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Abstract

In this paper, we argue that object-oriented models must be able to represent
three kinds of taxonomic structures: static subclasses, dynamic subclasses and
role classes. If CAR is a static subclass of VEHICLE, then a vehicle that is
not a car can never migrate to the CAR subclass. If EM Ployee is a dynamic
subclass of PERSON, then a PERSON that is not an employee may migrate
to EM P.In both cases, an instance of the subclass is identical to an instance of
the superclass. Finally, if EM P is modeled as a role class of PERSON every
employee differs from every person, but a PERSON instance can acquire one
or more E M P instances as roles. We outline an approach to formalizing these
taxonomic structures in order-sorted dynamic logic with equality.

Keywords: Theoretical foundations, formal methods, OO analysis and design

1 Introduction

Class migration is the phenomenon that an object can change classes during its
lifetime. The topic of class migration has received attention in database mod-
eling at least since Bachman and Daya wrote about it in the context of the
network data modeling approach in 1977 [BD77]. Recently, there has been an
upsurge of interest in class migration in object-oriented database specification
languages [ABGO93, Cha93, EEAK91, EK92, EJD93, JSHS91, Per90, RS91,
Wie89, Wie9lb, WJ91]. In this paper, we argue that there are two ways to
“‘migrate” between classes. Consider a situation in which a PERSON becomes
an IM Ployee. This can be modeled in two ways. One way is to let EMP be
a dynamic subclass of PERSON. Each EMP instance is then identical to a
PERSON instance, and in database terms, this means that it has the same
identifier as a that PERSON instance. As a consequence, if we count five em-
ployees in a set, then this set also contains five persons.

If, on the other hand, we want to model the situation that one PERSON
instance can be many different £M P instances (simultaneously or in sequence),
then we have to give EM P instances their own identifiers, different from each
other and from PERSON identifiers. In this case, we call EM P a role class of
PERSON and instances of EM P are called roles. Since roles have their own
identifiers, if we count five employees in a set, then this set may very well contain
one person (playing five EM P roles).

! This reseafch is partially supported by Esprit Basic Research Action IS-CORE
{working group 6071).
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In this paper we make the distinction between roles and dynamic subclasses
precise and give a logic for reasoning about class migration and role playing. Most
approaches to class migration]ABG093, Cha93, EEAK91, Per90, RS91, Su91] in-
corporate what we call dynamic subclasses but ignore the possibility of multiple
role playing. In addition, logical aspects of role-playing are ignored. Jungclaus et
al. [JSHS91] use a role concept similar to our dynamic subclass concept, and give
a modal logic for it based on temporal logic. Gottlob et al. [GSR93] argue for a
role concept like ours and show how it can be implemented in a SmallTalk-like
language. However, they ignore dynamic subclasses, which we think are just as
important as roles; and their paper is more implementation-oriented, where we
are more oriented towards methodological and logical issues. Sciore [Sci89] de-
fines roles in a system that combines features of inheritance by delegation [Lie86]
and class-based inheritance. There are however no explicit identifiers in this ap-
proach and there is no distinction between role classes, object classes, dynamic
subclasses and static subclasses.

In section 2, we discuss the methodological aspects of class-migration and
role playing. We look at the connection between object classification and iden-
tification, and define static subclasses, dynamic subclasses and role classes. We
discuss two inheritance mechanisms, inheritance by identity, which is appropri-
ate for (static and dynamic) subclasses, and inheritance by delegation, which is
appropriate for role classes. Section 3 gives a logic for specifying updates in gen-
eral, called DDL (Dynamic Database Logic), which is a variant of dynamic logic.
Section 4 applies this logic to the specification of classes, static taxonomies, dy-
namic taxonomies, and role playing in a way that agrees with the methodological
treatment of section 2. Section 5 concludes the paper.

2 Methodological aspects of role-playing and class
migration

2.1 Object classification and identification

A class is a set of possible individuals, called class instances. If the instances
are objects, the class is called an object class, if the instances are roles, then
the class is called a role class. What the difference between objects and roles is,
is explained later. For the time being, both objects and roles can be understood
to be individual objects with a local state and a local behavior.

For each class, we can distinguish three important sets.

1. The intension of a class is the set of all properties shared by all class
instances. The intension of class C is written as int(C).

2. The extension of a class is the set of all possible objects in the class; i.e. this
is just the class itself. The objects in the extension are called the instances
of the class. To emphasize that we are talking about the extension of a class
C, we write ext(C).

3. In any state of the world, the existence set of a class is the set of class
instances that exist in that state. The extension of the class is always the
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same set of instances, independently from the state of the world, but the
existence set varies with the state of the world. The existence set of class C
in state o is written as ext,(C).

In each state o of the world, there is a set of existing objects of any type, called
Ezists,. We have for any class C that

ext,(C) = ext(C) N Ezxists,.

Class € is defined to be a subclass of Cy if ext(C1) C ext(Cs). We write

this as C; =5 Cy. If ext(C1) C ext(Cy), there is an opposite subset relationship
between the intensions of C; and Cy: int(Cy) C int(Cy). We have

ext(Cy) C ext(Cy) & nt(Cs) C int(Cy).
For example, CAR is a subclass of VEHICLE because
ezt(CAR) C ext(VEHICLE),
and this is equivalent to saying that
int(VEHICLE) C int(CAR).

The containment relationship between intensions represents the inheritance re-
lation from superclass to subclass.

It is now well-accepted that in object-oriented database modeling, each object
should have a unique identifier [Cod79, HOT76, KC86]. We define an identifier
for an object as a string that is used as a proper name for the object such that
there is a 1-1 relationship between objects and identifiers and, once an object
has an identifier, then the connection between the two is never changed. The
concept of identifier is analyzed in detail in a companion paper [WJ]. Here, we
want to point out that there is a close relationship between object classification
and object identification. This relationship can best be explained by considering
the problem of counting objects.

Consider the problem of counting the number of passengers that traveled in
a bus in one week. If we count persons, we may count 1000, but if we count
passengers, we may count 4000. The reason for this difference is that if we count
things, we must identify those things, so that we can say which things are the
same and which are different. But in order to identify them, we must classify
them. We may count one person where we count four passengers (at different
times). Similarly, we may count one building where we count three shops, we
may count three employees (at the same time) where we may count one person,
etc.

