Beyond Objects

Luc Steels

Artificial Intelligence Laboratory,
Vrije Universiteit Brussel,
Pleinlaan 2, B-1050 Brussels, Belgium,
E-mail: steels@arti.vub.ac.be

Abstract. An agent-oriented approach to the design, implementation
and maintenance of reusable software components is discussed. Main
features of the approach are: (1) the use of a formal description to enable
meta-level reasoning and reflection, (2) the use of automated coding and
instantiation of computational fragments, (3) the use of a distributed
network and interfaces allowing the browsing, indexing and retrieval of
fragments from remote sites.

1 Introduction

The world of information processing is currently undergoing a phase transition
due to the widespread availability of networked computers. In the United States
alone, the Internet had early 1994 15 million users and has been growing at
a rate of 10 percent per month. This development is causing a sudden expo-
nential growth in the usage of computers and telecommunications. Email and
other networking activities were for a long time the almost exclusive province of
academic researchers, but at the moment commercial and personal transactions
are increasingly taking place over computer networks, thus for ever transforming
the way developed societies operate. In the not too distant future, almost ev-
erybody will have their personal digital assistant that is directly connected via
telecommunications to more powerful computational networks.

One of the most interesting functionalities that is becoming practical in this
highly networked, computer-rich environment, is a software agent ([15]). Software
agents are computer applications which autonomously execute a particular task
for their owners, for example find the best airline connections and schedule other
practical detaiis of a trip. Agents are in principle continuously in operation, for
example to monitor e-mail traffic, or to handle requests from other agents. They
can delegate subtasks to other agents, and take the initiative to seek out needed
information. Software agents can migrate from one machine to another, seeking
out opportunities and resources, and ‘following’ their owners wherever they go.
More ambitiously, we expect that they learn and adapt like human agents.

Object-oriented programming [16] and the message passing framework [6]
appear to be suited very well for designing and implementing software agents
that operate in distributed environments. But they only provide the computa-
tional framework. Much further work needs to be done on many issues: defining
common languages for communication between agents, study mechanisms for

achieving autonomy, have global scripts so that agents may install themselves
on many different machines, etc. A lot of research on this topic has been con-
ducted in the context of AI research on distributed intelligence [2], [4]. Also
research on intelligent robotic agents within the context of Alife may prove of
high value [13].

This paper reports on research to build software agents that have a formal
description of their internal structure and functioning so that (1) other agents can
find out what they are capable of doing, and (2) they can reconfigure themselves
when needed to cope with changed environments or changes in tasks. The formal
descriptions act as the meta-level for an object-oriented software layer. Agents
are assumed to be capable of jumping from the programming level to the meta-
level (for example to reconfigure themselves) or map the meta-level onto the
object-level (for example when they need to re-install themselves on another
machine). Agents that have these properties will be called reflective agents. Some
researchers have already suggested that a reflective capability is needed (see in
particular [3]) and others have suggested the use of formal languages to define
the capabilities of agents and use it as a basis for interaction among agents [9] .
Our work contributes by using a particular kind of description for the meta-level
inspired by the notion of the knowledge level, first introduced by Newell (8], [14],
and by using techniques from program synthesis and formal specification theory
to relate the meta-level with the object-level. This work builds further upon
results obtained in the context of enhancing the knowledge engineering process
[13]. Most of the ideas and techniques contained in this paper have all been
implemented in the form of a workbench known as KREST. This workbench
is already distributed over 30 sites throughout Europe and is available through
ftp. A large variety of applications, mostly in the domain of knowledge-based
applications has already been constructed. The encapsulation in terms of agents
as discussed in this paper is in progress.

The paper has the following parts. First the general principles of our reflec-
tive agents are discussed. Then three scenarios of usage are presented. The first
scenario concerns the development of an application on a single machine. The
second scenario focuses on the sharing of agents over multiple machines and
through multiple projects. The final scenario illustrates the use of reflection.
Some general conclusions and future research topics end the paper.

2 The architecture of reflective agents.

A software agent will need on the one hand some basic functionalities to negotiate
entry into a computer system, migrate over a network, install and invoke itself,
report back to other agents that request its services, etc. These functionalities
are essential but are not discussed further in this paper. On the other hand, an
agent needs functionalities that are specific to the tasks that it executes for its
owner. These task-specific functionalities will here be our primary concern.

