Panel:
Aims, Means, and Futures of
Object-Oriented Languages

Mike Banahan, Chairman of the European C++ User Group
L. Peter Deutsch, Sun Microsystems Laboratories Inc.

Boris Magnusson, University of Lund

Jens Palsberg, moderator, Aarhus University

Abstract. Panelists will compare and assess the strengths and weak-
nesses of major object-oriented languages. They will also comment on
the possible development and use of those languages and their related
tools.

1 Background

Many object-oriented languages are in use today. From the programmer’s per-
spective, they differ both when comparing language features and tool support.
These differences have impact on programming style and programmer produc-
tivity, and also on how well a language is suited for a particular development
project.

This panel focuses on three major object-oriented languages, namely Simnula,
Smalltalk, and C++. We will compare and assess their strengths and weaknesses,
and hazard guesses about future developments of the languages themselves and
their related tools.

2 Mike Banahan

The C++ language is currently receiving a lot of attention, especially in the PC
and Unix communities who view it as a natural fit to many of the problems of
their environments. C++ is viewed as an easy migration path from the most
common language already in use there (C), since it is almost entirely upwards-
compatible with C and yet offers the promise of stronger type checking, better
encapsulation and the chance to implement Object Oriented Concepts. All at
the same time!

C++ sets out to do much more than C. It is a considerably larger language
and requires a different approach to development than does C. As many organi-
sations have discovered, using a particular language does not guarantee that the
software developed will necessarily make the best use of the facilities available.

Strong type checking and Object Orientation sound like a good combination
of buzz-words. There is much to be said for it, and the wise use of C++ can
be extremely powerful. Working together, those notions force designers to think



529

hard about the nature of type relationships within program designs. The avail-
ability of generic types and exception handling takes the language out of the
realm of concepts familiar to most procedural programmers.

As a result, there is not only a new language to learn, but also many pro-
gramming techniques which are new, exciting and difficult.

Your speaker will be happy to share the insights that he has been able to
gain during his eight years’ of using C+-.

3 Boris Magnusson

Simula was the first object-oriented language and introduced all the now popular
concepts associated with o-o (and a few more). The language and its implemen-
tations are stable, efficient and reliable and thus provides the framework for
many projects. From the language point of view, some of the strength of Simula
comes from the combination of 0-0 constructs it offers. In this company (with
C++ and Smalltalk) its tempting to mention compile time typing and garbage
collection. Simula also offers important unusual mechanisms as unlimited nesting
of constructs (classes defined inside classes as procedures inside procedures in
many procedural languages) and processes (co-routines, lightweight processes).
Nesting is important to cope with large applications. Processes are important
to deal with external communication as in user interfaces and in client-server
applications. There are thus mature o-o systems available.

Implementations of o-o languages using traditional techniques and conven-
tional tools in the bottom, such as text editors, linkers and Unix utilities exhibit
some common problems:

— Selective loading from libraries does not work so well, since all possible vir-
tual implementations will be included (back side of the coin of dynamic
binding)

— More compilation module dependencies means more re-compilations (back
side of inheritance and re-use). This can to some extent be fought by fast
compilers but as programs grow. ..

~ Utilities such as “grep” does not work so well with o-o languages since it will
find all implementations of a procedure (not just the one called from here
(back side of several names-spaces created by encapsulation).

These new problems (compared to procedural languages) call for more re-
search in implementation techniques. Tight integration incremental techniques
such as those developed in the Smalltalk environment and in the Mjolner project
gives some answers, but much more remains to be done before these techniques
are in common use.

“SIMULA—Common Base Language” was the title of the definition. Already
here we are given a hint of another important direction in o-o development—
to see o0-o languages as specialized application languages. This is an extremely
important way to fight the complexity of large systems—reducing their size
by increasing the level of the language used (to say more per source line, in



530

some sense this is what language development is all about). To make this a
viable technique it must be fairly easy to define and implement such application
languages, as easy as doing conventional programming.