This relationship between classification and identification is well-known in
philosophical logic [GM73, LZ87, Lee91, Str59, Wig80]. There are two views
concerning the relationship between classification and identification:
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1. For each class C there is an equals sign = that says whether individuals are
identical or not if they are viewed as instances of C. In this view, if p; is a
person and p2 1s a person, we can have p; =pprson P2 and p1 #passencer
P2

2. There is only one equals sign, that is applicable to any pair of arguments
from any pair of classes. However, we may have that different instances of
different classes in some sense coincide in time and space. Thus, in this view,
ifpisa PERSON and t; and ty are PASSENGERSs, we can have t; # t,
but that both “coincide” with p.

In this paper, we have chosen the second option, where “coincidence in space and
time” is formalized as dynamic subclassification and as role-playing. Thus, in the
logic introduced below, we have the choice of modeling the PASSENGER as
a dynamic subclass of PERSON, in which case we have t; = ¢ = p, or as a
role class of PERSON, in which case the player of ¢; equals the player of ¢,,
because both players equal p, but ¢, t2 and p are three different identifiers.

2.2 Static partitions

We now turn to the different ways to define subclasses for a given class. We
require a subclass always to be element of a (full) partition of its immediate
superclass. The reason for this is explained at the end of this subsection. We say

that Cq,...,C, is a static partition of Cj if we have
U ext(C;) = ext(Cy),
i=1,...n

ext(C;) Next(C;) =0 for i # j.

It follows that for existence sets we have analogous properties: in each state o
of the world we have
U ezt (C;) = ext,(Co),

i=1,..,n
ezt (Ci;) Next,(C;) =0 for ¢ # j.

Static partitions are represented graphically as in figure 1. (We assume that
we are only talking about motor vehicles in all VEHICLE examples.) Each class
is represented in the Coad/Yourdon way [CY90] by a rectangle containing three
boxes for, from top to bottom, the class name, the attributes local to the class,
and the events (i.e. messages) local to the class. To save space, most examples
drop the attributes and events. Each partition {C1,...,C,} of Cy is represented
by a set of is @ arrows from C; (i = 1,...,n) to Cy that merge before they
reach Cy. There are two hidden cardinality constraints associated with each is.a
arrow, viz. that each instance of C; is related to exactly 1 instance of Cy and
that each instance of Cj is related to exactly one instance of exactly one C; in
the partition; this is represented by the merging of is_a arrows. Note that each
is.a arrow represents the identity function is.a : ext(C;) — ext(Cj).
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TRUCK

CAR VEHICLE
is_a
isla
OTHER.
VEHICLE
OTHER.
GAS DIESEL ENGINE

Fig. 1. Two is_a partitions of a class.

A partition of a class in subclasses can have any finite number of elements, as
long as it contains at least two elements. We exclude the degenerate case where
n =1 (which would collapse into C; = Cy).

We allow any number of partitions per class. If o is an instance of Cy, it is an
instance of exactly one subclass in every partition. Each pair of partitions of a
class creates a number of intersection classes. For example, in figure 1 we have,
among others, intersection classes

CAR« DIESEL,

CAR* GAS,

TRUCK  DIESEL, and
TRUCK % GAS.

These intersection classes are not shown in the diagram, but they are considered
to be part of the model.

The number of subclasses rapidly grows bigger when we partition subclasses
into smaller subclasses. All intersection classes that can be formed this way are
considered to be part of the model. The number of intersection classes grows
exponentially in the number of partitions per class.

A static subclass is a member of a static partition or a (finite) intersection
of static subclasses. We can now state the reason why we require a subclass to
always be an element of a partition: This way, we know that the universe of all
possible objects is partitioned in a unique way into minimal static subclasses. By
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taking all possible intersections of all static subclasses, we get a set of smallest
static subclasses, that

— are pairwise disjoint,
- jointly cover the set of all possible objects, and
— have no static subclasses (other than the empty subclass).

We call these smallest static subclasses species. Species give methodological and
logical advantages. First, a fundamental principle of classical taxonomies is to
have, for each specialization, an unambiguous dividing principle and exhaustively
list all subclasses that follow from this dividing principle, without leaving an
unnamed restclass [Jos16, Res64]. This enhances the clarity of the model and
reduces the chance that we miss important classes in the model.

Second, the dynamics of the model is easier to specify and understand if we
specify creation events only for species and not for other classes. Suppose we
subdivide a class C into subclasses but leave an unnamed restclass. We must
then still be able to create instances of this unnamed restclass, and the creation
event for the unnamed restclass must be declared somewhere. Now, it cannot
be declared in the specification of C, because then it would be inherited by all
subclasses of C, including all named ones. The only possibility is to declare it
only for the restclass; but then this class must be specified, i.e. it must at least
get a name.

2.3 Dynamic partitions

Let Cy be a class and o be a state of the world. We say that C;,...,C, is a
dynamic partition of Cy if we have for all states ¢ that

U exts(C;) = ext,(Cp),

i=1,...,n
ext,(C;) Next,(C;) =0 for i #

and there are different states o1 and g, for which there are i and j with i # j,
such that

ext,, (Ci) Next,,(C;) # 0.

The first two requirements also hold for static partitions. The third requirement
means that there are at least two different states of the world such that if the
world changes from one of these states into the other, at least one object moves
from one subclass to another.

Note that in figure 1 we assumed that a truck cannot be converted into a
car or vice versa, and that a vehicle with a gas engine cannot be rebuilt into
a a vehicle with a diesel engine. The last assumption is not very realistic, and
even the first one is questionable. In general, we found it very difficult to find
examples of static partitions outside the realm of biology.