2.1 Types of agents.
We make first of all a distinction between four types of agents:

— Task agents: They are respousible for a particular task, something that
needs to be accomplished. l'or example, look up an element in a database,
compute a graph, display a picture, acquire through a dialog the structure
of a causal network, filter out and re-route e-mail messages, etc.

— Resource agents: They are responsible for a particular resource (an inter-
face to a user, a data object, a model). Resources can be sources as well as
sinks of information.

— Method agents: They are responsible for a particular method, i.e. a pro-
cedure that can be used to resolve a task.

— Project agents: They are responsible for maintaining a group of agents
which share a common context. This includes a set of task agents relevant
for achieving a particular project, as well as resource and method agents.

Each of these agents can be generic or specific. A generic agent holds descrip-
tions and structures that only partially define the agent. For example, a generic
task agent may have information about a task decomposition and needed re-
sources but may lack information about which specific resources are available
for the task. Or, a generic causal network agent may have information on how to
represent causal networks but may not contain information about any specific
network in particular.

Task, resource, and method agents are related to each other. For example,
a method agent may be associated with a particular task agent, a task may
have access to several resources to accomplish the task, a task may be related to
several subtasks. The agents involved in a particular relation are said to form an
agent network. The relation between tasks, resources and methods is represented
n dependency diagrams such as the one in figure 1. and in task structures which
represent task/subtask relations. The agents which form part of a network must
first be located (or locate themselves) inside a project agent. In addition, we
have introduced a special agent called a kit, which acts as a support agent for
the construction of other agents. The term kit emphasises that this agent consists
largely of reusable agents or agent network fragments which can be used in the
assembly of other agents and agent networks. A kit maintains the vocabulary
for building up formal descriptions as explained in more detail later. Kits are
organised in inheritance hierarchies where lower level kits are refinements of
higher level kits. At the top we find a so called base kit which contains the
most fundamental vocabulary, e.g. terms like task, method, resource, or terms
for defining abstract datatypes, computational constraints on methods, etc. The
base kit contains mappings from formal descriptions to code as explained later.
More specialised kits contain vocabularies for a particular domain, for example a
scheduling kit contains terms for scheduling tasks. They contain fragments which
are agent networks (possibly consisting of generic agents) relevant for the domain
of scheduling, for example a particular task decomposition for solving scheduling

mach-

Ly
LE l ines
opera-

identify \
b machines b
N’

Fig.1. A dependency diagram for a task that acquires a causal model in the form of
a network of symbols by interacting with a domain expert.

problems. The base kit (and its refinements) ‘know’ about each other in the sense
that they can identify the most relevant kit for working on a particular project.

2.2 Agent components

Each agent has three major components: (1) a formal description of the capabil-
ities and internal structure of the agent, (2) code fragments implementing these
capabilities, and (3) execution objects, i.e. instantiated datastructures, ready-
to-run methods, etc.

(1) The formal description.

The formal description spans a continuum from ‘knowledge level’ descrip-
tions that are close to the conceptual domain of the user to ‘symbol level’ de-
scriptions that define the abstract datatypes and constraints on the methods
used to achieve a task. The formal description describes the task that the agent
can perform as well as the decomposition into subtasks, the resources needed
to handle a task, and the methods that will be used. The formal description
could, in the case of generic agents, be partial. For example, it could consist of
the description of a task together with a definition of the number and kind of
resources, but without a method to achieve the task. Or it could consist of the
definition of the contents of a domain model but without a specification of how
these contents will be represented (as a network, hierarchy, set of symbols, etc.).
The repertoire to build up formal descriptions should at any time be extendable.

We use at present feature structures to formulate formal descriptions (see
figure 2). A feature structure is a record-like structure that consists of a set of
attributes and associated values, together with equality constraints among val-
ues of attributes. A value may itself be a feature structure. Feature structures
have been widely used in natural language processing but are a general represen-
tational formalism equivalent to predicate calculus in expressive power [7]. There
is an inferencing mechanism operating over feature structures which is akin to

unification. Feature structures have therefore not only a formal semantics, but
also an inferential semantics which is effective, i,¢, deductions can be made in
bounded time.

aantrnt farm -dun'llnhl 1 T
vivmente [n-nlrni-flrm [13&] symbel]
ordered na
structure-type collection
structured yas
uRITAPM ues J

content-type .components

fills-roles [{owner [228] identify machines]]

role~name [237] Covering set

Fig. 2. Formal descriptions of agents take the form of feature structures. The example
shows a feature structure for a method agent.

