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Abstract. In object-oriented design and languages, abstractness of classes
is a concept whose relationship to other concepts is not yet fully under-
stood and agreed upon. This paper clarifies the concept of abstractness
and examines the relationship between abstractness and inheritance. It
does this by discussing several aspects of the so-called abstract superclass
rule, a design rule for object-oriented programming which requires that
all superclasses be abstract. In the course of this discussion, we evaluate
in which situations this rule should be considered beneficial.
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1 Introduction

Object-oriented languages view inheritance and abstractness as two independent
concepts. Inheritance is a relationship between a general class, called the su-
perclass, and a specialized class, called the subclass. As a relationship between
classes, inheritance does not single out specific classes; that is, any class can pos-
sibly be a superclass or a subclass. Abstractness is the inability of a class to
create instances (objects) of itself. A class that has the ability to create instances
is referred to as instantiable or concrete, otherwise it is called abstract. So the
independence of inheritance and abstractness means that a class is instantiable
independently of whether it is a superclass or a leaf class in the inheritance
hierarchy.

This paper presents and evaluates a simple rule, called the abstract super-
class rule (ASR), which removes the mutual independence of inheritance and
abstractness. Unlike existing object-oriented languages, this rule requires that
all superclasses be abstract.

Abstract Superclass Rule: All superclasses must be abstract.

The abstract superclass rule is deliberately formulated in a somewhat pointed
way. However, rather than dogmatically putting it forward, we use it merely
as a vehicle to discuss and clarify the issue of abstractness in object-oriented
programming, and provide a collection of arguments for and against the rule.
In this sense, the abstract superclass rule should be considered as a guideline
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rather than a strict rule. The designer of an application will have to apply the
rule judiciously with careful consideration of the advantages and disadvantages
for the particular situation.

The goal of this paper is to provide the designer with the basis to make an
informed decision as to when to apply the rule successfully. For that purpose we
collect arguments from a broad variety of software engineering perspectives. We
will specifically answer the following questions:

. Are there certain situations that prohibit the use of the ASR at all?

. Is the ASR in any way unnecessarily restrictive?

. What are the benefits or problems of the ASR with respect to data modeling?
- How do systems designed with the ASR behave during software evolution?
- How do systems designed with the ASR lend themselves to software reuse?
. How does the ASR affect object-oriented programming?

SR N

In order to answer the above questions we will first analyze how the mecha-
nism of abstractness is implemented in today’s object-oriented languages. Then,
some general aspects of the ASR are illuminated and clarified. It is shown that
complying with the rule does not reduce the expressiveness of an object-oriented
design. Also, we do away with a misconception of the ASR in connection with
the covariance typing rule. Dodani et al. claim that their Abstract Concrete
Type System (ACTS), a variant of the abstract superclass rule, allows covari-
ant and contravariant typing rules to coexist in a single, type-safe environment
[DT92]. We will show that this is a misconception, and that, in fact, the abstract
superclass rule avoids run-time errors only in certain cases.

Data modeling is one of the essential areas in which a rule like the ASR needs
to prove effective to be accepted. We will see that the abstract superclass rule
resolves a number of problems when several notions of inheritance [BI94] coexist
in the same program using one inheritance mechanism. Also, the rule appears
naturally in the case for multiple inheritance, as discussed by Waldo [Wal91].

From the software evolution perspective, the ASR becomes problematic with
respect to subclassing. Unless leaf classes are essentially split into an abstract
class for subclassing and a concrete class for instantiation, the rule is not truly
useful. The splitting in turn results in a proliferation of classes placing an ad-
ditional burden on maintenance. However, the ASR allows the representation
of some objects to be changed without affecting the representation of other ob-
jects. Moreover, the addition or deletion of properties to objects of one class
don’t necessarily propagate to the objects of other classes.

For the reusability aspect, the same caveat as above applies in terms of
subclassing. On the other hand, the benefits of the abstract superclass rule for
object-oriented frameworks and libraries, the major building blocks of reusabil-
ity, have been widely observed before [Deu83, JF88, Joh93].

The paper is organized as follows. Section 2 reviews and discusses the defi-
nition and mechanism of abstractness for the three languages Smalltalk, C++,
and Eiffel. As part of this, we propose the de-coupling of the concept of class ab-
stractness from the presence of abstract features (e.g., pure virtual functions in



14

C++). Section 3 then answers the above set of questions by discussing the ASR
from several vantage points of software engineering: data modeling, software evo-
lution and reusability. In addition, issues related to covariance, programming,
and simplicity are covered. The final section gives a summary of the pros and
cons, and an evaluation of the rule for designers and programmers.