Just as for static partitions, we allow any finite number of elements in a dy-
namic partition, provided that the partition contains at least two elements. The
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TRUCK
\ VEHICLE
I is.a
CAR
isfl\;a
/ ACTIVE WRECK
OTHER._ / regnr: NATURAL
VEHICLE destruction : DATE
owner
PERSON

Fig. 2. Dynamic partitioning of a class.

dashed arrows in figure 2 mean that in each state of the world, the existence set
of VEHICLE is partitioned by the existence sets of ACTIVE and WRECK,
so that each VEHICLE is either ACTIVE or a WRECK. However, in a state
transition, a VEHICLE may move from one of these subclasses to the other.
(If there is a constraint that it can only move from ACTIV E to WRECK and
not from WRECK to ACTIVE, then this must be represented in the life cycle
of a VEHICLE class.) Note that by inheritance, each subclass of VEHICLE
is also partitioned into an ACTIVE and a WRECK subclass. This gives us,
among others, the following intersection classes:

ACTIVE x CAR,

ACTIVE x TRUCK,
WRECK x CAR, and
WRECK «TRUCK.

A dynamic subclass of C is an element of a dynamic partition of C or it is an
intersection of a dynamic subclass of C with another class. If Cy is a dynamic
subclass of Cy, we write C; ““% C,. All of the above intersection classes are
dynamic subclasses.

We do not allow partitioning of a dynamic subclass with a static partition.
Thus, a model in which C; =5 Cy “% Cj is ruled out. This considerably
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simplifies the formalization as well as the intuitive structure of the models, and
it seems not to exclude important modeling capabilities.

2.4 Class migration

What is often expresssed by saying that an object “migrates to a subclass” must
be modeled in our approach as an object that changes subclass in a dynamic
partition of a superclass. Figure 3 shows how we can model the situation that
a person “moves to the student subclass”. NON_STUDENTS have the same

PERSON

:
|

isi.a
]
|
|

- /I\\

NON _ STUDENT STUDENT

Fig. 3. A PERSON can move from one subclass to another in this dynamic partition.

properties as persons in general, except that NON STUDENTSs have the addi-
tional property that they can move to STUDFENT. (This property is not shared
with STUDENTs.) STUDENTs have a number of additional properties, plus
the property that they can move to NON STUDENT. (This property is not
shared with NON _STUDFENTs.) Note that an object never changes its iden-
tifier when “migrating to a subclass”; this is because it must not change its
identifler at all.

If dynamic subclasses would not be required to be a part of a dynamic par-
tition, then we could have, for example, the dynamic subclass STUDENT as
only subclass of PERSON. The event become._student occurs in the life of a
PERSON, not of a STUDENT, and would therefore have to be allocated to
PERSON. But then, intuitively, STUDENT would have to inherit this event,



40

which results in a paradox: a person in the state of being a student cannot be-
come a student. This problem is avoided by requiring dynamic subclasses to be
element of a dynamic partition that exhausts its immediate superclass.

From a methodological point of view, the distinguishing feature of between
static and dynamic subclasses is the following property:

— A dynamic subclass can change its existence set without a change in existence
set of its superclass, but when a static subclass changes its existence set, then
its superclass also changes its existence set.

This is exemplified by the third property of dynamic partitions. For example, if
STUDENT 2% PERSON, it is possible that the existence set of STUDENT
changes but that the existence set of PERSON does not change (because an
existing person becomes a student or ceases to be a student). By contrast, if

CAR “S VEHICLE, then creation of a CAR is also creation of a VEHICLE.

2.5 Role-playing and delegation

Earlier, we promised to distinguish roles from objects. Intuitively, a role is just
like an object, except that it has a special relationship to other objects (or roles),
which are said to play the role. A role can be played by an object or by another
role. More formally, we assume that there is a function played by in the model
such that if R is a role classes, then there is an object— or role class such that
in each state ¢ of the world we have

played_by : ext,(R) — ext,(P),

where P stands for a union of classes of player objects. For r € ext,(R), we call
played by(r) the player of r. This implies the following:

1. There is exactly one player of r.

2. r is existence-dependent upon its player, i.e. r cannot exist if its player
does not exist.

3. There may be any number of roles played by a player, even if these roles are
instances of the same role class.

It is possible to define delegation from roles to players. For example, suppose we
model an employee e as a role of a person p, and age is an attribute of persons but
not of employees. Then age(e) would be a type error. We can recover from this
error by delegating the evaluation of age to played_ by(e) [Lie86]. This amounts to
replacing age(e) by age(played by(e)). Delegation can also be defined for events.

Role-playing is represented in a way similar to static subclasses (figure 4).
Role-playing has the following characteristics:

~ Each class (including a role class) can be specialized into one or more sets of
role classes, called role groups. Each role group represents a set of mutually
exclusive role classes, i.e. at any moment, any player can play roles from at
most one role class in each role group simultaneously
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EMPLOYFEE

PERSON
played by

STUDENT

Fig. 4. Role classes with cardinality constraints. A PERSON can play at most 10 EM-
PLOY EE roles or, alternatively at most 1 STUDENT role. The two role classes are
exclusive (a person cannot play roles of both classes simultaneously) but the cardinality
constraints show that they are not exhaustive: Each role class allows cardinality 0, i.e. it is
possible that a PERSON plays neither role.

— Unlike is_a partitions, a role group is not “exhaustive”. There may be in-
stances of the player class that do not play any role in a role group.

— For each role class, a cardinality constraint must be given, that says how
many instances of the role class a player can play simultaneously. Absence
of a visible constraint means unrestricted cardinality. This is different from
the cardinality of an ¢s_a partition, which is always 0, 1. In an 45 a partition,
each instance of the superclass is related to at most one instance of each class
in the partition (and to precisely one instance of some class in its partition).

— Role groups may consist of only one role class, which is also a difference with
1s.a partitions.

To illustrate the last point, suppose we want to allow the possibility that a
PERSON plays the roles of EMPLOYEE and STUDENT at the same time.

Then we should put these in different role groups, as shown in figure 5 (both
role groups have only one element in this figure).

