for the function call.

void *Execute (void *anlInstanceOfThisClass
,char *pszSimpleFuncName // or pszNameNPartOfArgs
,int iArgCnt
,void **ArgV);

Each FuncDict contains a number of FunclInfo instances, one for each method that is part
of the class being modeled with the Metaclass information. The following information
is provided for each member function in an instance of class Funclnfo:

. Full function name (e.g. "foo(int, Ferrengi*, Bar&)"), a human readable
version of the part of the member function declaration that is used by the
compilers to generate unique ("mangled") names for a function.

. Simple name (e.g. "foo")

. Whether its virtual or non-virtual

. Its address (or virtual table offset)

. The number of arguments for this member function

. An encoded representation of the function's return type and arguments used to
understand the length of things.

. The string representation of the return type of the function, that may be used
to access its metaclass services (assuming it is a type for which a metaclass has
been defined).

In this section, we have described the compile and run time responsibilities of the
MetaFlex implementation to support extension of the scripting application. In the next
section, we will evaluate our implementation, highlighting issues that may be helpful to
others who may choose to implement a flexible metaclass generator service.

Evaluation

Without an automation tool like MetaFlex, we would not have been able to generally
extend the scripting application in our application framework. Specifically, the ability
to delegate the responsibility of responding to scripting requests (the Script Manager) and
dispatching functions (to the function dictionaries generated for various application
classes) from the system's application objects would not be possible. Without metaclass
support, application objects would have to be explicitly knowledgeable about scripting,
making them generally un-wieldy and less useful. With the MetaFlex generated support,
these objects can be manipulated through scripts without compromising the original
object semantics.

A number of key issues raised during our development are covered in the following sub-
sections.

521

Specifying Metaclasses

In our early implementations, MetaFlex generated metaclasses for all classes in an
application. To reduce the amount of generated code, a simple, but expressive scheme
was needed for programmers to selectively choose which classes should have metaclasses
generated for them by MetaFlex. Unfortunately, simple and expressive are competing
goals.

With this in mind, we considered three ways for the engineers to specify their metaclass
requirements:

1) Mark individual class declarations.

2) Mark a root class so that all derived classes from that root class will have
metaclasses generated.

3) Specify an application's metaclass requirements in a separate file.

For the scripting application, the first approach was selected, primarily because this
method did not explicitly interfere with the current development practices of the
engineers, some of whom were already comfortable using a macro based metaclass
solution for generating the vanilla metaclass functionality. The MetaFlex systemis keyed
on declarations these macros were generating in the expanded source input stream.
Macros are difficult to maintain, however, compared to other specification methods. The
macro approach, while capable of implementing the specification language we suggest,
suffers from un-readability.

The second approach seems attractive, since it would require less effort to mark the
classes that MetaFlex would act upon. It suffers, however, in that the metaclass
specification for a class is isolated from it - in the declaration(s) of its parent class(es),
which are typically found in a different file(s). Furthermore, there is a distinct possibility
that all classes in the hierarchy would not necessarily require the same metaclass
implementation. In our application framework, however, we do have a class hierarchy
where this approach would work nicely. As aresult, the metaclass specification language
has support for this possibility.

The third approach, like the second, also suffers from the locality of reference problem.
Unlike the first solution, it forces engineers to have explicit knowledge about the
complexities of modeling type information, when all they really wanted to do was ask
about what kind of object they have. More sophisticated means of expressing systems
becomes available at the price of increased complexity. Being specified in a separate file
is also attractive, in that one is able to manage the metaclass specification in one place,
even though it describes classes that are defined elsewhere. For these reasons, this is the
likely approach we will pursue if we continue to use our own MetaFlex tool to generate
metaclasses for our applications' type systems.

522

Another dimension to the specification problem is whether a function dictionary should
model all the methods in a class, once it has been determined that a metaclass should be
generated. In the MetaFlex implementation we are currently using for scripting, meta-
information for all methods in a class are generated and made accessible. This is a
violation of the private and protected notions in C++. Ideally, access patterns should
follow the same semantics as set forth in [Ellis90]. To support this variation, access
control syntax has been added to the metaclass specification grammar described in the
architecture section of this paper.

It ultimately may be desirable for engineers to explicitly choose which class members
should be exposed for access by external applications. For example, for several classes
in our scripting application, we would have liked to create function dictionary entries for
only those methods that permit query access to end users. This not only reduces the size
of the function dictionary considerably, but places further control over what an external
scripting environment can do to internal application objects.

Type Checking

Better type checking from MetaFlex is desirable for the scripting application. After
parsing end-user scripts, the Script Manager constructs the script parameters as an array
of arguments of type void* and invokes MetaFlex. MetaFlex, at present, checks to see
the number of arguments in the supplied array and the number of arguments needed in the
command initialization are the same. No additional checking is currently done, however,
to see if the types match between each argument in the array and the corresponding type
information of the function dictionary member to be dispatched. In order to make the
system robust, better type checking is a must before command dispatching.