2 Abstractness in Object-Oriented Languages

Before discussing the abstract superclass rule in detail, let us review the mech-
anism of abstractness for the three object-oriented languages Smalltalk, C++
and Eiffel. As CLOS [Kee89] does not know the notion of abstract classes nor the
notion of abstract methods we will not take it into further consideration here.
In Smalltalk [GR83], an abstract class is described and defined as follows.

“Abstract superclasses are created when two classes share a part of their
descriptions and yet neither one is properly a subclass of the other. A
mutual superclass is created for the two classes which contains their
shared aspects. This type of superclass is called abstract because it was
not created in order to have instances.”

“Abstract class: A class that specifies protocol, but is not able to fully
implement it; by convention, instances are not created of this kind of
class.”

The corresponding definition in C++ [ES90] is:

“The abstract class mechanism supports the notion of a general concept
of which only more concrete variants can actually be used.”

“An abstract class is a class that can be used only as a base class of
some other class; no objects of an abstract class may be created except
as objects representing a base class of a class derived from it. A class is
abstract if it has at least one pure virtual function.”

The corresponding definition in Eiffel [Mey92, Mey88] is:

“A class which has at least one deferred feature is itself said to be de-
ferred; a non-deferred class is called an effective class. A feature is made
deferred by declaring it without choosing an implementation.”
“Deferred class no-instantiation rule: Create may not be applied to an
entity whose type is given by a deferred class.”

Syntactically, an abstract class is expressed (1) in Smalltalk: simply by not
specifying an implementation for at least one declared method, (2) in C++: by
declaring at least one method as pure virtual (“= 0”), and (3) in Eiffel: by declar-
ing the class and at least one method as “deferred”. Note that in C++, unlike in
Smalltalk and Eiffel, an abstract method can still have an implementation. The
only way to designate such a method as abstract is by syntactically specifying
abstractness through the use of “= 0”. A summary of the above abstractness
mechanisms is given in Table 1.
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Language Terminology Syntax Implementation
clagg l method clags I method |of abstract method
Smalltalk ||labstract| abstract | - —e not possible®
C++ abstract{pure virtuall - =0 possible®
Eiffel deferred| deferred ]deferredd deferred| not possible®

% no syntactic means

® by definition

¢ can only be called through scope resolution operator (::)
4 needs to be coupled with at least one deferred method

¢ checked by compiler

Table 1. Summary of existing abstractness mechanisms

There are two problems with the above definitions. First, a closer examination
reveals that there are two concepts involved in abstractness: ability to create
instances, and presence of abstract methods. The fact that these two different
concepts are merged into one single concept precludes the designer from using
them separately. Of course, if a class contains abstract methods then the class
cannot be safely instantiated, because if an instance were created, it would not
be able to successfully respond to all its messages. So the presence of an abstract
method implies the inability to instantiate objects. However, the converse does
not hold: a class might not be intended for instantiation and yet might have no
abstract methods.

In the case of the above languages, if a class had a priory no abstract methods,
it would not be possible for the designer to make the class abstract without
defining a dummy undefined method for it!. This is unsatisfactory since one
could well imagine cases where a class is designed to be ’abstract’ but does
provide implementations for all its methods. (An example of this is easily found
with data inheritance as discussed in section 3.3.)

There is a second problem to the discussed abstractness mechanisms. To
find out whether a given class is abstract, a programmer has to inspect all
methods of that class and check whether at least one of them is abstract. Even
worse, abstract methods are inherited as abstract methods which forces one
to check also all superclasses of the class for abstract methods. For large class
hierarchies, this is obviously a rather tedious task. In Eiffel, this problem is
somewhat alleviated by the use of the keyword deferred preceding the class
definition. However, Eiffel still requires to define at least one deferred method
for a deferred class resulting in the same problem when determining whether a
class needs to be declared deferred or not.

To remedy the above problems we propose the following definition of ab-
stractness. We regard the ability to instantiate objects as the more profound

! It has been suggested for C++ to provide a protected constructor instead of a dummy
pure virtual function to make a class abstract. However, this has the flaw that friends
and subclasses are still able to instantiate the class.
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concept behind abstractness. Therefore, we define abstractness of a class as the
inability to instantiate objects. Note that this definition deliberately does not
make any reference to, and thus is independent of, the presence of abstract
methods. Syntactically, we propose to actively specify the abstractness of a class
through a specific keyword (e.g., abstract, or deferred). This allows the de-
signer to clearly convey a class’s intention in its definition and solves the second
problem discussed above.

3 Discussion of the Abstract Superclass Rule

Now that the notion of abstractness is clarified, we are ready to discuss the
impact of abstractness on the design of object-oriented applications. The abstract
superclass rule is used as a means to do this. This section discusses the abstract
superclass rule by viewing it from various aspects of software engineering, thus
collecting arguments for and against it from different vantage points.