2.6 Role playing and subclassification

We now have made two orthogonal distinctions: There are role classes and ob-

ject classes, and each of these can be partitioned statically or dynamically. For
layed by

example, let EM PLOYEFE " ,Y PERSON. Then we can partition the role
class as well as the object class (using an obvious notation):

{MALE,FEMALE} ™5 PERSON

{PERMANENT,TEMPORARY} % EMPLOYEE.
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EMPLOYEE

PERSON

STUDENT [ “by

Fig. 5. A PERSON can play at most 10 EM PLOY EE roles simultaneously and at the
same time at most 1 STUDENT role. The two role classes are not exclusive, because
they are in different role “groups”, nor are they exhaustive, for each allows cardinality 0.
l.e. it is possible that a PERSON plays neither kind of role.

In addition, we can define a nested role for a subclass of EM PLOY EE:

played by

PROJECT LEADER —— PERMANENT.

Thus, an employee can only be a project leader if he or she is permanent, and a
permanent employee can be a project leader of any number of projects simulta-
neously.

The difference between role classes and (static and dynamic) subclasses lies in
the fact that an instance of a subclass is identical to (i.e. has the same identifier
as) an instance of its superclass but that an instance of a role class is different
from any instance of its player class. This formalizes the difference with respect
to counting, noted earlier.

— If Cy is a Cy (static or dynamic), then an existing instance of Cy is related
(by the identity relation) to at most one existing instance of Cj; i.e. it is

identical to at most one existing instance of C].
layed. b
- If ¢ e Cq, then an existing instance of Cy can be related to any

number of existing instances of C; (subject to the cardinality constraint of
the role class).

Consider the difference between modeling EM PLOY EE as a dynamic subclass
and as a role class (figure 6). In both cases, a PERSON instance who is not an
EMPLOY EE may become an employee. However, in the first case, an instance
e of EMPLOYEE is identical to a PERSON in a certain state. A person
is therefore related by the i¢s_a arrow to at most one employee. In the second
case, an instance e of EM PLOY EFE is different from any PERSON instance.
A person can be related by the played by arrow to any number of employees
(including 0), but every existing employee is related by the played by arrow to
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EMPLOYEE

N PERSON

NON EMPLOYEE .~

EMPLOYFEE PERSON
played by

Fig. 6. In the upper diagram, EMPLOYEE is a dynamic subclass of PERSON
and any person is at any moment either exactly one EMPLOYEE or exactly one
NON EMPLOYFEE. In the lower diagram, EM PLOY EE is a role class of PERSON
and any PERSON can at any moment be 0, 1 or more employees.

exactly one existing person. Modeled as a role, e is a state of a person, but
modeled as an instance of a dynamic subclas, it is a person in a certain state.
Note that if the cardinality constraint on the played by arrow would be 0, 1,
then one person could still play many different employee roles in sequence.

3 Order-sorted dynamic database logic

In this section, we present a version of dynamic logic [Har84, KT90] that can be
used to reason about database updates. This logic is a generalization of Dynamic
Database Logic (DDL) defined by Spruit [SWM92, SWM93, Spr93]. For reasons
of space, we only present the syntax and axioms, and give only a brief impression
of declarative semantics. Operational semantics is not discussed at all. Details
will be given in the full paper.

3.1 Syntax of order-sorted logic

We start with an exposition of order-sorted logic, following the expositions by
Goguen and Meseguer [GM82, GM87a, GM92]. An order-sorted signature
X =((S,<),F,P) consists of the following sets:
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— A partially ordered set (S, <) of sort names. We use w as a metavariable

over S* (strings of sort names) and extend < pointwise to strings in §* of
equal length.

— A set F of function declarations of the form firw — sforw e S* and

s € S. s is called the result sort of f. If w = €, then f is called a constant
and s is called the sort of f.

— A set P of predicate declarations of the form P : w for w € S*,

We only consider order-sorted signatures that are equational and that satisfy
the covariance and regularity conditions:

— An order-sorted signature is equational if there is a distinguished universal
sort U € S such that s < U for all s € U, and there is a declaration
=: U x U e P. We write z = y instead of = (z, ).

— [ satisfies the covariance condition if f : w — s, fiw — s and w < W,
then s < §'.2

— I satisfies the regularity condition if for each w € S* for which there is
a(w,s') € S*withw < w'and f: 0 — s ¢ F, there is a least arity
(w",s") € S*withw <w" and f:w" — s € F. Regularity guarantees that
each term always has a least sort.

— P satisfies the regularity condition if for each w € sort* for which there
isa P:w € P with w < ', there is a least arity w" € S* with w < w"
and P : w" € P. This guarantees that different declarations of P are not
mutually inconsistent.

We assume that for every sort, there is an infinite set X, of variables and that
the sets X, are mutually disjoint for different s € S. In the following, we use
aset X = {X,|s €S} Theset Tx,(X) of terms of sort s over 5 and X is
defined as the smallest set that satisfies the following conditions:

- X, C Ty (X).
—H(f:s1X X8, —8)€F ty,... t, are terms of sort $1,..., 8, then
f(ti, ... ty) € Tx o(X) for all s' > s.

A term is closed if it does not contain variables, otherwise it is open. The
smallest sort of a term ¢ is called sort(t). We define sorts(t) = {s € S| sort(t) <
s}

The language Lx(X) of formulas over ¥ and X is defined inductively as
follows:

-~ P:sy x - xs, €Pand sort(t;) < s; for terms ¢;, i = 1,...,n, then
P(ty,...,t,) is a formula.

— If ¢ and ¢ are formulas, then ¢ V 4 and —¢ are formulas.

— If ¢ is a formula and z a variable of sort s, then Vz : s : ¢ is a formula.

? Goguen and Meseguer call this the monotonicity condition. It is also possi-

ble to base order-sorted logic on Cardelli’s [Car84] contravariant condition, e.g.
see [EGL89).
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The operators A, < and 3 can be introduced as usual by definition. A formula
is called closed if all variables in it are bound by a quantifier.

For a treatment of the semantics of L (X), the reader is refered to Goguen
and Meseguer [GM87a, GM92]. In particular, it is shown there that specifications
over the Horn clause fragment of Lx(X) (that contains only positive conditinal

formulas of the form ¢ — v with ¢ and ¥ conjunctions of positive atomic
formulas) have an initial semantics.