Type checking by MetaFlex can be done by querying the isA relationship of the arguments
supplied in the array. For example, a command’s initialization method declared as
Init(Window*, Rct*, int) is supplied the array (void* vall, void* val2, void* val3). Since
MetaFlex already maintains type information of the arguments in the command's
metaclass, all it needs to do is to check that vall isA Window and val2 isA Rct, before
dispatching the command. If MetaFlex were to use this approach, however, it could only
check the argument types that also have metaclasses created for them.

Name Overloading

To reliably disambiguate overloaded method names, the full specification of the name is
often necessary for MetaFlex to be able to dispatch the correct function. Consider the
example where there are two initialization methods of a class with the same number of
arguments: Init(Window*, Foo*, Bar*) and Init(Window*, Foo*, FooBar*). In order for
MetaFlex to select the correct method, the Script Manager could request MetaFlex to
return both the initialization methods and then decide which method was appropriate,
based upon information in its possession. Alternatively, the Script Manager could supply
sufficient argument type names in its method lookup key to choose the appropriate
method. At worst, all argument types need to be supplied.

523

In the context of component-based systems, possibly supplied by different software
companies, the name disambiguation problem becomes even more complex. Without
planning and cooperation, it is possible that classes in different components will be
created with the same names. While this may be the intent in some situations, some
orderly means of introducing new as well as replacement components is needed.
Although we did not resolve this issue in our implementation, one suggestion we came
up with is to assign a unique identifier to every command, possibly using an Internet-like
addressing scheme. For example, a N-byte identifier might be used that identifies the
software company developing the component, the component type, the command
identifier, and version of the command. A scripting extension, like the one described in
this paper, could then use this command identifier to dispatch the correct command. ISO
and ANSI committees are actively investigating solutions to this complex problem.

MetaFlex Maintenance and Performance

As previously mentioned, our early implementation of MetaFlex generated metaclasses
for all classes in an application. This initially did not pose a problem for the MPW
compiler, but, caused both the MPW lib and linker utilities to choke as the generated
amount of code exceeded their segment limits. To overcome these limits, we modified
MetaFlex to automatically split the metaclass implementations such that no more than X
number of them were put into any one code segment. Later, as the number of metaclasses
grew, the compiler limits were exceeded as well. To manage this limitation, generated
source was divided into files with no more than Y class implementations per file. Both
of these values may be overridden at the invocation of MetaFlex.

With each revision of the C++ grammar, the change in its parser semantics needs to be
updated in MetaFlex's parser - this is a challenging task. During our development of the
scripting application, we noticed that component developers used C++ syntax that would
not cause an error during regular C++ compilation but would break when we run it
through the parser in MetaFlex. The reason is C++ compilers allow archaic C expressions
not defined in ANSI C++ BNR forms. To accommodate these expressions, we had to fix
the parser used by MetaFlex.

In general, performance was a drawback to our implementation of MetaFlex. At this
writing, nearly seventy classes are having metaclasses with function dictionary dispatch-
ing capabilities prepared form them. MetaFlex generates approximately 620 K-Bytes of
source code for them. This process, in turn, adds nearly thirty minutes to the build cycle
for our script-aware application.

We have preliminary designs for several parser speed-ups that would mitigate this
situation, but frankly, would prefer that the compiler vendors incorporate the ideas
expressed in this paper into their compilers. If C++ compilers provided a MetaFlex-like

524

service, significant performance gains should be achieved, if for no other reason than the
code would not have to be parsed twice.

Metaclass Specification Recommendation

In the final analysis, we would prefer that the compiler vendors implement a metaclass
specification mechanism in their respective compilers that has all of the characteristics
we have discussed here. For example, it would not be too difficult to imagine that the
metaclass specification language, offered in this paper, could be implemented as a set of
_keywords, or perhaps with the use of pragmas. These methods offer two ways of
extending the C++ language. Both of these techniques potentially could be employed.
In our metaclass specification grammar, nearly twenty tokens are introduced, and we
don't think that the grammar is complete. Since it is difficult to have even one new
language keyword adopted, it would be prudent to use the #pragma construct to
implement most, if not all, of the metaclass specification.

The MakeMetaClassFor term in our grammar could be transformed into _MakeMeta
keyword or #pragma declaration. For example, the first example in our specification
language section, presented earlier, might be implemented as follows:

#pragma MakeMeta Class DatabaseObject
Support FDict Style AddrsOnly
Install DBAccessPolicyManager

Our recommendation to compiler vendors is to allow developers to site metaclass
specifications anywhere in the type system. Some developers will find it most attractive
to co-locate their metaclass specification in the class being modeled. Others may want
to co-locate all metaclass specifications in one file, as we suggested in the evaluation
above. This may add some complexity to the problem (e.g., Which specification takes
precedence when more than one are present in the type system for a given class? Do
standard scoping rules apply?), but offers the greatest flexibility and customer satisfac-
tion.

Conclusions

We have presented the need for a flexible metaclass generator to build extensions to
applications. A number of extensions that would benefit from such a service were
illustrated, including a detailed case study on a scripting application that is part of our
component based application framework. Since the MetaFlex service is not commer-
cially available in C++ compilers, we were forced to develop an in-house solution that
served our needs. Through an evaluation of the MetaFlex generation service, we
highlighted a number of issues we faced in our development and discussed the relative
merits of possible solutions.