An immediate objection to the abstract superclass rule may be raised because
of its automatic coupling of the two a priori independent concepts abstractness
and “superclass-ness”. This problem is similar to the problem of coupling the
presence of abstract methods with the ability to instantiate objects as we have
seen it in section 2. Such a coupling of one independent class concept to another
is never desirable since often the designer wants to use one concept but not the
other, which is not possible if the two are coupled.

The above argument would not hold, however, if through the discussion of
the following aspects of the abstract superclass rule, it turned out that the
rule should actually be followed in all situations. In that case, abstractness and
superclass-ness need be coupled and the above deficiency would in fact be an
essential feature of the rule. As we will see, however, the rule does not hold in the
necessary strictness, and so the above coupling is, indeed, generally undesirable.

3.1 The Expressiveness Aspect

First we show that the abstract superclass rule does not reduce the expressiveness
of the object-oriented design. In particular, any class structure that contains an
instantiable superclass can be transformed into an equivalent structure that
conforms to the abstract superclass rule.

The transformation creates an additional, empty subclass of the instantiable
superclass. “Empty” means that the subclass inherits all its data and behavior
from its superclass. The purpose of the old superclass is still to serve for sub-
classing, but it can now become abstract since the new subclass takes over its
place for instantiation purposes.

The described transformation is illustrated in Fig. 1. Consider the class struc-
ture on the left. Class A is instantiable and has two subclasses B and C. This class
structure can be transformed into one that complies with the abstract superclass
rule on the right. The transformation provides an extra concrete subclass of A,
say A’, which inherits all of its data and behavior from A. A becomes abstract,
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and both B and C still inherit from A. In the transformed hierarchy, the purpose
of class A’ is to instantiate “A”-objects while the purpose of class A is to serve
as a superclass.

Q abstract
O concrete

Fig.1. Class hierarchy transformation to comply with the abstract superclass rule

The above transformation of hierarchies is effective and straightforward. But
even if there is existing code, the impact of the transformation is manageable,
albeit not as effortlessly. For C++ and Eiffel, it is advantageous if the old super-
class keeps its name and the new concrete subclass gets a new name as indicated
in the example. In this case, constructor calls and type declarations of the super-
class (except for pointers and references to the superclass) need be updated. For
C++, also special member functions like constructors and assignment operators
need be provided for A’ since they are not inherited. For Smalltalk, the only
references to the type name occur in constructor calls and superclass declara-
tions. Therefore, it is advantageous if the old class name is transferred to the
new concrete class. Then, the only point where we need to change the code is in
the superclass declarations of the immediate subclasses, which, in some cases, is
done automatically by the environment.

Obviously, the above transformation is purely mechanical and the trans-
formed class hierarchy is in no essential way “better” than the original. This
is analogous to the classic B6hm-Jacopini construction [BJ66] which showed
that any program structure using jump (goto) statements can be mechanically
converted to an equivalent program using only structured-programming con-
structs. The result of a Bohm-Jacopini transformation is also not essentially
“better” than the original. “Proving” that structured programming is better
was a totally different task. Similarly, the above transformation of class hierar-
chies merely proves the equivalency of the two designs. Showing the advantages
and/or disadvantages of the abstract superclass rule is another matter and will
be dealt with in the subsequent sections.

In conclusion, the abstract superclass rule does not reduce any expressive-
ness in the design of an object-oriented application. However, for existing ap-
plications, the benefits of the rule need to outweigh the efforts necessary to
transform existing code.
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3.2 The Covariance Aspect

It has been widely recognized that the covariant rule on method redefinition
during inheritance, as used for example in Eiffel [Mey88, Mey92], can lead to
run-time errors and thus is not type-safe [CCHO89, Coo89, DT92). It has also
been claimed that a strict use of the abstract superclass rule makes the covariant
method redefinition rule type-safe [DT92}. We will show that this is a miscon-
ception and that the abstract superclass rule does not make programs that use
the covariant rule type-safe.

A method in a subclass is redefined according to the covariant redefinition
rule if both result type and argument types of the redefined method are more
specific than the result type and argument types of the original method in the
superclass. In the following, we will call a program that employes the covariant
rule on method redefinition during inheritance simply a covariant program. A
typical situation where a covariant program can lead to a runtime error occurs
when a piece of code expects an object of a subclass but actually deals with
an object of a superclass. Then the object could possibly be sent a message
which is undefined in the superclass. The problem is usually depicted through
the following example taken from [DT92).