3.2 Syntax of order-sorted dynamic database logic

We now add a requirement on signatures that will allow us to define the lan-
guage of DDL. An dynamic database logic (DDL) signature Xppy = ((S, <
), F,E, P) satisfies the following requirements.

— Xppr contains a covariant and regular order-sorted signature X = ((S, <
), F, P} with equality.

— [¥ is partitioned into sets Fy and Fy of updatable and nonupdatable
function symbols, and P is partitioned into sets Py and Py of updatable
and nonupdatable predicate symbols, respectively.

— =:U x U € Py (i.e. the equality sign is declared to be nonupdatable).

— There is a sort name EVENT € S such that for all s € S different from
EVENT we have EVENT £ s and s £ EVENT.

— & C Fy is a set of event declarations of the form e: w — EVENT, with
w € S

— EVENT only occurs in declarations in E, and occurs only as result sort.

Note that the equality sign and event symbols are nonupdatable. A term of sort
EVENT is called an event term. The sort EV ENT is reminiscent of the msg
sort in Maude [Mes93, MQ93]. The logic of events in DOL is however diffent
from the logic of event application in Maude (which is based on rewriting logic).

Other versions of DDL contain process operators to build process terms from
event terms [SWM92, SWM93, Spr93]. We do not need process terms here and
omit them from the language.

The language Ly, ,,(X) of formulas over Xppy is defined inductively as
follows:

- LE(X) CLsyp, (‘Y)'
~féecLy,,, (X)and e an event term, then [e]¢ € Lx,,, (X).

[el¢ means, intuitively, that after every possible execution of e, ¢ is true. The
dual {e)¢ is defined as —[el-¢ and means that there is a possible execution of e
after which ¢ is true.

A DDL specification Spec = (Xppr,®) is a DDL signature Yppy and a
finite set of closed equations @ C Ly, ,, (X ). An example of a specification is

sorts
NATURAL, PERSON, FEMALE, MALE
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taxonomy
MALE < PERSON, FEMALE < PERSON
nonupdatable functions
— Declarations of operators on NATURAL ...
updatable functions
age: PERSON — NATURAL
nonupdatable predicates
— Declarations of Boolean operators on NATURAL ...
updatable predicates
Married : PERSON x PERSON
events
inc.age: PERSON — EVENT
marry: MALE X FEMALE — EVENT
axioms
Vm: MALE,f: FEMALE :: [marry(m, f)|Married(m, f)
VYm: MALE,f: FEMALE :: {(marry(m, f))true — -Married(m, f)
— Axioms for inc age and for operators on NATURAL ...

Comments in the above start with a —. The first axiom says that after an
occurrence of event marry(m, f), Married(m, f) is true. The second axiom says
that an execution of marry(m, f) is only possible if (currently) m and f are not
married.

The fragment of Lppr(X) that does not contain modal operators is inter-
preted in models which we call possible worlds. A formula containing modal
operators is interpreted in models M that each consists of a set of possible worlds
plus, for each closed event term e, a transition relation on possible worlds. The
meaning of updatability and nonupdatability is that in each M, the nonup-
datable symbols have the same interpretation in all possible worlds, whereas
the updatable symbols may have different interpretations in different possible
worlds.

For example, in a model M of the above specification, there are sets [N ATU-
RAL)pm, [MALE]pq C [PERSON)p, [FEMALE]p C [PERSON] A4, and
[EV ENT] pm, together with functions on these sets that interpret age, inc age,
marry and the operators on NATURAL. In each possible world of M, Marry is
interpreted as a subset of [M ALE| sy X [FEM ALE] p¢. In addition, M contains
a transition relation on possible worlds that says what the result of an event is.
For example, if m and f are closed terms of sorts MALE and FEMALE, re-
spectively, the transition relation that interprets marry(m, f) leads from worlds
in which =Marry(m, f) to worlds in which Marry(m, f) is true.

The intended semantics of a Ly, ,,(X) specification is that the nonupdat-
able part is interpreted as an initial algebra (this puts strong restrictions on the
form of axioms for nonupdatable symbols). The nonupdatable part of a spec-
ification thus defines an abstract data type, which we then use as domain of
the possible worlds of the model. All possible worlds have the same domain, but
they may differ in the interpretation of the updatable symbols. There are several
minimal-change semantics that can be given to events. Some of these have been
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formalized for simple sets of atomic events, but further research is needed on
this topic. More on the formal definition of the semantics of Ly, (X) appears
elsewhere [SWM93, Spr93, Wie9la, WM93].

3.3 Axioms for order-sorted dynamic database logic

In the following, t stands for an arbitrary term, e stands for an arbitrary term of
sort EVENT, Var(t) is the set of variables in the term ¢, sort(t) is the unique
smallest sort of ¢ (which we require to exist), t{t'/z] is t with all occurrences of
x replaced by t', FV () is the set of free variables in ¢, and ¢[t/z] is ¢ with all
free occurrences of z replaced by t. D C X is a finite set of variable declarations.
The axiom system DDL consists of the following axioms and inference rules:

Prop) All substitution instances of propositional tautologies
Inst) Vz:s:¢ — @[t/z] with z free for ¢ in ¢ and sort(t) < sort(z)
K)  [el(¢ = ¢) — ([elg — [e]¥)
) VD : Bl = €3
VD :: [e1]g > [ea]d
BarcanVz : s :: [e]¢ — [e]Vz : 5 :: ¢ for z & Var(e)
PosFr) VD i P(ty,...,tn) — [e]P(t1,...,t,) where P € Py and ¢,

=

(
(
(
(
(
(

contams only nonupdatable function symbols (i =1,...,n
(NegFr) VD o =P(ty,...,t,) — [e ]—|P(t1,.. .., ty) where P € Py and t;
8T contains only nonupdatable function symbols (i = 1,...,n).
(Refl) VD ::t =t where all variables in ¢ are declared in D.
VD ity =ty

(Subst) VD ¢ [t/ ] ftTt/—— where sort(t) < sort(z) and all variables
1 Z| =1y !