The vocabulary out of which the features in a formal description can be
defined constitute a particular ontology. At the moment we define the ontology
by listing the terms and constraints on the terms (e.g. which possible values a
feature may have). Such an ontology is maintained by a kit. In principle, the
ontology could be further constrained using a formalism like KIF [5], so that
wider interoperability would be guaranteed.

A formal description in the form of a feature structure can be turned into an
ASCII representation and as such be transmitted without any restriction from
one machine to another anywhere on the network. Receiving sites must of course
have the kits necessary to work with the formal representation, e.g. to extend
formal descriptions or to map them onto code.

(2) Code fragments

Some agents have representational or computational abilities. This then re-
quires datastructures and/or runnable procedures. A code fragment contains
the code to instantiate these datastructures or procedures in a textual format so
that it can be stored and transmitted. Figure 3. contains an example of a code
fragment based on an object-oriented implementation (CLOS). The code defines
a set of symbols which is partially filled by various instances of symbols. This
code could be the definition for a datastructure representing ”a list of possible
symptoms”. Clearly the code fragment is a way to get persistence and to trans-
mit agents from one computer to another one, if both have interpreters for the
same language.

(3) Execution objects.

Execution objects are the datastructures and procedures as installed on a
particular machine. They are the most compact and efficient implementation

EM=—=———— ‘identify machines {...g Original:methods:)
(make-instance 'cl-symbol-ievel-method
‘name “'identlfg machines”
:CLOS-method ‘cover
:roles '((“Set to be covered” ("operations™ SL-MODEL)>
("Mapping” ("machines operations mapping” SL—NODEL))
[¢“Covering set” ("machines” SL-MODEL)))

= T = 'I'EL

UKW/ léﬂmu

Fig. 3. This figure shows a code fragment using CLOS. The fragment defines the form
and contents of a datastructure.

but cannot be transferred. Figure 4. shows an example of an execution object.

#<CL-SYMBOL-LEUVEL-METHOD #19F3689>

(Resample] [it]|] inspeet !’

I}

Caommands v

*®<CL-SYMBOL-LEVEL-METHOD ®#x9F3683> {r
Class: #<STANDARD-CLASS CL-SYMBOL~-LEVEL-METHOD> —]
Hrapper: #<CCL::CLASS-WRAPPER CL-SYMBOL-LEVEL-METHOD ®*xSF31Dt>

Instance slots

NAHE: “identify machines” sy
CLOS-HETHOD: COUVER]
ROLES: (("Set to be covered” (“"operations” SL-MODEL>> ("Mapping” ("machines opeq%]

Fig. 4. Example of the execution object for the code fragment shown earlier. The figure
shows the object as seen through the inspector.

3 Scenario 1: Agent development

We now describe a first typical scenario on how a single application (or set of
related applications) may be built to run on a single machine. Development starts
by creating a project agent which will act as the context for further development.
A kit is chosen with which the agents in a project will be constructed. By default,
this will be the base kit. A project agent has an interface to access the different
agents associated with it (task, method, and resource agents) (figure 5.).

EF]

Project :: PP S

Y PP8
g

_Componnenis

I] Disgr sms

—
I l Modeie

—0ther

L
Notes

~Controls
5 3 ot camEe|] T N
s) o o 2 1
New Open Show Hide Rename Remove
e
. H
- !

acq machine network

454 OPEFALISAE

=

acq possible operations

acq machines operations

444 pdiasble machines

=

application

&
=

]

Fig. 5. Figure of interface to a project agent. The task agents are highlighted and are
accessible by clicking on them. New agents can be constructed at any time.

The development of specific agents within a project starts with the defini-
tion of parts of the formal description. Each agent has an interface which shows
the formal description as well as other graphical representations to show depen-
dencies to other agents (figure 6.). The formal description is editable under the
guidance of the kit associated with the agent. The kit ensures that only defined
terms can be used to formulate feature structures. A kit enforces constraints
that are associated with certain features. The formal description is extended
through manipulations of graphical representations. For example, a resource can
be associated with a task by graphically making a link between the two. The
formal descriptions of both agents involved are then updated.