1 Point
2 x: Int;
3 y: Int;
4 eq(p:Point): Boolean
5 = ( x==p.getx() AND y==p.gety() )
6
7 ColorPoint inherits Point
8 c: Color;
9 eq(p:ColorPoint): Boolean
10 = (x==p.getx() AND y==p.gety() AND c.coloreq(p.getc()))

12 p1,p2: Point;
13 c¢p: ColorPoint;

14 pl1 := new Point(10,20);

16 cp := new ColorPoint(10,20,red);

16 p2 := cp;

17

18 p2.eq(pl); =-- run-time failure, would be avoided by ASR

We assume that accessors like getx() and gety() are suitably defined or
automatically created elsewhere. The program fragment satisfies the covariant
typing rule, but will eventually break at run-time in the call to the method eq on
line 18. The dynamic binding mechanism will execute the eq code of the subclass
ColorPoint with an actual argument object of class Point which does not have
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a color attribute and thus will issue a “message not understood” error when that
attribute is tried to be accessed.

In the above example, the abstract superclass rule would avoid this error since
it does not allow objects of superclasses to be instantiated; that is, it would not
be possible in the first place to pass in a “wrong” object of class Point in a call
to the eq method of class ColorPoint.

Could it be that the abstract superclass rule makes all covariant programs
type-safe? Dodani and Tsai actually claim it does [DT92). In their Abstract
Concrete Type System (ACTS) they claim to provide a uniform solution to the
problem of developing a type-safe hybrid type system capable of handling both
covariance and contravariance.

A class hierarchy built with the ACTS is a little less restricted than a hier-
archy built with both the abstract superclass rule and the covariant typing rule.
An ACTS hierarchy is two-tiered where abstract classes are interior nodes of the
hierarchy while concrete classes form the leaf nodes. Abstract classes appearing
as leaves need to be concretized before they can be used. Any subtree rooted
by a concrete class must have all nodes as concrete classes as well. In addi-
tion, the ACTS prescribes the contravariant typing rule on concrete-to-concrete
inheritance while the covariant typing rule is prescribed for both the abstract-to-
abstract and abstract-to-concrete inheritance relationships. For our discussion,
only the last two prescriptions are of importance since concrete-to-concrete in-
heritance is forbidden by the abstract superclass rule.

Thus, hierarchies built with the abstract superclass rule and the covariant
typing rule are a special case of the ACTS. The difference is that in a class
hierarchy built with the abstract superclass rule the “leaf” layer of concrete
classes has only depth 1 while in the ACTS it can be arbitrarily deep as long as
all classes in the layer are concrete. In what follows we will show that the ACTS
separation of abstract and concrete classes in the class hierarchy is in fact not
sufficient to make the covariance rule type-safe.

The proof consists of a program for which we show that (1) it follows the
abstract superclass rule, (2) it is type-correct under the covariant typing rule, and
(3) yields a “message not understood” error at run-time. Due to limited space,
we cannot provide a full formal analysis of the program under the ACTS type
checking algorithm. In addition, the original presentation of ACTS is flawed and
somewhat imprecise [Tsa94]. We therefore appeal to the intuition of the reader
and refer to [Hir94) for full details.

The counter-example below is similar to the previous example, but adds
another subclass, ThreeDPoint, to the class Point. ThreeDPoint contains a
third attribute for the z-axis of a point and redefines the method eq.

The program fragment satisfies the covariant typing rule, but will also break
at run-time in the calls to the method eq on lines 25-26. Both calls break for the
same reason: the dynamic binding mechanism will execute the eq code of one
subclass (e.g., ColorPoint) with an actual argument object of its sibling class
(e.g., ThreeDPoint) which does not have all of the required attributes (e.g.,
c) and thus will issue a “message not understood” error when that attribute
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is accessed. Note that this error occurs irrespective of whether class Point is
abstract or not.

1 Point -- abstract

2 x: Int;

3 y: Int;

4 eq(p:Point): Boolean

5 = ( x==p.getx() AND y==p.gety() )
6

7

8

9

ColorPoint inherits Point
c: Color;
eq(p:ColorPoint): Boolean
10 = (x==p.getx() AND y==p.gety() AND c.coloreq(p.getc()))

12 ThreeDPoint inherits Point

13 z: Int;

14 eq(p:ThreeDPoint): Boolean

15 = ( x==p.getx() AND y==p.gety() AND z==p.getz() )

17 p1,p2: Point;

18 c¢p: ColorPoint;

19 tp: ThreeDPoint;

20 cp := new ColorPoint(10,20,red);
21 tp := new ThreeDPoint(10,20,30);

22 pl := cp;

23 p2 := tp;

24

256 pil.eq(tp); -- run-time failure, would NOT be avoided by ASR
26 p2.eq(cp); -- run-time failure, would NOT be avoided by ASR

Another way to look at the problem is depicted in Fig. 2. Consider the
call p1.eq(tp) in line 25. Since p1’s value is an object of class ColorPoint,
the dynamic binding mechanism executes the code of method eq attached to
ColorPoint which assumes the argument is of class ColorPoint as well. How-
ever, the type system assumes that the argument is an object of type Point or
one of its subclasses. This results in four different kinds of type regions for the
actual arguments of the method call: (1) All objects of subclasses of ColorPoint
are safe (lightly shaded region). (2) Objects of class Point are unsafe but disal-
lowed by the abstract superclass rule. (3) Objects of sibling classes of ColorPoint
(like ThreeDPoint, darkly shaded region) are unsafe but allowed by the ACTS.
{(4) Objects of superclasses of Point and other classes are unsafe and generally
disallowed. Thus the abstract superclass rule, in effect, prohibits only a compar-
atively small set of objects from being passed to the method call.