in t; are declared in D (¢ = 1,2).
VD : 1 = tg
(ConF) VD i t[ty /z] = t[ta/x]
vanables in t; are declared in D (i = 1,2).
VDb =tz rovided that P : C € P, sort(t;) < C and all
(ConP) P(1,) & Plty) © I Y=
variables in ¢; are declared in D (i = 1, 2).
VD ity =t
(Abs) VD b {I S} ty =19
in t; are declared in D (¢ =1, 2).

provided that sort(t;) < sort(z) and all

provided that z : s ¢ D and all variables

(MP) 9?_'?7"’-
Y
. ¢
e
(U) ¢

V;z::s::ég
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This axiom system is a part of DDL axiom systems given elsewhere [SWM93,
Spr93, Wie9la, WM93]. The (K) axiom together with the (N) inference rule
says that we have a normal (multi)modal system. The (R) axiom says that if
event terms e; and ey are interpreted as the same element in [EVENT]up,
then they denote the same transition on possible worlds. This is an extremely
important axiom to reason about events. (PosFr) and (NegFr) are positive and
negative frame assumptions for nonupdatable predicates (including =). This tells
us nothing about what frame axioms to assume for updatable symbols, but, as
we will see below, we can use it to prove some interesting properties of specifi-
cations. The Barcan formula enforces a constant domain in all possible worlds.
(Refl) axiomatizes the reflexiveness property of equality. (Transitivity and sym-
metry of equality is derivable from the system.) (Subst) formalizes substitution
of equals for equals, and (ConF) and (ConP) require all function, attribute and
predicate symbols to behave like a congruence with respect to equality. The ex-
plicit quantification in front of the equations is needed to avoid problems with
empty sorts; completeness of the equational fragment of the logic in turn requires
the (Abs) inference rule [GM82].

4 Using DDL as a logic for objects, class migration and
role-playing

In this section we use DDL as a logic for reasoning about objects. To do this
we impose a few restrictions on signatures, and thus on the generated language.
The resulting language is called Dynamic Object Language (DOL). The logic of
DOL specifications is the same as that of DDL specifications.

4.1 Class specification

An object signature Ypop = ((§, <), F,E, A, P, B) consists of the following
sets:

- ((§,<),FE,P) is a DDL signature.

— C C S is a set of class names such that if C € C, then all sort names
compatible with C' by < are in C.

— A CFis a set of attribute declarations, which all have the forma: C — s
for C € C and s € S. All updatable function symbols are attribute symbols.

— B C Pis a set of predicate declarations of the form P : C for C € C. All
updatable predicate symbols are in 3.

— There is a universal class Cyy € C such that C < Cy forall C € C.

— There is an updatable predicate symbol Ezists : Cy € B.

Thus, an object signature is just a DDL signature with some distinguished sets
of declarations and an existence predicate and with all updatable symbols unary.
A class specification over X', is a pair (¥poyr, E), where E is a finite
set of formulas over Xppr. In the following example class specification, the
specifications of NATURAL and PERSON (a class) are not shown.



49

classes
VEHICLE
functions
Uy b VEHICLE
next: VEHICLE — VEHICLE
attributes
weight : VEHICLE — NATURAL
owner : VEHICLE — PERSON
price : VEHICLE — NATURAL
registration nr : VEHICLE — NATURAL
updatable predicates
Wreck : VEHICLE
events
change owner : VEHICLE x PERSON x NATURAL — EVENT
change weight : VEHICLE x NATURAL — EVENT
axioms
— 1. Static integrity constraint.
Vv : VEHICLE :: weight(v) < 10000
— 2. Static integrity constraint.
Yoy, ve : VEHICLE vy = vg <
registration_nr(v,) = registration nr(vy)
— 3. Axiom defining the effect of change owner.
Vv: VEHICLE,p: PERSON,m: NATURAL ::
[change owner(v, p, m)|owner(v) = p A price(v) = m
-— 4. Necessary precondition for success of change owner.
— A vehicle can only be sold when it is not a Wreck.
Yv:VEHICLE,p: PERSON,m: NATURAL ::
(change owner (v, p, m))true — ~Wreck{v)
— 5. Effect axiom for change weight.
Vu:VEHICLE,n: NATURAL :: [change weight(v, n)Jweight(v) = n

The function declarations for the V EHICLE class define infinitely many closed
terms of sort VEHICLE of form next™(vy) for n > 0. We view these as for-
mal counterparts of internal (system-generated) V EHICLE identifiers. The at-
tributes and predicates hold the state of V EHICLESs and the events define the
local state changes of a V EHICLE instances. Axioms using updatable symbols
but containing no modalities are called static integrity constraints. By axiom
2, the value of registration nr(v) can be used as external (visible to the user)
identifier of v.

The proof system of DDL can be used to prove properties of specifications.
For example, we can derive a precondition for the application of change weight.
The bracketed numbers in the following refer to axioms in the vehicle specifica-
tion, the unbracketed numbers refer to lines in the proof.
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1Vv:VEHICLE,n: NATURAL ::

[change weight(v, n)|weight(v) = n (5)
2Vv: VEHICLE :: weight(v) < 10000 (1)
3 weight(v) < 10000 2, (Inst)
4Yy: VEHICLE n: NATURAL

[change weight(v, n)jweight(v) < 10000 (U), (N), 3
5Vv: VEHICLE,n: NATURAL ::

[change weight(v,n)]n < 10000 1, 4, (ConF)

6Vv: VEHICLE,n: NATURAL :
(change_weight(v,n))true — (change weight(v,n))n < 10000 5
TVv:VEHICLE,n: NATURAL ::

-n < 10000 — [change weight(v,n)]-n < 10000 (NegFr)
8Vv: VEHICLE,n: NATURAL ::

{change weight(v, n))n < 10000 — n < 10000 7
9Vv: VEHICLE,n: NATURAL ::

(change weight(v, n))true — n < 10000 6, 8

4.2 Specifying static partitions

We saw in the vehicle example that the extension of a class is just the set of
internal identifiers generated for the class, and that we generate these identifiers
by declaring a constant vg, which we will call a seed, and a function next,
which we will call a generator. This idea is generalized to all static partitions:
We specify a seed and a generator for every species and we do not specify a
seed or generator for any other class. Note that the requirement that we have
species makes the implementation of this idea simpler than it would otherwise
have been.