525

From our experience, it has become quite clear that it is impossible to build an ideal
metaclass that suit the needs of all extensible applications. To mitigate this difficulty, we
presented a metaclass specification language that allows software developers the means
to engineer appropriate run-time type information, tailored to the application’'s needs. We
recognize that the grammar presented is, by no means, a complete elaboration of what
may be required, but does offer an organized view of the issues surrounding metaclass
specification.

It is our belief that compiler developers should provide flexible metaclass generation
capabilities to model an application's type system, and that vendors who provide such a
service, will have a competitive edge for supporting the current trend of building
extensible applications. It would be best if the development environments provided a
graphical interface that allows developers to specify which classes, or roots of classes,
should have metaclasses built for them.

Acknowledgments

We would like to acknowledge Roger Voss, Jim Murphy, and Krishna Uppala for their
valuable critique of our paper. A special recognition goes to Krishna Uppala who played
a principal role in the development of the C++ parser. We also recognize the valuable
contribution that Jim Murphy made by introducing the notion of metaclass to the
engineering teams at Aldus. Pat Ferrel, Erik Christiansen, Robert Meyer, Scott Moody,
and Murugappan Palaniappan developed the component based application framework.

References

[Apple91] Apple Computer, Inc, Inside Macintosh Volume VI, Addison-
Wesley, Reading, MA, 1991.

[Bocker90] Heinz-Dieter Bocker, Jiirgen Herczeg, "What Tracers Are
Made Of" OOPSLA/ECOOP '90 Proceedings, 21-25 Octo-
ber, 1990.

[Christiansen92]) Erik Christiansen, Mark Cutter, Pat Ferrel, Robert Meyer,
Scott Moody, Murugappan Palaniappan, "Platypus: Aldus
Scalable Component Architecture,” Aldus Technical Report
(1992).

[Cointe87] Pierre Cointe, "Metaclasses are First Class: the ObjVlisp
Model," Conference Proceedings of OOPSLA '87, October
4-8, 1987.

[Cox86] Brad Cox, Object-Oriented Programming: An Evolutionary

Approach, Addison-Wesley, Reading, MA, 1986.

[Ellis90]

[Ferrel89]

[Goldberg83]

[Kleyn88]

[Maes87]

[Murray92]

[Palay92]

[Pérez92]

[Richardson92]

[Stroustrup92]

[Voss92]

[Voss93]

526

Margaret A. Ellis, Bjarne Stroustrup, The Annotated C++
Reference Manual, Addison-Wesley, Reading, MA, 1990.

Patrick J. Ferrel, Robert F. Meyer, "Vamp: The Aldus Appli-
cation Framework," Conference Proceedings of OOPSLA
'89, October 1-6, 1989.

Adele Goldberg, David Robson, Smalitalk-80: The Lan-
guage and Its Implementation, Addison-Wesley, Reading,
MA, 1983.

Michael F. Kleyn, Paul C. Gingrich, "GraphTrace - Under-
standing Object-Oriented Systems Usir:g Concurrently Ani-
mated Views," Conference Proceedings of OOPSLA 88,
September 25-30, 1988.

Pattie Maes, "Concepts and Experiments in Computational
Reflections," Conference Proceedings of OOPSLA ‘87, Oc-
tober 4-8, 1987.

Robert B. Murray, "A Statically Typed Abstract Representa-
tion for C++ Programs,” Usenix C++ Conference Proceed-
ings , USENI¥. \ssociation, August 10-13, 1992.

Andrew J. Palay, "C++ in a Changing Environment," Usenix
C++ Conference Proceedings , USENIX Association, Au-
gust 10-13, 1992.

Edward R. Pérez, Moira Mallison, "Sentries and Policy
Managers: Providing Extended Operations for Objects," Texas
Instruments Inc, October 16, 1992.

JoelRichardson, Peter Schwarz, Luis Felipé Cabrera, "CACL.:
Efficient Fine Grained Protection for Objects" Conference
Proceedings of OOPSLA '92, Andreas Paepcke, ed. (1992).

Bjarne Stroustrup, "Run Time Type Identification for C++,"
Usenix C++ Conference Proceedings , USENIX Associa-
tion (1992).

Roger Voss, "Virtual Member Function Dispatching for C++
Evolvable Classes," Aldus Technical Report (1992).

Roger Voss, "C++ Evolvable Base Classes Residing In
Dynamic Link Libraries," To appear in C++ Journal, Vol. 3,
No. 1 (1993).

[Wells92a]

[Wells92b]

527

David L. Wells, José A. Blakeley, Craig W. Thompson,
"Architecture of an Open Object-Oriented Database Man-
agement System," JEEE Computer, Vol. 25, No. 10 (1992).

David L. Wells, Moira Mallison, Edward R. Pérez, "Behav-
ioral Extension Mechanisms in Open Object-Oriented Data-
base System," Texas Instruments Inc. (1992).