The formal description will on the one hand contain domain-specific features
relevant for indexing or for recording design decisions. But it can be expanded
to contain information relevant for coding. The basekit [1] that is currently op-
erational contains the vocabulary for describing a wide arsenal of fundamental
datatypes (sets, symbols, numbers, trees, networks, etc.) as well as fundamen-
tal methods operating over these dataypes. We have developed the necessary
components so that the basekit can construct code and execution objects based
on formal descriptions. Using these tools, a developer can instantiate execution
objects and code fragments without having to write code herself. There 1s a
way to inspect the code associated with the agent through an editing window,
and there is a way to inspect the execution objects through an inspection win-
dow. Many datastructures have an associated browser to see the contents of the
datastructure independently of how they have been represented internally.

When a network of agents has been completely worked out, a running ap-
plication is automatically synthesized. This requires that there is at least one

i)

[EfI==——=—=—=—-—=-—— Task :: acq machine network ——————0
l::_] acqg machine network
[Pp8]

‘Notes Perspectives Levels —

~Tasks
Knowledge w
s

n

Attributes L
- R ks
fills-roles owner [10] knowledge acq i
role-name [40] Subtask
type [41] subtask
models inputs [n arne {50] plant expert]

[name [102] possible machines]

outputs { [name [122] machine network] }

name [38] acq machine network
foni) .o
Fig. 6. Figure of interface to a task agent. There are ways to navigate to the task

structure and the dependency diagram associated with the task. There is a window (at
the bottom) that contains the formal description.

] | B

task agent, that a method agent has been associated with the task, and that the
resources required by this method are available as fully instantiated agents. The
application can then be activated by clicking on the task agent, similar to the
way an application is activated on a desktop.

4 Scenario 2: Transfer of agents between different
projects

We now describe a second scenario how agents are exported and incorporated
in other projects, possibly across the network. An agent or a coherent collection
of agents can be cut out of a project and installed as a fragment in a kit. The
agents can be at different levels of grainsize (i.e. their formal descriptions need
only to be partial) and the code fragment can or cannot be included. Execution
objects are never included. For a particular fragment, one agent is chosen as the
major focus of attention. There is support in the workbench for performing these

operations (figure 7.).

Task Structure :: Global Task Structure

User Choice

E’} Global Task Structure

acq

: machine

~ network

acq

! ! opera-
tions

(-

present
flow

identify
mach-
" - ines

order

[:: mach-

ines

-+ 1Pps] : Please choose the key element E *ﬁ
: in this fragment.)
Ramnve Raname |
Tuuly R
’m‘
¢ e
_ :3 Acq Operations
& % @’luﬁaﬁjiﬂumn&l’i
—Uhjects ':3 Order Machines
['i] Task ’:.thresent Flow
C M_Production Planning
MsPresent Flow

Fig.7. Formulation of a fragment which is put in an application kit. The user needs
to select an agent which acts as the focal point of view of the fragment.

A fragment can be retrieved out of a kit and imported in a project which is
being built. Once a fragment is imported it can be properly inserted using cut
and paste operations and a glueing operation which allows the unification of two
agents. Formal descriptions play an important role because they are a basis for
testing whether fragments can be fused or not. Because code and execution ob-
Jjects are constructed automatically by the base kit, they can be reconstructed in
a new project and this way a new application can be made operational, possibly
on another site.

To support indexing and the distributed use of fragments, we use the World-
Wide Web as a general interface to a kit. Fragments are ‘published’ in a kit
catalog located on a KREST server and they can then be imported in new ap-
plications.

5 Scenario 3: Reflection

In one mode of operation, a developer or user is in complete control: she

10

constructs interactively the formal descriptions, extends or refines the kits, causes
execution objects to be created, browses through the kit catalog and retrieves
fragments. We can expect however that increasingly the agents will need to start
having a ‘life of their own’ because the complexity of managing large collections
of kits distributed over networks of computers. This is where reflection comes
mn,

Reflection is the capability of a computer system to jump out of an execution
process (for example when an error occurs), perform reasoning or computation
at a meta-level, translate the impact of the meta-level decisions back to the
execution level and proceed the computation [10]. This capability is possible
in the KREST framework because of the availability of formal descriptions for
every unit of code/execution, the availability of a formal inferencing schema
at the meta-level, and the availability of a facility that automatically translates
formal descriptions to the code/execution level. Some concrete examples of usage
of reflection facilities in the KREST framework are reported in [11].