To implement the above idea, we must explicitly declare all species, and, in
general, this can require the declaration of a large number of intersection classes.
To avoid this, we drop all seeds and generators from a specification and add some
syntactic sugar to indicate what the static partitions in a specification are:

classes
CAR,TRUCK,OTHER VEHICLE static partition of VEHICLE
GAS,DIESEL,OTHER ENGINEFE static partition of VEHICLE

This suffices to declare the static taxonomic structure in the intended semantics
of the specification. That is, in the initial semantics of the abstract data type
defined by the nonupdatable part of the specification, a static taxonomic struc-
ture is defined by placing a seed and a generator in every species. The details of
this are straightforward but tedious and we omit them.

4.3 Specifying dynamic partitions

A dynamic object signature poy is a tuple ((§,<),Cs,Cp,F,E, A, P, B)
that satisfies the following requirements:
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((8,5),Cs UCp,F,E, A, P,B) is an object signature.

Cs and Cp are disjoint. Their elements are called static and dynamic class
symbols, respectively.

If C' e Cp and C < ', then C € Cp.

For each C € Cp, the set {C' € Cg|C < C'} is non-empty and has a
unique smallest element, which we call the natural kind of C, written as
C' = nk(C).

For each C € Cp), there is an updatable function symbol 7, c,_c : nk(C) —
C, called a retract for C.

— For each C' € Cp, there is a class predicate Ps : C € B.

Thus, classes are partitioned into static and dynamic classes. All subclasses of
a dynamic class are dynamic, and each dynamic class has a unique least up-
per bound in the set of static classes. Finally, each dynamic class has a re-
tract and an updatable class predicate. The use of retracts and class predicates
is illustrated in a moment. Retracts have been introduced by Goguen, Jouan-
neaud and Meseguer [GJM85]. Class predicates are used in FOOPS, OBJ and
EQLOG [GM86, GM87b]. Retracts have not been used before to define dynamic
subclasses.

A dynamic subclass specification is a class specification over L(Zpor)
containing for each retract ro_.o : C' — C, an axiom

V:C' ¢ o re_co(z) = 1.

The formula ¢ says exactly when an object is an instance of the dynamic subclass
C. The intended semantics of a dynamic subclass specification is that seeds and
generators are only defined for static subclasses and not for dynamic subclasses.
The use of retracts and class predicates is illustrated in the following example.

static classes
VEHICLE
dynamic classes
ACTIVE,WRECK
taxonomy
ACTIVE <VEHICLE
WRECK <VFEHICLE
updatable functions
rvenrcre—acrive - VEHICLE — ACTIVE
Tvenicre—waecx - VEHICLE — WRECK
updatable predicates
Active : VEHICLE
Wreck : VEHICLE
events
wreck the car : VEHICLE — EVENT
create : VEHICLE — EVENT

axioms
-1, 2. Active and Wreck partition the states of a VEHICLE.
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Vz : VEHICLE :: ~(Active(z) A Wreck(z))
Vz:VEHICLE :: Active(z) V Wreck(z)
— 3. All Active vehicles have sort ACTIVE.
Ve :VEHICLE :: Actz’ve(w) A 7"VEHICLE~ACTIVE<17) =z
— 4. All Wrecked vehicles have sort WRECK.
Yz : VEHICLE :: Wreck(z) & Ty enrcre—wreex(Z) =2
— 5. All ACTIV E vehicles are Active.
Vz: ACTIVE :: Active(x)
— 6. All WRECKs are Wrecked.
Vz: WRECK :: Wreck(z)
— 7. Object creation
Vz:VEHICLE :: [create(z)|Exists(z) A Active(z)
— 8. Class migration.
Vz : ACTIVE :: [wreck the car(z)|Wreck(z)

VEHICLE is the natural kind of ACTIVE and WRECK. Note that we may
very well have static subclasses like CAR and TRUCK of VEHICLE. Thus,
the natural kind of a dynamic class need not itself be a smallest class in the set
of static classes.

Axioms 1 and 2 are called the partition axioms for the Active, Wreck
partition.

The retract axiom (3) states that the retract of ACTIV E is the identity
function precisely when the sort predicate Active is true. Axiom (4) says some-
thing analogous for WRECK. These axioms show that there is a redundancy
between class predicates and retracts. We still introduce class predicates as well
as the retract, because both are convenient at different places for reasoning about
dynamic subclasses.

Axioms (5, 6) are called class predicate axioms. They say that Active is
a necessary condition for being an instance of ACTIV E and that Wreck is a
necessary condition for being a WRECK. This is the converse of the retract
axioms (3, 4), which say that if for a VEHICLE z we have Active(z), then
z is of type ACTIV E. Together, these axioms provide the connection we want
between dynamic subclasses and class predicates.®

Axioms 1, 7 and modal reasoning allow us to prove from the specification
that

Vz: VEHICLE :: [create(z)|Exists(z) A Active(z) A ~Wreck(z).

We simplify the examples by adding some syntactic sugar in the form of a
declaration of a dynamic subclass partition for each dynamic partition, that
summarize the declaration of class predicates, conditional retracts, and their
axioms. Using this syntactic sugar, the above example can be abbreviated to the
following:

3 Dynamic subclasses could also have been defined by means of sort con-
straints [GJM85, MG93]. We use retracts, because the logic of sort constraints is
not yet clear to us.
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classes

ACTIVE, W RECK dynamic partition of VEHICLE
events

wreck the car : VEHICLE — EVENT

create : VEHICLE — EVENT
axioms

Vuv: VEHICLE :: [create(v)|Ezists(v) A Active(v)

Vv : ACTIVE :: [wreck _the_car(z)|Wreck(x)

Note that it is useful to have both sort names for dynamic classes as well as
class predicates. The sort names allow us to declare predicates and attributes

that are applicable to dynamic subclasses only; the class predicates allow us to
specify class migration easily.

4.4 Specifying roles

A role signature Xpoy is a tuple ((S, <), Cs,Cp, R, F, E, A, P, B) that satisfies
the following requirements.