In conclusion, we have shown that neither the ACTS nor the abstract super-
class rule eliminates run-time errors in the presence of covariance. In particular,
the abstract superclass rule does not solve the problem of type-safeness for the
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Pl.eq(tp)

Fig. 2. The regions of type-(un)safety

covariant typing rule?. However, it does help to avoid some of the errors in the
presence of covariance. Note that this result is not an argument against the
abstract superclass rule, it just rules out a seeming advantage of the rule.

3.3 The Data Modeling Aspect

For object-oriented data modeling there are three important factors for which
the abstract superclass rule makes a difference. All of them have to do with the
confusion of what the notion of inheritance really means and when it should be
applied.

The notion of inheritance As we know, the key concept of object-oriented
programming and one of the major means to model real world domains in the ob-
jJect paradigm is the notion of inheritance. As such, some inheritance mechanism
is provided and even required in every object-oriented programming language
(OOPL). While for a given OOPL it is clear how to use its inheritance mecha-
nism, the question of when to apply this mechanism to a real world situation is
usually less clear. In fact, there has been quite some debate over what the notion
of inheritance means; that is, what real world situations it should and can model
{Bra83, HO87, WZ88, LP91, Win92, BI94].

For example, Winkler [Win92] contrasts the “concept-oriented view” (COV)
of inheritance with the “program-oriented view” (POV). The COV uses inher-
itance for classifications and characterizes the typical inheritance relationship
between a subclass C and its superclass B as “C ¢s-a B”. The POV views in-
heritance merely as a technical concept of software technology that defines a

? For a proposal of how to make Eiffel type-safe, see [Co089]
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monotonic extension relation between the superclass and its subclass. (Wegner
[Weg90] uses the phrases “logical hierarchy” for COV, and “physical hierarchy”
for POV; other commonly used terms are “interface inheritance” and “imple-
mentation inheritance”, respectively.)

Another vantage point of the same issue is given by Brachman [Bra83] who
shows that there are six kinds of generic-generic relations and four different kinds
of generic-individual relations for semantic networks, all grouped together under
one label “IS-A”. Baclawski et al. [BI94] summarize the situation as follows:
“there are no ’standard’ conceptual hierarchies.” They point out that “How
inheritance is to be incorporated in a specific system is up to the designers of
the system, and it constitutes a policy decision that must be implemented with
the available mechanisms.” In essence, there is not one single policy for how to
use the mechanism inheritance.

A serious problem occurs when two policies cannot coexist using the same
inheritance mechanism. This is the case for the two major policies COV and
POV, as discussed by Winkler {Win92]. Winkler finds that in certain situations
the COV may result in programs which are “awkward, inefficient, and even
incorrect.” For example, in COV, squares are modeled as a subclass of rectangles
since one could say “a square is-a rectangle with all four sides equal.” However,
a class hierarchy in which Square is-a Rectangle results in three problems: (1)
Each Square object contains {wo data components for the side lengths, where one
would be sufficient. (2) Square inherits methods from Rectangle that are not
applicable to a square (e.g., setHeight ()). (3) In order to enforce the semantics
of a square, the preconditions of some inherited methods must be strengthened
(e.g., setSides()), invalidating the substitutability of rectangles with squares.

How does this relate to the abstract superclass rule? The interesting point is
that the abstract superclass rule lets the two policies COV and POV coexist using
the same inheritance mechanism without exhibiting the problems presented by
Winkler. This usage of the rule has been successfully employed in the Demeter
data model [LX93, SLHS94]. Grosberg proposes the same solution in response
to Winkler’s article [Gro93]. As he points out, the designer needs to distinguish
between the particular and the general by not implementing both in the same
class. In the case of the square-rectangle hierarchy, the solution he outlines is
the hierarchy depicted on the right-hand side of Fig. 3.

Note that the above transformation exactly follows the abstract superclass
rule transformation for producing equivalent hierarchies. As Grosberg observes,
the above solution remedies all the deficiencies brought up by Winkler: substi-
tutability of squares is still preserved, squares don’t inherit extraneous methods,
and there is no need for inappropriate preconditions. Moreover, polymorphism
is still supported for the Abst_Rect class.