6 Conclusions

This paper reports on research laying the foundations for an agent-oriented ar-
chitecture that supports the sharing and reuse of software components in a
distributed environment. We believe that the essential ingredients to make this
happen are (1) powerful formal descriptions and associated inference calculi, (2)
a knowledge level framework for describing applications, (3) a 3-layered structure
of any application fragment (formal description, code, and execution), (4) agen-
tification of the components so that they can move independently and interact
as first-class citizens with other components, and (5) publishing in a distributed
context such as offered by the Worldwide Web. Our work so far should be seen
as experimental in nature, despite the fact that the facilities discussed in this pa-
per have all been implemented. Much more work needs to be done. For example,
many details and conceptual gaps need to be cleared up in relation to the index-
ing of fragments in very large kits, the fusion of fragments into applications, the
cutting operations to remove a fragment (while absorbing just enough context
to make the fragment usable), and so on. On the other hand, it seems that we
are approaching a new era of computer usage in which distributed computation
and independently operating software agents are becoming a reality.

7 Acknowledgement

A large number of highly capable researchers have contributed to the ideas and
programs discussed in this paper. Angus McIntyre constructed the first imple-
mentations of the KREST workbench in the in the context of the ESPRIT
project CONSTRUCT. More recent technical contributions were made by Koen
de Vroede (who implemented the first versions of the base kit), Luc Goossens
(who has played a major role in making the feature structure formalism us-
able), Aurelien Slodzian (who implemented the first reflective capabilities) and

11

Kathleen Van den Abbeele (who implemented the distributed usage and servers
through the World Wide Web). Sabine Geldolf, Viktor Tadjer, and Roumena
Polianova have made important contributions to develop applications. Walter
Van de Velde has made important conceptual contributions. This research is

supported by the IUAP centre of excellence project of the Belgian Government.

References

10.

11.

13.

14.

15.

16.

17.

. de Vroede, K. , L. Goossens and A. Slodzian (1994) The structured base kit.

VUB Al lab Memo.
Demazeau, Y., J.-P. Muller and E. Werner (1990) Decentralized Al 1,2, and 3.
North-Holland, Amsterdam.

. Ferber, J. and P. Carle (1990) Actors and agents as reflective concurrent objects:

a Mering IV perspective. In: Proc. of the 10th Intern. Workshop on Distributed
Al. Austin Texas.
Gasser, L. and M. Huhns (eds.) Distributed Artificial Intelligence. Vol. 2,
Pittman, London.

. Genesereth, M. and R. Fikes (1992) Knowledge Interchange Format, Version 3.0

Computer Science Department Stanford University. Tech Report Logic-92-1.

. Hewitt, C. (1973) A Universal, Modular Actor Formalism for Artificial Intelli-

gence. Proceedings of [JCAI 1973.

. Johnson, M. (1991) Features and Formulae. Journal of the Association for Com-

putational Linguistics. Vol 17, nr 2.
Newell, A. (1982) The Knowledge level. Artificial Intelligence, 18, 87-127.

. Shoham, Y. (1993) Agent-oriented Programming. Journal of Artificial Intelli-

gence. [to appear]

Smith, B. (1984) Reflection and semantics in LISP. In: Proc. 11th ACM Sym-
posium on Principles of Programming Languages, 23-35, Utah.

Slodzian, A. (1994) Knowledge level reflection in practice. VUB Al laboratory.
Master’s thesis.

. Steels, L. (1992) The componential framework and its role in reusability. In:

David, J.M., and J.P. Krivine (1992) Second Generation Expert Systems. Berlin:
Springer Verlag.

Steels, L. (ed.) (1994) The biology and technology of intelligent autonomous
agents. Springer Verlag. Berlin.

Steels, L. and J. McDermott (eds.) (1994) The knowledge level in expert sys-
tems. Conversations and Commentary. Academic Press. New York.

Tokoro, M. (1993) The Society of Objects. Invited talk at OOPSLA‘93. Adden-
dum to the OOPSLA’93 Proceedings.

Yonezawa, A. and M. Tokoro (eds.) Object-oriented Concurrent Programming.
MIT Press, Cambridge Ma.

Wielinga, B. and F. Van Harmelen (1993) Knowledge level reflection. In: Steels,
L. and B. Lepape (eds.) (1992) Enhancing the knowledge engineering process.
Contributions from ESPRIT. Amsterdam: Elsevier Publishing.