- ((8,5),Cs UR,Cp,F,E, A, P, B) is a dynamic object signature.
— R is disjoint from Cg.
— For every R € R there is exactly one C € Cg UCp U R such that there is a
declaration played by : R — C € A.
— A contains no loop of declarations played by : Cy — Cj, ..., played by :
O,,_ — C().
played by

— < and played by are disjoint, i.e. at most one of s; < sy and 7 —— s
can be the case.

Thus, roles can have static and dynamic partitions and they can be played by
an instance of a static or dynamic subclass, as well as by a role. Note that we
require there to be exactly one player class for each role class. This player class
may however have subclasses. An example role specification follows:

static classes
PERSON
role classes
STUDENT, EMP
functions
sg: STUDENT
eg: EMP
next : STUDENT — STUDENT
next : EMP — EMP
attributes
played by : STUDENT — PERSON
played by : EMP — PERSON
events

become student : PERSON x STUDENT — EVENT
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axioms
— 1. Define STUDENT, EM P as role group of PERSON.
Vs: STUDENT,e: EMP :: —played by(s) = played by(e)
— 2, 3. Existence of players required.
Vs: STUDENT :: Ezists(s) — Exzists(played by(s))
Ve: EMP :: Exists(e) — Exists(played by(e))
-— 4, 5. become student is a role creation event.
Vp: PERSON,s: STUDENT :: (become student(p, s))true — ~Ezists(s)
Vp: PERSON,s: STUDENT ::
[become_student(p, s)|Ezists(s) A played by(s) = p

Axiom 1 is called a role group axiom and axioms 2 and 3 player existence
axioms.

It is easy to prove that

Vp: PERSON,s: STUDENT :: [become student(p, s)| Exists(p) A Exists(s)

and
Vp: PERSON,s : STUDENT,e: EMP ::

'become student(p, s)played by(e) # played by(s).

More interesting would be, however, derivation a proof of
Vp: PERSON,s : STUDENT ::

{become student(p, s))true — Exists(p) A ~Exists(s),

for this would give us a necessary precondition for the occurrence of become stu-
dent(p, s). However, such a derivation would require a frame assumption for up-
datable predicate symbols, which says that Ezists(p), if true after becomne stu-
dent(p, s), also was true before this event. Such a frame assumption is easy to
find in this object-oriented context: every event can be required, by putting syn-
tactic restrictions on the axioms, to have only local effects. Since p is different
from s, an event local to s will not affect the Ezists(p). In this view, become stu-
dent(p, s) is local to s, and a name like create student(s,p) would therefore be
more intuitive. Space limitations prevent us from working this out.

Another addition is to ensure that upon creation, a role has a fresh identifier,
never used hefore. This can be easily done by introducing a predicate Used that
every state of the world has as extension the set of all instances of STUDENT
and EM P that have been created (added to the existence set). It is a trivial
matter to add the appropriate axioms to the specification, and we omit it here.

A third addition omitted here is the specification of cardinality constraints.
In general, we may want to specify constraints such as each person can only play
at most one STUDENT role at the same time. Cardinality constraints can be
specified by defining an inverse of the played by attribute, say inv played by :
PERSON — STUDENTS, where STUDENTS is the type of finite sets
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of STUDENT instances. We can then specify a cardinality constraint on the
STUDENT role by an axiom like

Vp: PERSON :: card(inv_played by(p)) < 1.

Definition of the set type STU DENT'S and of the inverse attribute inv_played by
is straightforward and is omitted here.

We can again define some syntactic sugar, in the form of a role group
declaration, to abbreviate the specification:

classes
STUDENT, EMP role group of PERSON
events
become student : PERSON x STUDENT — EVENT
axioms
Vp: PERSON,s: STUDENT,e: EMP :: (become student(p, s))true —
~Exzists(s) A Exists(p) A —played by(e) = p
Vp: PERSON,s: STUDENT ::
(becomne student(p, s)|Exists(s) A played by(s) = p

The role group of section abbreviates the part of the functions section that
determines the placement of seeds and generators for the role classes in the same
way as is done for the static partitions. In addition, it is shorthand for the role
group and player existence axioms.

In the syntax introduced so far, an attribute application like age(s) for s
of type STUDENT is a type error. This can be circumvented by having the
parser of an application a(t) resolve any type mismatches between the expected
argument sort of a and the sort of ¢ by the insertion of played by functions.
Thus, if a : ¢4 — Cy and C; is not among the sorts of t, then the parser
would replace a(t) by a(played by(t)) and see if the mismatch still exists. If
the mismatch still exists and sort(played by(t)) is a role class, then this can be
repeated. Because there are no loops in played by declarations and the < and
played. by relations are disjoint, the played by graph does not contain cycles,
this replacement process will terminate. The term a(s) will now be replaced,
by the parser, by age(played by(s)) and this term can be parsed correctly. This
replacement process is a compile-time version of delegation: s delegates the
answering of the age message to its player.

Note that in DOL, we allow only one player class of a role class. This means
that if we want to let objects of class C1,...,C, be possible players of roles of
class R, then we should define a supertype C > C; (i = 1,...,n) and define C
to be the player class of R.

5 Conclusions

We have shown that there is a clear difference between static and dynamic
subclasses, and, independently from that, between object classes and role classes.
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We have also shown how these taxonomic structures, can be specified in an
order-sorted logic and how we can specify class migration and role playing in
a subset of Dynamic Database Logic. For each of the taxonomic constructs, we
gave methodological principles which can be used to discover which kind of class
is being modeled. These principles are language-independent. DOL resembles
Modal Action Logic [GMS83, JKM86, KMS86, RFM91], but differs from it in
that DOL is integrated with equational ADT specification and is used to specify
objects rather than databases. Conditional retracts and class predicates are used
to specify class migration, and a very simple delegation mechanism is defined
for roles. These constructs are not completely language-independent, but they
are presented in such a way that they may feasibly be combined with particular

logical object specification languages, such as LCM [FW93], Troll [JSHS91] and
Oblog [CSS8).
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