Multiple inheritance There is another interesting case in which two other
policies of using the inheritance mechanism make extensive use of the abstract
superclass rule. These two policies were first introduced by Waldo [Wal91] in his
“case for multiple inheritance”. He termed them interface inheritance and data
inheritance.



23

Square

Rectangle

Fig. 3. Class hierarchy transformation for the square-rectangle example

Interface inheritance occurs when the only thing a class inherits is a set of
interfaces defined in the superclass. In particular, the superclass does not provide
any implementation nor does it define any data representation, which effectively
makes it an abstract superclass. Essentially, the superclass serves as a repository
of common method interfaces for all of its subclasses.

Data inheritance is the complementary notion of interface inheritance; it oc-
curs when the only thing a class inherits is a set of instance variables. Specifically,
the superclass does not provide any methods with the data. The purpose of the
superclass is thus to serve as a repository of common instance variables for its
subclasses without imposing any behavior. Note that, although there are no ab-
stract methods present in such a superclass, the implied intention of the class
strongly suggests it be abstract since a behaviorless object of the class would
hardly make any sense.

The reason Waldo discussed these two sorts of inheritance was because they
exhibit the need for multiple inheritance (for more details, refer to [Wal91] and
[Sak92]). For our discussion, their importance lies in the fact that they are a
good example for when to use the abstract superclass rule.

Classes as collection of objects There is yet another situation where the
abstract superclass rule turns out to be useful for data modeling. Consider again
the class hierarchy on the left-hand side of Fig. 1 with all classes being concrete.
Assume that for some reason we need a variable whose values can only consist
of objects of class & ezcluding objects of classes B and €. Such a variable is not
possible for the given hierarchy since any variable declared to be of class A can
automatically also contain objects of classes B and C.

Contrast this to the situation where the class hierarchy conforms to the
abstract superclass rule (right-hand side of Fig. 1). Here, any set of objects, A’s,
B’s, C’s, or a heterogeneous collection of all three of them can be the domain of
a variable. Thus the abstract superclass rule separates the dual responsibility of
a class to stand for both a collection of its objects only, and a collection of its
objects and all its subclasses’ objects.
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Conclusion We have analyzed three situation where the abstract superclass
rule turned out to be useful. First, following the abstract superclass rule allows
the designer to employ both the COV and the POV policies within the same
inheritance mechanism. Second, for multiple inheritance both interface and data
inheritance necessitate superclasses to be abstract. Third, the abstract superclass
rule releaves classes from their dual responsibility at the object level to stand
for two different collections of classes. The abstract superclass rule can thus be
considered beneficial for object-oriented data modeling.

3.4 The Evolution Aspect

So far we have considered the abstract superclass rule only from a static van-
tage point. But software systems are dynamic. As described by the spiral life
cycle model [Boe86], any successful software system will eventually be changed,
be it to improve, update, adapt, or strengthen it. What are the consequences
of employing the abstract superclass rule in an environment that evolves? We

will consider two evolutionary aspects: subclassing from existing classes, and
modification of class properties.

Subclassing Assume the class hierarchy conforms to the abstract superclass
rule and one needs to build a subclass from an existing class C in the hierarchy.
If C is already a superclass or abstract then there is no problem. However, if C
1s not abstract it becomes a concrete superclass through the subclassing process
violating the abstract superclass rule. One needs then to transform the class
structure as indicated earlier in order to comply again to the rule. Clearly, this
need for transformation is unsatisfactory and defeats one purpose of inheritance,
namely ease of code reuse. The situation is aggravated when C and the original
class hierarchy reside in a library, where the source code is not accessible to the
programmer. In this case, the above transformation cannot even be performed
and there is no choice but to violate the rule.

Even if the application does not use libraries, the designer of the class hi-
erarchy needs to make a decision how to prepare for evolution in the presence
of the abstract superclass rule. To avoid later restructuring of the hierarchy the
guidelines below need be followed by both libraries and regular applications. For
each instantiable (leaf) class, depending on the expected later use of the class,
do the following. (1) If the class is to serve for instantiation only, provide a con-
crete class. (2) If the class is to serve for subclassing only, provide an abstract
class. (3) If the class is to serve for both subclassing and instantiation, provide
both an abstract superclass and a concrete subclass. (4) If the expected use of a
class cannot be predetermined then it is safer to provide both an abstract and
a concrete class.

The guidelines are especially important when designing a library or a frame-
work with the abstract superclass rule due to the fact that a later user of the
library generally cannot change it. Therefore, we will call these guidelines collec-
tively the abstract library rule (see Table 2). Following the abstract library rule
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“Expected later usc IImplemcntation "
instantiation only [concrete class
subclassing only abstract class
wstantiation and  |two classes: abstract superclass
subclassing and concrete subclass
unknown two classes: abstract superclass

and concrete subclass

Table 2. The abstract library rule for leaf classes

guarantees that classes can be subclassed without restructuring the hierarchy to
maintain the abstract superclass rule. In a sense, the abstract library rule is a
necessary consequence of the abstract superclass rule.

What is the impact of following the abstract library rule for an application?
On the one hand, quite a serious disadvantage of the rule is that it results in
a proliferation of classes. In the worst case, it doubles the number of classes of
an application, namely when the designer needs to follow guideline (3) for every
class in the application. For large hierarchies with a lot of leaf classes, this turns
into a maintenance nightmare. But not only that, half of the classes are simply
clones of their superclasses and don’t add any data or behavior, making them
effectively “useless”. A similar observation has been made by Riel [Rie94] who
proposes a “specialization pattern” heuristic to remove the abstract superclass
in this situation.

On the other hand, a slight benefit of the abstract library rule is that it
increases the expressiveness or granularity of the import and export facilities
of a library. For instance, an application that imports only the concrete class
but not the abstract counterpart conveys the fact that no new subclasses will
be used in the application. The rule basically splits the interface of a library
into two types of classes: those provided for subclassing and those provided for
instantiation.

Summarizing, the abstract superclass rule cannot be enforced in applications
that use external libraries. The rule does not allow “unplanned” subclassing and
needs to be paired with the abstract library rule if later subclassing should be
possible without restructuring the hierarchy. The abstract library rule in turn
results in a proliferation of classes increasing the burden of maintenance.

Addition/deletion of class properties In the second evolutionary aspect,
assume one wants to add or delete properties from objects of an instantiable
superclass. This is not possible without affecting, at the same time, all instances
of all the subclasses down the hierarchy, a formidable trickle-down effect in some
cases. For example, assume one wants to add an attribute to all objects of class
Rectangle in Fig. 3. In the class hierarchy on the left-hand side, this is not

possible without changing at the same time all objects of subclasses of Rectangle
(e.g., objects of class Square).
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If the class hierarchy was built with the concept-oriented view (COV) of
inheritance (see section 3.3) then the instantiable superclass and its subclasses
are conceptually related by the is-a relation and any change to the superclass
should actually be propagated to instances of subclasses. In other words, the
trickle-down effect is desired. However, when the class hierarchy was built with
the program-oriented view (POV) of inheritance then the superclass and its
subclasses are generally not conceptually related and a change in the superclass
should usually not be passed to instances of subclasses. Thus, the trickle-down
effect is not desired.

The advantage of the abstract superclass rule is that all objects are instances
of leaf classes and hence no change propagation to objects of subclasses takes
place. With the rule it is possible to add parts to or delete direct parts from
existing objects at any time in the evolution process without affecting other
objects. When deleting inherited parts the class must become a subclass of a
different superclass depending on which property was deleted.

Change of representation Johnson and Foote [JF88] point out another ben-
efit of the abstract superclass rule for the evolution aspect. They claim that
in general, it is better to inherit from an abstract class than from a concrete
class. The reason is that abstract classes generally do not have to provide their
own data representation, and so future concrete subclasses can use their own
representation without the danger of conflicts.

To guarantee that the representation of a class can be easily modified, two
other guidelines need be followed in addition to the abstract superclass rule.
First, all instance variables may only be accessed through accessor methods.
This makes the way the representation is accessed independent from the actual
representation. Second, only leaf classes my actually define instance variables.
In other words, the actual representation is chosen by each instantiable class
individually while abstract superclasses only provide behavior and a common
interface.

Conclusion On the one hand, we have seen that the abstract superclass rule
becomes problematic in the presence of legacy code and external libraries. To
make the rule effective and safe for later subclassing, it needs to be paired with
the abstract library rule which results in a proliferation of classes. On the other
hand, the abstract superclass rule is beneficial for programmers working with
the program-oriented view of inheritance, and it allows for easier change of rep-
resentation.

3.5 The Reusability Aspect

In object-oriented systems, libraries and frameworks are the major building
blocks of reuse. We will therefore primarily consider the impact of the abstract
superclass rule on object-oriented libraries and frameworks. The higher qual-

ity of a framework or library induced by the rule implies a higher likelihood of
reusability.
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As discussed in the previous section, one problem of the rule is with respect
to subclassing. Libraries need to be built with the abstract library rule if they
want to be truly reusable. However, in many cases a library or framework provide
mostly abstract classes anyway because the classes need be subclassed for actual
use in an application. In that case, no proliferation of “useless” classes occurs.

In support of the abstract superclass rule, Johnson and Foote [JF88, Rule 6]
require that the top of the class hierarchy should be an abstract class. In addition,
from his experience with object-oriented frameworks, Johnson [Joh93] points out
that classes provided in object-oriented libraries should always be abstract.

The abstract library rule seems to be very natural for object-oriented frame-
works. Deutsch [Deu83] defines a framework to be an abstract object-oriented
design consisting of an abstract class for each major component. The simplest ex-
ample of a framework is a so-called single-class framework constisting of nothing
else but a single abstract superclass [Deu89).

As a matter of fact, it is their abstractness which makes frameworks useful
for a wide range of applications in a specific domain since it allows them to
solve a problem at a higher level of abstraction without knowing all the specific
implementation details. Johnson and Foote [JF88] find that frameworks usually
contain abstract classes and that frameworks can even be built on top of other
frameworks by sharing some of these abstract classes.

In addition to being “abstract” in the technical sense, abstract classes usually
are also at a higher level of abstraction from an application point of view. This
means that an abstract class represents a generalization of the concept it is used
for in the current application and therefore is a likely candidate of reuse in later
applications.

3.6 The Simplicity Aspect

We have already seen that the abstract superclass rule can simplify object-
oriented programming in a number of ways. First, by designing a system in
compliance with the abstract superclass rule, it is easier for the programmer to
find out which classes can be instantiated and which cannot. Second, adding
or deleting attributes from objects as well as changing their representation is
facilitated if the abstract superclass rule has been followed.

But the abstract superclass rule also introduces a certain uniformity into
the way dynamic binding and polymorphism mechanisms work. As Wilde et al.
point out [WMH93]: “For the maintainer, dynamic binding and polymorphism
are two-edged swords. They give programs the flexibility that is a main objective
of object-oriented programming, but they also make programs harder to under-
stand.” For example, a message dispatch through a variable of a superclass can
end up executing different code depending on the actual object referred to by
the variable. Contrast the ways to find out which method is actually executed.
The search for the actual method starts from the class of the actual object pro-
ceedings up the hierarchy. In a non-ASR hierarchy, the search can possibly start
anywhere within the hierarchy. In an ASR hierarchy, the search always starts



28

from the bottom of the hierarchy since the actual object can only be an instance
of a leaf class. This unity of mechanism reduces complexity in deep hierarchies.

4 Conclusion

There is not one single reason why the abstract superclass rule is good or bad.
It’s value can only be determined by collecting a number of small arguments

from various aspects of software engineering. The conclusions found in these
aspects are summarized in Table 3.

[[Aspect [Finding lBeneﬁfﬂ
Concept Coupling| ASR couples abstractness and “superclass-ness” -7
Expressiveness ASR does not reduce expressiveness +/-
Covariance ASR is not a remedy for covariance +/—
Data Modeling [ASR allows several inheritance policies to coexist +
Evolution ASR needs to be paired with abstract library rule

(proliferation of “useless” classes) -
ASR is favorable for object evolution +
Reusability ASR promotes certain reusability +
Simplicity ASR simplifies programming +

Table 3. Summary: benefits of the abstract superclass rule

We have found that the abstract superclass rule does not reduce any ex-
pressiveness in the design of an object-oriented application. But for existing
applications, the benefits of the ASR need be contrasted with the effort of code
transformation which are not negligible for typed languages. The ASR, has been
wrongly thought to render programs type-safe which use the covariant method
redefinition rule during inheritance. The fact that it does not is neither a benefit
nor a disadvantage of the rule.

We saw that the ASR resolves a number of problems when several notions
of inheritance coexist in the same program using one inheritance mechanism. In
addition, many forms of multiple inheritance make ample use of the rule.

The ASR essentially inhibits subclassing from instantiable classes. This de-
stroys one of the major benefits of object-oriented programming: flexibility and
reusability. Unless leaf classes are essentially split into an abstract class for sub-
classing and a concrete class for instantiation, the rule is not truly useful. But
even then, the proliferation of classes due to the splitting places a burden on
maintenance and readability of the design. On the other hand, the ASR allows
the representation of some objects to be changed without affecting the repre-
sentation of other objects. Moreover, the addition or deletion of properties to
objects of one class does not necessarily propagate to the objects of other classes.

With respect to reusability, the same caveat as above applies in terms of
subclassing. But the ASR is generally considered beneficial for object-oriented
frameworks and libraries.
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Summarizing, we can conclude that the abstract superclass rule is in many
situations beneficial and can generally be considered a good guideline for object-
oriented design and programming. Some caveats apply however, the reasons we
found for enforcing the rule were by no means compelling. As for any rule, ex-
ceptions need be allowed in certain situations. The designer of an application
will have to apply the rule judiciously with careful consideration of the advan-
tages and disadvantages for the particular situation. In this sense, the abstract
superclass rule should be viewed as a rule of thumb, rather than a strict rule.
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